Enantioselective Synthesis of Hydroxy-Substituted DBN-Type Amidines as Potential Chiral Catalysts

Martin Ostendorf,^[a] Sandor van der Neut,^[a] Floris P. J. T. Rutjes,^[a] and Henk Hiemstra*^[a]

Keywords: Amidines / Chiral base / Enantioselective catalysis / Enantioselective synthesis / N-acyliminium ions / Oxazaborolidines

The synthesis and X-ray crystal structures of three enantiopure hydroxy-substituted amidines of the DBN-type are described. The key starting material, a 5-(phenylsulfonyl)pyrrolidin-2-one, was obtained by an oxazaborolidine-catalysed reductive desymmetrization of a

Introduction

Catalytic asymmetric synthesis is one of the most challenging topics in contemporary organic chemistry.^[1] A great deal of research in this area has focused on the utilization of transition-metal-containing catalysts. The application of purely organic compounds as homogeneous catalysts, however, has remained a relatively unexplored field. The potential advantages of such a catalytic system include low costs, a low level of toxicity, and high stability under the reaction conditions. Notable examples are an (S)-proline-catalysed aldol cyclization,^[2] enantioselective reactions catalysed by cinchonidine 1 and other members of the cinchona alkaloids,^[3] and the addition of HCN to benzaldehyde, catalysed by the dipeptide 2.^[4] More recently, Corey and co-workers modified the structure of cinchonidine to give the phase-transfer catalyst 3, which was applied in the enantioselective alkylation of imino esters.^[5] A very recent example was reported by the same group; in this case the C_2 -symmetric guanidine 4 was employed in catalytic asymmetric Strecker reactions.^[6] Alternatively, in the group of Jacobsen, a combinatorial-chemistry approach was used to develop the amino-acid-derived catalyst 5, which was also applied in asymmetric Strecker reactions.^[7] In addition, the topic of asymmetric conjugate addition reactions has been covered in a recent review article.^[8]

The excellent catalytic properties of bases 1 and 2 was ascribed to their bifunctionality. In a base-catalysed process, the basic moiety in the catalyst is believed to activate the nucleophile, while, at the same time, the hydrogen-donating group can activate the electrophile through hydrogen bonding. In this way both the reaction partners are activated and held closely together to allow a successful and enantioselective reaction. Amino alcohols such as 1 are, however, limited in their applicability as catalysts due to the

 [a] Laboratory of Organic Chemistry, Institute of Molecular Chemistry, University of Amsterdam Nieuwe Achtergracht 129, NL-1018 WS Amsterdam, The Netherlands Fax: (internat.) + 31-20/525-5670 E-mail: henkh@org.chem.uva.nl *meso*-imide and was functionalized through *N*-acyliminium ion chemistry. The hydroxy groups were introduced by ozonolysis or reduction. Preliminary results on the use of the hydroxyamidines as chiral, bifunctional catalysts in selected Michael reactions are described.

relatively low basicity of the nitrogen atom. A more basic functionality in the chiral catalyst might extend the scope of organic base catalysis. The amidine function is an example of such a stronger base.^[9] The combination of an amidine with an alcohol could, therefore, possibly lead to a catalytic system possessing enantioselectivity-inducing properties. Previous research from our group resulted in the synthesis of hydroxy amidine **6**, which was prepared in eleven steps from (*S*)-pyroglutamic acid.^[10]

Because hydroxy amidine **6** displayed only limited enantioselectivity in base-catalysed reactions, we decided to design new types of hydroxy amidines (viz. 7-9). These enantiopure bases feature an additional six-membered ring, which to some extent could block the top face of the basic molecule. Furthermore, the six-membered ring renders the system more hydrophobic than **6**, so that better solubility in apolar solvents is achieved. These features might positively influence the asymmetry-inducing properties. This article describes the synthesis of amidine **7**, which contains an ethyl side chain with a primary hydroxy group, and of the diastereomeric amidines **8** and **9**, which contain a phenylethyl side chain with a secondary hydroxy group. Both dia-

Eur. J. Org. Chem. 2000, 105-113

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000

stereomers were synthesized in order to investigate a possible matched/mismatched selectivity.

Results and Discussion

A suitable intermediate to arrive at the targeted hydroxyamidines 7-9 was deemed to be sulforyllactam 13 (Scheme 1). Lactam 13 was obtained from an oxazaborolidine-catalysed reductive desymmetrization^[11] of the corresponding meso-imide 10 according to a recently published procedure developed by our group.^[12] Compared to this published procedure, we have greatly improved the enantioselective synthesis of lactam 12 by using neat BH₃·Me₂S instead of BH₃·THF.^[12a] In this way, more reproducible results were obtained without affecting yields and ee's. Thus, when imide 10 was treated with a mixture of $BH_3 \cdot Me_2S$ (0.60 equiv.) and oxazaborolidine 11 (20 mol-%), the hydroxylactams 12 were obtained in 80% yield (Scheme 1). Rather than converting the mixture of hydroxylactams into the ethoxylactam,^[12a] we treated it directly with benzenesulfinic acid and CaCl₂, to afford the sulfone 13 in 80% yield and 85% ee. After a single recrystallization, enantiopure material was obtained (> 99% ee, 32% overall yield from 10) as crystals (m.p. 95-96.5°C) which were suitable for X-ray analysis (Figure 1). The crystal structure clearly showed the trans stereochemistry at C1 and C7a, and confirmed the (1S,3a-S,7aR) absolute configuration that was determined previously by chemical correlation.^[10]

