View Article Online View Journal

# ChemComm

## Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: G. L. Hoang, S. Zhang and J. M. Takacs, *Chem. Commun.*, 2018, DOI: 10.1039/C8CC01563E.



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.



rsc.li/chemcomm

Published on 20 April 2018. Downloaded by University of New England on 20/04/2018 01:58:19.



## COMMUNICATION

# Rhodium-catalyzed asymmetric hydroboration of $\gamma$ , $\delta$ -unsaturated amide derivatives: $\delta$ -borylated amides<sup>‡</sup>

G. L. Hoang, S. Zhang and J. M. Takacs

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

 $\gamma$ , $\delta$ -Unsaturated amides in which the alkene moiety bears an aryl or heteroaryl substituent undergo regioselective rhodiumcatalyzed  $\delta$ -borylation by pinacolborane to afford chiral secondary benzylic boronic esters. The results contrast the  $\gamma$ -borylation of  $\gamma$ , $\delta$ -unsaturated amides in which the disubstituted alkene moiety bears only alkyl substituents; the reversal in regioschemistry is coupled with a reversal in the sense of  $\pi$ -facial selectivity.

Chiral boronic acid derivatives are useful building blocks for the synthesis of biologically active natural products and pharmaceutical intermediates.<sup>1</sup> Structures in which boron is attached to the same carbon as an aryl or heteroaryl substituent (i.e., benzylic boronic acid derivatives) are of particular synthetic interest. The catalytic asymmetric hydroboration (CAHB) of styrene and related vinyl arenes to yield benzylic boronic esters was first reported in the mid-1980s.<sup>2,3</sup> The observed regioselectivity is often attributed to the formation of a  $\pi$ -benzyl metal intermediate en route to the benzyl borylated product.<sup>3c,d</sup> In spite of its long history and foundational impact on CAHB,<sup>4</sup> the chemistry has largely been limited to simple vinyl arenes; Rh(I)/QUINAZOLINE<sup>5</sup> and Cu(I)/DTBM-SEGPHOS<sup>6</sup> are among a few catalyst systems that exhibit high selectivity for unfunctionalized  $\beta$ -substituted vinyl arenes.

Figure 1 highlights several alternative methods for the preparation of chiral benzylic boron derivatives that have attracted recent interest. Hall,<sup>7</sup> Yun,<sup>8</sup> and Morken<sup>9</sup> independently reported group-selective cross-coupling of chiral *gem*-diboron derivatives. The methods of Hall and Yun exploit stereoretentive Pd-catalyzed cross-coupling of chiral 1,1-diborylalkanes. Morken uses enantiotopic group-selective cross-coupling of achiral 1,1-diborylalkane derivatives using a chiral palladium catalyst. Toste developed a novel three component coupling strategy using an  $\alpha$ -olefin, an



Fig. 1 Recent approaches in preparation of chiral benzylic boronic esters.

aryldiazonium salt, and bis(pinacolato)diboron (B2pin2); the enantioselectivity is controlled by a cooperative chiral anion phase transfer catalyst in conjunction with a palladium catalyst.<sup>10</sup> Watson constructed the desired chiral boronic ester derivatives via stereospecific nickel-catalyzed Miyaura borylation of a chiral ammonium salt precursor by B<sub>2</sub>pin<sub>2</sub>.<sup>11</sup> Most recently, Lu introduced a one-pot cobalt-catalyzed sequential hydroboration/hydrogenation of internal alkynes.<sup>12</sup> Other recently developed methods for the preparation of benzylic boron derivatives include enantioselective conjugate borylation,<sup>13</sup> enantioselective allylic borylation<sup>14</sup> and asymmetric hydrogenation<sup>15</sup> as well as functionalization<sup>16</sup> of vinyl boronates. Herein, we report that  $\gamma$ , $\delta$ -unsaturated carbonyl compounds, in which the disubstituted alkene moiety bears an aryl or heteroaryl substituent, undergo efficient CAHB to yield functionalized chiral benzylic boron derivatives.