Scheme 1. Synthesis of sulfonyllactam 13

The synthesis of our first target molecule, hydroxyamidine 7, is detailed in Scheme 2. Treatment of sulfone 13 with allyltrimethylsilane in the presence of BF_3 ·OEt₂ provided

Figure 1. Crystal structure of 13

the allylated lactam 14 in quantitative yield. This reaction, which presumably proceeds via an N-acyliminium ion,^[13] took place in > 98% de, as shown by ¹H- and ¹³C NMR data. The alcohol group was introduced by ozonolysis of the double bond and subsequent in situ reduction with NaBH₄ to afford 15 in 81% yield. The primary alcohol was protected with a tert-butyldimethylsilyl group to give 16 in 95% yield, after which the amidine moiety could be introduced with chemistry developed previously in our group.^[10] This involved a series of reactions, the first of which is reduction of the nitrile function. Treatment of 16 with CoCl₂ (2 equiv.) and an excess of NaBH₄ in MeOH/NH₃ (to prevent the formation of dimers)^[14] resulted in the formation of the amine which was not purified, but immediately protected with a tBoc group to afford 17 in 58% yield after purification by column chromatography. Direct cyclization to the lactam proved not possible at this stage. Therefore, a mild cyclization route was followed.^[10] Treatment of 16 with Lawesson's reagent^[15] afforded thiolactam 18 in 81% vield. After the alcohol group was deprotected with TBAF, 19 was treated with neat MeI to give the methylthioiminium salt. The *t*Boc group was then removed with trifluoroacetic acid; cyclization of the resulting amine onto the activated lactam was promoted by an excess of Et₃N, with the hydroxyamidine 7 forming in 81% yield. The product was purified by recrystallization from benzene to afford crystals suitable for X-ray analysis (Figure 2). The crystal structure clearly showed the trans relationship between the cis-fused six-membered ring and the two-carbon side chain. The C= N bond length was found to be 1.28 Å and the C-N bond length 1.36 A.

Next, the syntheses of amidines 8 and 9 were investigated. It was envisioned that both compounds might be derived from ketone 21 (Equation 1). Extensive experimentation eventually showed that the most efficient route to 21 involved treatment of sulfone 13 with the enol acetate of acetophenone^[16] in the presence of AlCl₃; this reaction afforded 21 in 89% yield (for example reaction with the commercially available trimethylsilyl enol ether of acetophenone and BF₃·OEt₂ afforded 21 in only 21%). As expected, this *N*-acyliminium ion mediated reaction occurred with complete diastereoselectivity.

FULL PAPER

Scheme 2. Synthesis of hydroxyamidine 7

Figure 2. Crystal structure of 7

Reduction of ketone 21 with NaBH₄ afforded a 4:3 mixture of diastereomers 23a and 23b, which could not be separated by flash column chromatography or recrystallization. Therefore, the application of a chiral reducing reagent in this reaction was investigated. It was found that the combination of borane and an oxazaborolidine was the best choice to obtain the desired products as single diastereomers. Whereas the B-H oxazaborolidine 11 was the reagent of choice for the enantioselective reduction of mesoimides (Scheme 1), we preferred to use the corresponding B-Me catalysts 22a and 22b in this case (Scheme 3), because they are significantly more stable and display equal selectivity.^[11] The *B*-Me catalysts are nowadays commercially available, but can also be synthesized from the appropriate diphenylprolinol enantiomer and trimethylboroxine.^[17] Treatment of 21 with BH₃·Me₂S and oxazaborolidine 22a (30%) afforded alcohol **23a** in > 98% de according to ¹Hand ¹³C NMR spectroscopy. The supposed (*R*) configuration at the benzylic position could not be confirmed by NMR data, but was proven later by the X-ray crystal structure of the corresponding hydroxyamidine (see Figure 3). On the other hand, when ketone **21** was treated with BH₃·Me₂S and oxazaborolidine **22b** [derived from (*R*)-diphenylprolinol], the (*S*)-alcohol **22b** was formed as a single diastereomer, thus confirming the complete reagent control of the oxazaborolidines.

Scheme 3. Reduction of ketone 21

Both alcohols **23a** and **23b** underwent the previously described chemical reactions that lead to amidines (Scheme 4). The hydroxy groups were protected as *tert*-butyldimethylsilyl ethers with TBDSMOTf; followed by an identical series of events to afford the hydroxyamidines **8** and **9** in comparable yields. Amidine **8** was obtained as a solid which, upon recrystallization, gave crystals that were analysed by an X-ray crystal structure determination (m.p. 104-107 °C). From this crystal structure (Figure 3) it became clear that in the solid state, two molecules of **8** were linked to one molecule of H₂O through four hydrogen bonds. Amidine **9** was obtained as a foam and, in our hands, could not be crystallized.

Figure 3. Crystal structure of 8

The hydroxy amidines 7-9 were tested for their catalytic activity and enantioselectivity. A well-studied Michael-type addition, the addition of thiophenol to cyclohexenone, was chosen as an asymmetric test reaction.^[3a] The results are summarized in Table 1. The reaction proceeded well in the presence of 1-5 mol-% of catalyst to give thioether **28** in good yields (72–100%). The highest optical purity (23%) was obtained with hydroxyamidine **7** that contains the primary alcohol group. Catalysts **8** and **9** gave the product in 15% and 14% o.p., respectively. Remarkably, the sign of optical rotation of product **28** was independent of the stereochemistry in the side chain.

Carbon nucleophiles such as nitromethane, 2,4-pentanedione, and dimethyl malonate also reacted with cyclohexenone in the presence of catalyst 7. In all cases, the products were obtained in good yields (56-70%). An optically active product was obtained only with dimethyl malonate (Equa-

^[a] Determined from the known specific rotation.^[3a]

tion 2). When 25% of 7 was used, product **29** was obtained in 56% yield and 35% o.p.^[18]

Conclusion

In conclusion, three enantiopure hydroxyamidines were synthesized from the readily available sulfonyllactam 13 as the starting material. These compounds belong to a structural class of amidines which is virtually unknown in the literature. The structures of 7 and 8 were proven by X-ray crystal structure determinations. The most simple catalyst 7, containing a primary alcohol, effected slightly better enantioselectivity than 8 and 9: The introduction of an extra, phenyl-substituted secondary stereocentre did not lead to higher selectivities. Moreover, both diastereomers of cata-

Scheme 4. Synthesis of hydroxyamidines 8 and 9

lysts 8 and 9 gave the same enantiomer of the Michael-type product 28; this implies that this stereocentre does not play an essential role in the enantioselective catalysis. Despite the fact that these amidines showed satisfactory catalytic activity, it is evident that the enantioselectivity-inducing properties are inferior compared to previously obtained ee's.^[3]

Further studies towards new hydroxyamidines will focus on the relative orientation of the amidine and the hydroxy functions in order to search for better enantioselectivity in base-catalysed processes

Experimental Section

General: All reactions were carried out under dry nitrogen, unless described otherwise. Standard syringe techniques were applied for transfer of dry solvents and air- or moisture-sensitive reagents. -IR: Bruker IFS 28 (absorptions are reported in cm^{-1}). – NMR: Bruker AC 200, Bruker WM 250, Bruker ARX 400 (200, 250 or 400 MHz for ¹H; 50, 63, or 100 MHz for ¹³C). NMR spectra were obtained from CDCl₃ solutions. Chemical shifts are reported in δ relative to an internal standard of residual chloroform ($\delta = 7.27$ for ¹H NMR and δ = 77.0 for ¹³C NMR). – HRMS: JEOL JMS SX/SX102A, coupled to a JEOL MS-MP7000. - Elemental analyses: Vario EL. - Optical rotations: Perkin-Elmer 241 (in the indicated solvent at ambient temerature). - Melting points and boiling points are uncorrected. - Ethyl acetate (EtOAc) and petroleum ether 60-80 (PE) were distilled before use. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were freshly distilled from sodium benzophenone ketyl prior to use. CH2Cl2, toluene, CH3CN, EtOH, and MeOH were dried and distilled from CaH₂ or LiAlH₄ and stored over 4 Å (MeOH over 3 Å) molecular sieves under nitrogen. Et₃N and pyridine were dried and distilled from KOH pellets and stored over KOH pellets under nitrogen. - Compounds 10-14 were described previously.^[12a]

Crystallographic Data for 13: Orthorhombic crystals, $P2_12_12_1$, a = 8.4904(5), b = 11.0928(5), c = 17.4835(11) Å, V = 1646.6(2) Å³, Z = 4, $D_X = 1.34$ g cm⁻³, λ (Cu- K_a) = 1.5418 Å, μ (Cu- K_a) = 18.9 cm⁻¹, F(000) = 704, -25° C. Final R = 0.057 for 1870 observed reflections.^[19]