We have explored rhodium-catalyzed directed-CAHBs of a range of  $\beta,\gamma\text{-unsaturated}$  substrates with varying alkene

<sup>‡</sup> Department of Chemistry, University of Nebraska–Lincoln, Lincoln, NE 68588– 0304, USA. Email: jtakacs1@unl.edu

Electronic Supplementary Information (ESI) available: Experimental procedures; compound characterization data; spectra. See DOI: 10.1039/x0xx00000x

Published on 20 April 2018. Downloaded by University of New England on 20/04/2018 01:58:19.

substitution patterns and bearing carbonyl,<sup>17</sup> oxime ether,<sup>18</sup> and phosphonate<sup>19</sup> functionalities. To expand the substrate scope, we are investigating the homologous  $\gamma$ , $\delta$ -unsaturated substrates<sup>20</sup> and recently reported that  $\gamma$ , $\delta$ -unsaturated amides 1, in which the alkene moiety bears only alkyl substituents, undergo efficient regio- and enantioselective  $\gamma$ borylation (Fig. 2). For example, benzyl amide 1 (R = (CH<sub>2</sub>)<sub>2</sub>Ph) affords the  $\gamma$ -borylated product **2** (81%) in a >20:1 regioisomer ratio (rr) and a high enantiomer ratio (96.5:3.5 er).<sup>21</sup> We now report that the analogous  $\gamma,\delta$ -unsaturated benzyl amide **3a** (R = Ph), in which the alkene moiety instead bears an aryl substituent, behaves much differently. Using the same catalyst system, CAHB proceeds with good regiocontrol (>20:1 rr) to give a chiral, secondary benzylic boronic ester, i.e., 4a (89%, 95:5 er). Unlike product **2**, **4a** is the result of  $\delta$ -borylation not  $\gamma$ -borylation, and the sense of  $\pi$ -facial selectivity is reversed; pinBH adds to the opposite faces of the  $\pi$ -system in the two substrates.<sup>22</sup>

While we have not carried extensive ligand optimization studies, the series of BINOL-derived phosphoramidites **B1–B5** indicate that an *N*-phenyl substituent on the phosphoramidite ligand is needed to achieve good conversion and high levels of regio- and enantioselectivity (Fig. 2).<sup>23</sup> Ligands **B1** and **B2** give the major product **4a** in high yield and enantioselectivity (87–89%, 95:5 er). Ligand **B3**, the corresponding *N*,*N*-diphenyl derivative, also affords **4a** in good yield (87%) and with high regioselectivity (>20:1 rr), but the er is lower in this case (85:15); however, **B3** proves more successful with other substrates (*vide infra*). The *N*,*N*-dibenzyl ligand **B4** and the more rigid indoline- derived phosphoramidite **B5** afford catalysts giving relatively



Fig. 2 Regiocontrolled CAHB of  $\gamma,\delta\text{-unsaturated}$  amides: the effect of aliphatic and aromatic substituents.

Figure 3 shows the results obtained under the standard reaction conditions for a series of  $\gamma$ , $\delta$ -unsaturated benzyl amides 3. Using ligands B1-3, the most efficient catalyst system varied among the different substrates. For example, although the N,N-diphenyl ligand B3 gives relatively low enantioselectivity compared to B1 and B2 for substrate 3a, it gives the highest level of induction for 3b, a substrate bearing a relatively electron poor aryl substituent (i.e.,  $4-CF_3C_6H_4$ ). CAHB with **B3** affords  $\delta$ -borylated amide **4b** (78%, 95:5 er); **B1** and **B2** give comparable yields but only 91:9 and 90:10 er, respectively. Substrates 4c and 4d, 4-fluorophenyl and 4chlorophenyl derivatives, undergo CAHB in good yield and enantioselectivity (75-77%, 95:5 er). Aryl derivatives bearing alkoxy group(s) at the para- and/or meta-positions undergo efficient CAHB (71-80%, >20:1 rr) as illustrated by the 4methoxyphenyl (4e, 96:4 er), 3 methoxyphenyl (4f, 97:3 er), 3,5-dimethoxyphenyl (4g, 96.5:3.5 er) and 3,4-dialkoxyphenyl (4h, 92:8 er) derivatives. The product bearing a 2methoxyphenyl-substituent (4i, 82%, >20:1 rr) is obtained in good yield but with lower enantioselectivity (85:15 er); the corresponding 2-methylphenyl derivative is somewhat more efficient (4j, 84%, 93:7 er). A series of four heteroaromatic substrates, although more sluggish to react, undergo CAHB yielding 4k-n with good regio and enantioselectivity (69-73% yield, 92:8-97:3 er, 11->20:1 rr); three equivalents of pinBH are employed to achieve complete conversion in 12 hours.

Substrate 8, chiral by virtue of the stereodefined (R)phenethyl amide moiety, undergoes highly regioselective CAHB (>20:1 rr) (Fig. 4). CAHB/oxidation of 8 using ligand (R)-**B1** affords (5*R*)-9 (82%, 94.5:5.5 dr); the yield and enantioselectivity are comparable to that obtained for the parent substrate 3a. CAHB using (S)-B1 generates the diastereomer (5S)-9 in similar yield (80%) but with a somewhat diminished diastereomer ratio (91:9 dr) indicating a modest matched/mismatched case of double stereodifferentiation. Chiral substrate 10 also undergoes largely catalyst-controlled diastereoselective  $\delta$ -borylation. CAHB/oxidation using (R)-B1 gives predominantly (2R,5R)-11 (79%, 91:9 dr); (S)-B1 gives predominantly (2R,5S)-11 (79%, 92:8 dr). In contrast, the anti- $\beta$ -silyloxybenzyl amide **12** undergoes CAHB/oxidation with diastereoselectivity and exhibits lower а strong matched/mismatched effect. (R)-B2 affords (2S,3S,5R)- 13 (75%, 86:14 dr); the catalyst employing (S)-B2 exhibits lower reactivity (i.e., only 85% conversion after 12 hours) and gives the same major diastereomer of 13 but with much lower diastereoselectivity (67:33 dr).

The question naturally arises, why do **3a** and related substrates afford  $\delta$ -borylation while **1** gives  $\gamma$ -borylation? The modest, but energetically significant, matched/mismatched change in diastereoselectivity for CAHB of chiral amide **8** (Fig. 4) indicates that the resident stereogenic center is positioned

DOI: 10.1039/C8CC01563E

Journal Name

Published on 20 April 2018. Downloaded by University of New England on 20/04/2018 01:58:19.



close to the rhodium-complexed alkene as one would expect in a carbonyl-directed CAHB. The ester moiety in **14** and more so the TIPS ether in **16** are less likely to direct the rhodiumcatalyzed reaction. Each undergoes CAHB in good yield and



Fig. 4 Diastereoselective CAHB/oxidation of chiral substrates. Unless otherwise noted, the reaction conditions employ 1.0% [Rh(nbd)<sub>2</sub>BF<sub>4</sub>/2 **B**], 1.5 pinBH in THF (40 °C, 12 h) followed by oxidation (H<sub>2</sub>O<sub>2</sub>, aq NaOH, rt, 1 h); the reported yields are for the isolated mixture of inseparable diastereomers. <sup>*a*</sup> 3.0% [Rh(nbd)<sub>2</sub>BF<sub>4</sub>/2 **B**]. <sup>*b*</sup> NMR yield. <sup>*c*</sup> ca. 85% conversion.

with high regioselectivity (75–77% yield, >20:1 rr), but compared to amides **3a**, **5a** and **5b**, the level of enantioselectivity is lower, 85:15 for ester **14** and 90:10 er for TIPS ether **16**. Furthermore, in the direct competition between equivalent amounts of **3a** and **16** for a limiting amount of pinBH, **3a** is consumed somewhat faster.<sup>25</sup> The one carbon homologue of **3a**, that is,  $\delta_{,\varepsilon}$ -unsaturated amide **18**, increases the distance between directing group and the alkene; CAHB affords the benzylic,  $\varepsilon$ -borylated product **19** (78%, >20:1 rr, 90.5:9.5 er). These results seem to indicate that the aryl substituent directs the regiochemistry, but the nature of the directing group is important in determining the level of catalyst-controlled enantioselectivity.

In conclusion, we report the  $\delta$ -borylation of  $\gamma$ , $\delta$ unsaturated amides bearing an aryl/heteroaryl substituent on the alkene. The results contrast those obtained for CAHB of  $\gamma$ , $\delta$ -unsaturated amides bearing only alkyl substituents on the alkene, which differ both in terms of regioselectivity and  $\pi$ facial selectivity. A brief ligand survey suggests that an *N*-aryl substituent is a necessary feature of the BINOL-derived phosphoramidite ligand. While chiral phosphoramidites<sup>26</sup> and BINOL-derived ligands<sup>27</sup> have found extensive use in asymmetric catalysis, phosphoramidites derived from *N*-aryl amines have less commonly been used; their requirement here is somewhat unusual.<sup>24,28</sup> The reaction exhibits a fairly broad scope with respect to vinyl arene moiety; the successful use of furan and thiophene derivatives and the catalyst-controlled diastereoselective  $\delta$ -borylation of certain chiral substrates are

ChemComm Accepted Manuscrip

DOI: 10.1039/C8CC01563E Journal Name



Fig. 5 Other directing groups exhibit lower levels of enantioselectivity.

of particular note. Whether or not  $\delta$ -borylation is the result of carbonyl-directed CAHB is mechanistically interesting but does not greatly impact the potential utility of the process. Nonetheless, the nature of the directing group is important to the level of enantioselectivity. Further studies on the influence of aryl-substituents on directed-CAHBs are in progress.