3-[(1R,3aS,7aR)-1-(2-Hydroxyethyl)-3-oxooctahydroisoindol-2-yl)]propionitrile (15): Ozone was bubbled through a solution of 13 (28.8 mg, 0.12 mmol) in MeOH (2 mL) at -78 °C. After 2 min, the solution turned blue. The ozone was replaced with nitrogen and after 5 min, NaBH₄ (47 mg, 1.2 mmol) was added in portions. Stirring was continued for 15 min at -78 °C and 1 h at room temp. The reaction mixture was quenched with 5% aqueous HCl. The water layer was extracted (CH₂Cl₂, 5 \times) and the combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. After flash chromatography (EtOAc) 15 (23 mg, 0.10 mmol, 81%) was obtained as a colourless oil. – IR (film): $\tilde{v} = 3410 \text{ cm}^{-1}$, 2249, 1667. - ¹H NMR (400 MHz): $\delta = 3.85 - 3.79$ (dt, 1 H, J = 13.9, 6.5 Hz, NCHH), 3.69-3.62 (m, 2 H, CH₂OH), 3.33-3.30 (dd, 1 H, J =8.7, 4.2 Hz NCH), 3.25–3.18 (dt, 1 H, J = 13.9, 6.7 Hz, NCHH), 2.73-2.65 (m, 1 H, NCH₂CHH), 2.62-2.54 (m, 2 H, CHC(O) and NCH₂CH*H*), 2.17–2.11 (dt, 1 H, J = 10.5, 5.9 Hz, NCHC*H*), 2.06-2.02 (br. d, 1 H, J = 14.8 Hz, C(O)CHCHH), 1.80-1.73 (m, 2 H), 1.70-1.63 (m, 1 H), 1.57-1.40 (m, 3 H), 1.22-1.06 (m, 3 H). $-{}^{13}$ C NMR (100 MHz): $\delta = 176.2$ [s, C(O)], 118.1 (s, CN), 60.8 (d, NCH), 59.0 (t, CH₂OH), 39.0 [d, C(O)CH], 37.4 (d, NCHCH), 37.3 (t, NCH₂), 33.2 (t, CH₂CH₂OH), 28.8, 23.7, 22.9,

Eur. J. Org. Chem. 2000, 105-113

21.7, [t, $-(CH_2)_4$ -], 16.1 (t, CH_2CN). - HRMS (FAB+) calcd. for $C_{13}H_{21}N_2O_2$ (M + H) 237.1603, found 237.1598. - $[\alpha]_D = -31.1$ (c = 1.0; CHCl₃).

3-{(1R,3aS,7aR)-1-[2-(tert-Butyldimethylsilyloxy)ethyl]-3-oxooctahydroisoindol-2-yl}propionitrile (16): To a solution of 15 (6.60 g, 28.0 mmol) in CH₂Cl₂ (40 mL) was added TBDMSCl (4.40 g, 29.4 mmol), imidazole (4.80 g, 70.0 mmol), and DMAP (324 mg, 2.8 mmol). After being stirred at room temperature for 3 h, the reaction mixture was quenched with 5% aqueous HCl. After the water layer was extracted (CH₂Cl₂, 4 \times), the combined organic layers were dried (Na₂SO₄), and in vacuo concentration took place, the product was obtained, after flash chromatography (EtOAc/PE, 1:1), as a white solid (9.3 g, 26.6 mmol, 95%), m.p. 44-45°C. -IR (CHCl₃): $\tilde{v} = 2250 \text{ cm}^{-1}$, 1681. – ¹H NMR (400 MHz): $\delta =$ 3.84-3.77 (dt, 1 H, J = 13.9, 6.4 Hz, NCHH), 3.65-3.62 (t, 2 H, J = 5.5 Hz, CH_2OSi), 3.29-3.25 (dd, 1 H, J = 8.8, 4.1 Hz NCH), 3.19-3.13 (quint, 1 H, J = 6.9 Hz, NCHH), 2.72-2.64 (m, 1 H, NCH₂CHH), 2.57-2.50 [m, 2 H, CHC(O) and NCH₂CHH], 2.17-2.14 (dt, 1 H, J = 10.8, 5.7 Hz, NCHCH), 2.09-2.05 [br. d, 1 H, J = 14.2 Hz, C(O)CHCHH], 1.76–1.41 (m, 6 H), 1.19–1.06 (m, 3 H), 0.84 [s, 9 H, SiC(CH₃)₃], 0.00 [s, 6 H, Si(CH₃)₂]. - ¹³C NMR (100 MHz): $\delta = 175.8$ [s, C(O)], 117.9 (s, CN), 61.0 (d, NCH), 59.7 (t, CH₂OSi), 38.9 [d, C(O)CH], 37.4 (d, NCHCH), 37.3 (t, NCH₂), 33.3 (t, CH₂CH₂OH), 25.7 (q, SiC(CH₃)₃), 28.9, 23.7, 22.9, 22.8 [t, -(CH₂)₄-], 18.0 [s, SiC(CH₃)₃], 16.1 (t, CH₂CN), -5.60, -5.62 [q, Si(CH₃)₂]. -C₁₉H₃₄N₂O₂Si (350.6): calcd. C 65.09, H 9.78, N 7.99; found C 64.78, H 9.55, N, 8.11. - $[\alpha]_{\rm D} = -26.2 \ (c = 1.0; \text{ CHCl}_3).$

{3-[(1R,3aS,7aR)-1-[2-(tert-Butyldimethylsilyloxy)ethyl]-3-oxooctahydroisoindol-2-yl]propyl}carbamic Acid tert-Butyl Ester (17): To a vigorously stirred, purple solution of $CoCl_2 \cdot H_2O$ (6.2 g, 26.2 mmol) in MeOH (20 mL) was added, at 0°C, NaBH₄ (124 mg, 3.3 mmol). The deep-black solution was stirred for 15 min at room temperature and cooled again. Then a solution of 16 (4.6 g, 13.1 mmol) in 2% NH₃ in MeOH (40 mL) was added dropwise. NaBH₄ pellets (5.0 g, 131 mmol) were added in portions over 1.5 h; hydrogen gas evolved. After being stirred another 1.5 h at 0°C, the reaction mixture was quenched with H2O and filtered through Celite. The Celite was washed three times with MeOH/H₂O, 9:1. The solution was concentrated in vacuo and the residue was taken up in 5% aqueous NH₃. After extraction of the water layer (EtOAc, 5 \times), drying of the combined organic layers (Na₂SO₄) and concentration in vacuo, the crude product was obtained as a purple oil (4.1 g, 11.7 mmol, 89%). To a solution of this amine in CH_2Cl_2 (40 mL) was added Boc₂O (4.9 g, 22.6 mmol) and a catalytic amount of DMAP. After being stirred for 3 h at room temperature, the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc/PE, 1:1); the product was obtained as a yellow oil (3.5 g, 7.6 mmol, 58% from 15). – IR (film): $\tilde{v} =$ 3400 cm⁻¹, 1684. – ¹H NMR (400 MHz): δ = 5.55 (br. t, 1 H, NHBoc), 3.63 (m, 3 H, NCHH, CH2OSi), 3.24 (m, 1 H, CHHNHBoc), 3.09 (dd, 1 H, J = 9.3, 3.2 Hz, NCH), 2.90 (m, 2 H, NCHHCH₂, CHHNHBoc), 2.56 [br. t, 1 H, J = 5.6 Hz, C(O)CH], 2.14 [dt, 1 H, J = 10.8, 6.4 Hz, C(O)CHCHH], 2.07 (br. d, 1 H, J = 13.3 Hz, NCHCH), 1.7-1.4 (m, 8 H), 1.38 [s, 9 H, CO₂C(CH₃)₃], 1.1-0.9 (m, 3 H), 0.84 [s, 9 H, SiC(CH₃)₃], 0.00 [s, 6 H, Si(CH₃)₂]. - ¹³C NMR (100 MHz): δ = 175.9 [s, NC(O)], 156.0 [s, NHC(O)], 78.6 [s, CO₂C(CH₃)₃], 60.3 (d, NCH), 59.8 (t, CH₂OSi), 39.0 [d, C(O)CH], 37.4 (t, NCH₂ and t, CH₂NHBoc), 37.1 (d, NCHCH), 32.8 and 27.3 (t, CH2CH2OH and t, NCH₂CH₂CH₂), 28.3 [q, CO₂C(CH₃)₃], 25.7 [q, SiC(CH₃)₃], 29.2, 23.8, 23.1, 22.9 [t, -(CH₂)₄-], 18.0 [s, SiC(CH₃)₃], -5.58, -5.63

FULL PAPER

[t, Si(CH₃)₂]. – HRMS (FAB+) calcd. for C₂₄H₄₇N₂O₄Si (M + H) 455.3305, found 455.3280. – $[\alpha]_D$ = +30.0 (c = 1.0; CHCl₃).