Funding from the NIH National Institutes of General Medical Sciences (R01 GM100101) is gratefully acknowledged. We thank T. Nguyen (UNL) for some preliminary experiments.

### **Conflicts of interest**

There are no conflicts to declare.

#### Notes and references

- (a) M. A. Soriano-Ursúa, B. C. Das and J. G. Trujillo-Ferrara, Expert Opinion on Therapeutic Patents, 2014, 24, 485–500;
   (b) S. J. Baker, C. Z. Ding, T. Akama, Y.-K. Zhang, V. Hernandez and Y. Xia, Future Med. Chem., 2009, 1, 1275–1288; (c) S. N. Mlynarski, C. H. Schuster and J. P. Morken, Nature, 2014, 505, 386–390; (d) C. Sanford and V. K. Aggarwal, Chem. Commun., 2017, 53, 5481–5494, and references cited therein.
- 2 K. Burgess and M. J. Ohlmeyer, J. Org. Chem., 1988, 53, 5178–5179.
- 3 (a) T. Hayashi, Y. Matsumoto and Y. Ito, J. Am. Chem. Soc., 1989, 111, 3426–3428; (b) T. Hayashi, Y. Matsumoto and Y. Ito, Tetrahedron: Asymmetry, 1991, 2, 601–612; (c) D. R. Edwards, Y. B. Hleba, C. J. Lata, L. A. Calhoun and C. M. Crudden, Angew. Chem., Int. Ed., 2007, 46, 7799–7802; (d) J. Huang, W. Yan, C. Tan, W. Wu and H. Jiang, Chem. Commun., 2018, 54, 1770–1773.
- 4 (a) J. M. Brown and B. N. Nguyen, Stereoselective hydroboration and diboration of carbon-carbon double bonds; Georg Thieme Verlag: 2011, 1, 295; (b) A.-M. Carroll, T. P. O'Sullivan and P. J Guiry, Adv. Synth. Catal., 2005, 347, 609–631; (c) C. M. Crudden and D. Edwards, Eur. J. Org. Chem., 2003, 4695–4712; (d) K. Burgess and M. J. Ohlmeyer, Chem. Rev., 1991, 91, 1179–1191.
- 5 (a) M. McCarthy and P. J. Guiry, *Polyhedron*, 2000, **19**, 541–543; (b) M. McCarthy, R. Goddard and P. J. Guiry, *Tetrahedron: Asymmetry*, 1999, **10**, 2797–2807; (c) P. M. Lacey, C. M McDonnell and P. J. Guiry, *Tetrahedron Lett.*, 2000, **41**, 2475–2478; (d) D. J. Connolly, P. M. Lacey, M. McCarthy, C. P. Saunders, A.-M. Carroll, R. Goddard and P. J. Guiry, *J. Org. Chem.*, 2004, **69**, 6572–6589.
- 6 D. Noh, S. K. Yoon, J. Won, J. Y. Lee and J. Yun, *Chem. Asian. J.*, 2011, **6**, 1967–1969.