{3-[(1R,3aS,7aR)-1-[2-(tert-Butyldimethylsilyloxy)ethyl]-3-thioxooctahydroisoindol-2-yl|propyl}carbamic Acid tert-Butyl Ester (18): To a solution of 17 (3.5 g, 7.7 mmol) in toluene (20 mL) was added Lawesson's reagent (1.7 g, 4.2 mmol). After being stirred at 80°C for 30 min, the reaction mixture was concentrated in vacuo. After purification by flash chromatography (EtOAc/PE, 1:4), the product was isolated as a yellow oil (2.9 g, 6.2 mmol, 81%). - IR (film): $\tilde{v} = 3400 \text{ cm}^{-1}$, 1609. $- {}^{1}\text{H}$ NMR (400 MHz): $\delta = 5.39$ (br. s, 1 H, NHBoc), 4.42–4.35 (dt, 1 H, J = 13.5, 8.4 Hz, NCHH), 3.72-3.61 (m, 2 H, CH₂OSi), 3.47-3.44 (dd, 1 H, J = 9.6, 2.8 Hz, NCH), 3.29-3.27 (m, 1 H, CHHNHBoc), 3.21-3.15 (dt, 1 H, J = 13.6, 5.7 Hz, NCHH), 2.96-2.91 (m, 1 H, CHHNHBoc), 2.83 [br. t, 1 H, C(S)CH], 2.49–2.45 (br. d, 1 H, J = 13.6 Hz, NCHCH), 2.29-2.23 [quint, 1 H, J = 6.0 Hz, C(S)CHCHH], 1.83-1.47 (m, 8 H), 1.41 [s, 9 H, CO₂C(CH₃)₃], 1.25-1.02 (m, 3 H), 0.87 [s, 9 H, SiC(CH₃)₃], 0.00 [s, 6 H, Si(CH₃)₂]. – ¹³C NMR (100 MHz): δ = 203.9 [s, NC(S)], 155.9 [s, NHC(O)], 78.8 [s, CO₂C(CH₃)₃], 67.3 (d, NCH), 59.8 (t, CH₂OSi), 49.0 [d, C(S)CH], 42.9 (t, NCH₂ and t, CH₂NHBoc), 38.8 (d, NCHCH), 31.8 and 26.7 (t, CH₂CH₂OSi and t, NCH₂CH₂CH₂), 28.4 [q, CO₂C(CH₃)₃], 25.7 [q, SiC(CH₃)₃], 28.6, 26.1, 23.9 22.1 [t, -(CH₂)₄-], 18.1 [s, SiC(CH₃)₃], -5.50, -5.56 [q, Si(CH_3)_2]. - HRMS (FAB+) calcd. for $C_{24}H_{47}N_2O_3SSi$ (M + H) 471.3077, found 471.3115. $- [\alpha]_D = -31.4$ (c = 1.0; CHCl₃).

{3-[(1R,3aS,7aR)-1-(2-Hydroxyethyl)-3-thioxooctahydroisoindol-2yllpropyl}carbamic Acid tert-Butyl Ester (19): To a solution of 18 (300 mg, 0.64 mmol) in THF (5 mL) was added TBAF (0.70 mL, 0.76 mmol, 1.1 м in THF). After being stirred at room temperature for 90 min, the reaction mixture was quenched with water. After extraction of the water layer (CH₂Cl₂, 4 \times), drying of the combined organic layers (Na₂SO₄) and concentration in vacuo, the product was obtained, after flash chromatography (EtOAc/PE, 3:1), as a white solid (224 mg, 0.63 mmol, 98%). An analytical sample was recrystallized from a 1:2:2 mixture of MeOH/EtOAc/pentane, m.p. 157-158 °C. – IR (CHCl₃): $\tilde{v} = 3353$ cm⁻¹, 1684. – ¹H NMR (250 MHz): δ = 5.29 (br. s, 1 H, NHBoc), 4.44–4.32 (dt, 1 H, J = 13.6, 7.5 Hz, NCHH), 3.82-3.64 (m, 2 H, CH₂OH), 3.57-3.46 (dd, 1 H, J = 6.2, 2.9 Hz, NCH), 3.28–3.18 (m, 2 H, NCHH, CHHNHBoc), 2.99 (m, 1 H, CHHNHBoc), 2.85 [br. t, 1 H, C(S)CH], 2.49–2.44 (br. d, 1 H, J = 13.9 Hz, NCHCH), 2.29–2.19 [quint, 1 H, J = 6.1 Hz, C(S)CHCHH], 1.88-1.36 (m, 8 H), 1.42 [s, 9 H, $CO_2C(CH_3)_3$], 1.25–1.02 (m, 3 H). – ¹³C NMR (50 MHz): $\delta = 203.7$ [s, NC(S)], 156.0 [s, NHC(O)], 78.7 [s, CO₂C(CH₃)₃], 67.0 (d, NCH), 59.3 (t, CH₂OH), 49.4 [d, C(S)CH], 42.9 (t, NCH₂ and t, CH2NHBoc), 38.9 (d, NCHCH), 31.8, (t, CH2CH2OH), 28.3 (t, NCHCHCH₂), 28.2 [q, CO₂C(CH₃)₃], 26.6, 25.9, 23.7, 21.9 [t, $-(CH_2)_4$ -]. - C₁₈H₃₂N₂O₃S (356.5): calcd. C 60.64, H 9.05, N 7.86; found C 60.88, H 8.99, N 7.71. $- [\alpha]_D = -52.3$ (c = 1.2; CHCl₃).