- 7 J. C. H. Lee, R. McDonald and D. G. Hall, *Nat. Chem.*, 2011, **3**, 894–899.
- 8 X. Feng, H. Jeon and J. Yun, *Angew. Chem., Int. Ed.,* 2013, **52**, 3989–3992.
- 9 C. Sun, B. Potter and J. P. Morken, J. Am. Chem. Soc., 2014, 136, 6534–6537.
- 10 H. M. Nelson, B. D. Williams, J. Miró and F. D. Toste, J. Am. Chem. Soc., 2015, **137**, 3213–3216.
- 11 C. H. Basch, K. M. Cobb and M. P. Watson, *Org. Lett.*, 2016, **18**, 136–139.
- 12 J. Guo, B. Cheng, X. Shen and Z. Lu, J. Am. Chem. Soc., 2017, 139, 15316–15319.
- 13 J. A. Schiffner, K. Müther and M. Oestreich, *Angew. Chem., Int. Ed.*, 2010, **49**, 1194–1196.
- 14 A. Guzman-Martinez and A. H. Hoveyda, J. Am. Chem. Soc., 2010, 132, 10634–10637.
- 15 (a) C. Margarita and P. G. Andersson, J. Am. Chem. Soc., 2017, **139**, 1346–1356; (b) J. J. Verendel, O. Pamies, M. Dieguez and P. G. Andersson, Chem. Rev., 2014, **114**, 2130– 2169.
- 16 M. Silvi, C. Sanford and V. K. Aggarwal, J. Am. Chem. Soc., 2017, 139, 5736–5739.
- 17 (a) S. M. Smith, G. L. Hoang, R. Pal, M. O. B. Khaled, L. S. W. Pelter, X. C. Zeng and J. M. Takacs, *Chem. Commun.*, 2012, **48**, 12180–12182; (b) S. M. Smith, M. Uteuliyev and J. M. Takacs, *Chem. Commun.*, 2011, **47**, 7812–7814; (c) S. M. Smith and J. M. Takacs, *Org. Lett.*, 2010, **12**, 4612–4615; (d) S. M. Smith and J. M. Takacs, *J. Am. Chem. Soc.*, 2010, **132**, 1740–1741; (e) S. M. Smith, N. C. Thacker and J. M. Takacs, *J. Am. Chem. Soc.*, 2008, **130**, 3734–3735.
- 18 V. M. Shoba, N. C. Thacker, A. J. Bochat and J. M. Takacs, Angew. Chem., Int. Ed., 2016, 55, 1465–1469.
- 19 S. Chakrabarty and J. M. Takacs, J. Am. Chem. Soc., 2017, 139, 6066–6069.
- 20 (a) G. L. Hoang, Z.-D. Yang, S. M. Smith, R. Pal, J. L. Miska, D. E. Pérez, L. S. W. Pelter, X. C. Zeng and J. M. Takacs, *Org. Lett.*, 2015, **17**, 940–943; b) Z.-D. Yang, R. Pal, G. L. Hoang, X. C. Zeng and J. M. Takacs, *ACS Catal.*, 2014, **4**, 763–773.
- 21 G. L. Hoang and J. M. Takacs, Chem. Sci., 2017, 8, 4511–4516.
- 22 For a rationalization of similarly coupled changes in regioselectivity and  $\pi$ -facial discrimination, see 17a.
- 23 (a) Unless otherwise noted, the isolated yield of the major boronic ester is reported. Enantiomer ratios (er) are determined by chiral HPLC analysis of the corresponding alcohols after oxidation or by <sup>19</sup>F NMR analysis of their Mosher esters. Diastereomer ratios are determined by NMR analysis; see the ESI for details. (b) A 2:1 ligand-to-metal ratio is employed in this study. A more active catalyst is formed using a 1:1 ratio, but the yield and enantioselectivity are generally diminished by 5–10%.
- 24 For a similar effect in an iridium-catalyzed reaction, see: C.-X. Zhuo, Q. Cheng, W.-B. Liu, Q. Zhao and S.-L. You, *Angew. Chem., Int. Ed.,* 2015, **54**, 8475–8479.
- 25 Using half an equivalent of pinBH relative to total amount of alkene present leaves 38% of unreacted amide 3a and 68% of unreacted TIPS ether **16**.
- 26 J. F. Teichert and B. L. Feringa, Angew. Chem., Int. Ed., 2010, 49, 2486–2528.
- (a) J. Qu and G. Helmchen, Acc. Chem. Res., 2017, 50, 2539–2555; (b) R. B. Sunoj, Acc. Chem. Res., 2016, 49, 1019–1028);
  (c) W. Fu and W. Tang, ACS Catal., 2016, 6, 4814–4858; (d) L. Eberhardt, D. Armspach, J. Harrowfield and D. Matt., Chem. Soc. Rev., 2008, 37, 839–864.
- 28 W.-B. Liu, C. Zheng, C.-X. Zhuo and S.-L. You, J. Am. Chem. Soc., 2012, **134**, 4812–4821; (c) X. Zhang, W.-B. Liu, Q. Cheng and S.-L. You, Organometallics, 2016, **35**, 2467–2472.

This journal is © The Royal Society of Chemistry 20xx

A simple rhodium catalyst system promotes the regio- and enantioselective  $\delta$ -borylation of  $\gamma$ , $\delta$ unsaturated amide derivatives by pinacolborane to afford chiral benzylic boronic esters.



- high regioselectivity (up to >20.11)
   high enantioselectivity (up to 97:3 er)
- high diastereoselectivity (dr) with chiral substrates

Published on 20 April 2018. Downloaded by University of New England on 20/04/2018 01:58:19.