2-[(4b*S*,8a*R*,9*R*)-1,2,3,4b,5,6,7,8,8a,9-Decahydro-4,9a-diazafluoren-9-yl]ethanol (7): A solution of 19 (1.9 g, 5.6 mmol) in MeI (15 mL) was stirred for 17 h at room temperature in the dark. After concentration in vacuo, a pale yellow foam was obtained. This methylated compound was dissolved in CH_2Cl_2 (20 mL), then TFA (3 mL) was added at 0 °C and the yellow solution was stirred for 2 h. At the same temperature, Et_3N (9.2 mL) was slowly added. The mixture decolorized; stirring was continued for 2 h. The reaction mixture was extracted with 5% aqueous HCl (3 ×), and solid NaOH was added at 0 °C until the water layer was basic. The basic aqueous solution was extracted (CH_2Cl_2 , 5 ×). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The amidine was obtained as a colourless oil (1.0 g, 4.5 mmol, 81%) which was crystallized from benzene, m.p. 105-107°C. - ¹H NMR (400 MHz, C_6D_6): $\delta = 3.80-3.77$ (t, 2 H, J = 6.2 Hz, CH_2OH), 3.53-3.48(m, 1 H, C=NCHH), 3.36-3.30 (m, 1 H, C=NCHH), 3.13-3.03 (m, 2 H, C-NCHH, NCH), 2.86-2.81 (m, 1 H, C-NCHH), 2.71-2.70 (m, 1 H, N=CCH), 2.38-2.35 (m, 1 H, N=CCHCHH), 1.94-1.91 (m, 1 H, C-NCHCH), 1.84-1.75 (m, 1 H, C-NCHCHH), 1.67–1.47 (m, 8 H), 1.24–1.17 (m, 2 H). – ¹³C NMR (100 MHz, C_6D_6): $\delta = 160.7$ (C=N), 64.4 (C-NCH), 58.5 (CH₂CH₂OH), 43.6 (C=NCH₂), 42.2 (C-NCH₂), 39.6 (N=CCH), 39.2 (N-CHCH), 34.7 (CH₂CH₂OH), 28.4 (N-CHCHCH₂), 24.2 [N=CCHCH₂), 24.1, 22.9 (N=CCHCH₂-(CH₂)₂-], 21.0 (C= NCH_2CH_2). - $[\alpha]_D = +60.9$ (c = 1.0; CHCl₃). - Crystallographic data for 7: orthorhombic, $P2_12_12_1$, a = 7.1184(5), b = 8.4949(4), c = 21.1830(8) Å, V = 1280.9(1) Å³, Z = 4, $D_X = 1.15$ g cm⁻³, λ $(Cu-K_a) = 1.5418 \text{ Å}, \mu (Cu-K_a) = 5.7 \text{ cm}^{-1}, F(000) = 488, \text{ room}$ temperature. Final R = 0.057 for 1211 observed reflections.^[19]

a-Acetoxystyrene (20): A mixture of isopropenyl acetate (10 mL, 90.8 mmol, 2 equiv), acetophenone (5.3 mL, 45.4 mmol) and H₂SO₄ (cat) was heated at 90 °C. Acetone was distilled from the reaction mixture for 7 h. The product was isolated together with acetophenone, as a 3:1 mixture, after distillation (b.p. 90–110 °C, 20 Torr). This mixture could not be separated by distillation or column chromatography. – ¹H NMR (200 MHz): δ = 7.6–7.2 (m, 5 H, *Ph*), 5.5 (d, 1 H, C*H*H=C), 5.0 (d, 1 H, CH*H*=C), 2.6 (s, 3 H, C*H*₃).

3-[(1R,3aS,7aR)-1-Oxo-3-(2-oxo-2-phenylethyl)octahydroisoindol-2yllpropionitrile (21): To a solution of sulfonyllactam 13 (7.51 g, 22.6 mmol), in CH₂Cl₂ (50 mL), were slowly added, at -78°C, aluminium trichloride (4.81 g, 36.1 mmol, 1.6 equiv) and α -acetoxystyrene (6.04 mL, 45.2 mmol, 2.0 equiv). After the reaction mixture was stirred for 15 min at -78 °C, the temperature was allowed to rise slowly to -20° C in 2 h. The reaction mixture was poured in ice-cold aqueous saturated NaCl. After extraction of the water layer (CH₂Cl₂, 5 \times), the combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The residue was chromatographed (EtOAc/PE, 1:1) to give the product (6.21 g, 20.0 mmol, 89%) as a white solid, which was recrystallized from EtOAc/pentane as colourless crystals, m.p. 136–138 °C. – IR (CHCl₃): \tilde{v} = 2252 cm⁻¹, 1697, 1674. - ¹H NMR (400 MHz): $\delta = 7.93 - 7.90$ (m, 2 H, o-phenyl), 7.60-7.55 (m, 1 H, p-phenyl), 7.48-7.44 (m, 2 H, m-phenyl), 3.86-3.79 (m, 2 H, NCH, NCHH), 3.31-3.14 [m, 3 H, PhC(O)CH₂, NCHH], 2.71-2.58 [m, 3 H, CH₂CN, C(O)CH], 2.13-2.06 [m, 2 H, NCHCH, C(O)CHCHH], 1.95-1.91 (m, 1 H, NCHCHCHH), 1.60-1.44 (m, 3 H, NCHCHCHCHCH), 1.25-1.11 [m, 3 H, NC(O)CHCHCHCH]. – ¹³C NMR $(100 \text{ MHz}): \delta = 197.8 \text{ [s, Ph}C(\text{O})\text{]}, 176.0 \text{ [s, N}C(\text{O})\text{]}, 136.2 \text{ (s, Ph-$ C_q), 133.7 (d, *p*-phenyl), 128.7 (d, *m*-phenyl), 127.9 (d, *o*-phenyl), 118.0 (s, CN), 58.9 (d, NCH), 40.1 [t, PhC(O)CH₂], 39.1 [d, NC(O)CH], 38.7 (d, NCHCH), 37.7 (t, NCH2), 28.4, 23.5, 22.9, 22.7 [t, $-(CH_2)_4$ -], 16.1 (t, CH_2CN). - $C_{19}H_{22}N_2O_2$ (310.4): calcd. C 73.52, H 7.14, N 9.03; found C 73.65, H 7.04, N 9.10. - $[\alpha]_{\rm D} = -13.7 \ (c = 1.0; \text{ CHCl}_3).$

3-{(1*R*,3a*S*,7a*R*)-1-[2-(*R*)-Hydroxy-2-phenylethyl]-3-oxooctahydroisoindol-2-yl}propionitrile (23a): To a solution of ketone 21 (3.79 g, 12.2 mmol) in toluene (60 mL), and the (*S*)-oxazaborolidine catalyst 22a (7.4 mL, 3.7 mmol, 0.5 M solution in toluene, 0.3 equiv), was slowly added BH₃·Me₂S (0.73 mL, 7.3 mmol). After being stirred for 45 min, the reaction mixture was poured into 5% aqueous HCl. After the water layer (CH₂Cl₂, 5 ×) was extracted, the combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The residue was chromatographed (EtOAc/PE, 1:1) to give the product (3.14 g, 10.0 mmol, 82%) as a colourless oil and a single diastereomer. – IR (CHCl₃): $\tilde{v} = 3400 \text{ cm}^{-1}$, 2250, 1685. – ¹H NMR (200 MHz): $\delta = 7.40-7.23$ (m, 5 H, *Ph*), 4.78–4.72 (dd, 1 H, *J* = 14.3, 7.1 Hz, PhCHOH), 3.87–3.73 (dt, 1 H, *J* = 13.9, 6.5 Hz, NCH*H*), 3.50–3.44 (dd, 1 H, *J* = 9.6, 2.6 Hz, NC*H*), 3.24–3.11 (dt, 1 H, *J* = 13.8, 6.8 Hz, NC*H*H), 2.75–2.45 (m, 4 H), 2.25–1.07 (m, 11 H). $\delta = {}^{13}$ C NMR (50 MHz): $\delta = 175.7$ [s, NC(O)], 144.2 (s, *Ph*), 128.4, 127.6, 125.2 (d, *Ph*), 117.9 (s, *CN*), 71.2 (d, CHOH), 60.6 (d, NCH), 39.5 [t, PhC(O)CH₂], 38.7, 37.4 [d, C(O)C*HCH*], 36.8 (t, NCH₂), 28.8, 23.5, 22.8, 22.6 [t, –(CH₂)₄–], 15.9 (t, CH₂CN). – HRMS (EI+) calcd. for C₁₉H₂₄N₂O₂ 312.1838, found 312.1826. – [*a*]_D = +2.0 (*c* = 1.0; CHCl₃).

3-{(1R,3aS,7aR)-1-[2-(S)-Hydroxy-2-phenylethyl]-3-oxooctahydroisoindol-2-yl}propionitrile (23b): According to the procedure described for 23a, 2.50 g (8.1 mmol) of ketone 21 was reduced with (R)-catalyst 22b (4.0 mL, 2.0 mmol, 0.5 м solution in toluene, 0.25 equiv.) to give the product (1.76 g, 10.0 mmol, 70%, colourless oil). - IR (CHCl₃): $\tilde{v} = 3400 \text{ cm}^{-1}$, 2250, 1685. - ¹H NMR (200 MHz): $\delta = 7.41 - 7.12$ (m, 5 H, Ph), 4.79 - 4.72 (dd, 1 H, J = 5.4, 2.3 Hz, PhCHOH), 3.91-3.78 (dt, 1 H, J = 13.8, 6.5 Hz, NCHH), 3.27-3.13 [m, 3 H, NCH, NCHH and NC(O)CH] 2.88–2.41 (m, 3 H), 2.12–1.08 (m, 11 H). – ¹³C NMR (50 MHz): $\delta = 178.1$ [s, NC(O)], 143.9 (s, Ph), 128.4, 127.7, 125.4 (d, Ph), 117.9 (s, CN), 71.6 (d, CHOH), 60.5 (d, NCH), 40.1 [t, PhC(OH)CH2], 38.8, 38.3 [d, C(O)CHCH], 37.5 (t, NCH2), 28.5, 23.6, 22.7, 22.6 [t, -(CH₂)₄-], 15.8 (t, CH₂CN). - HRMS (EI+) calcd. for $C_{19}H_{24}N_2O_2$ 312.1838 found, 312.1838. $- [\alpha]_D = -29.3$ $(c = 1.0; CHCl_3).$

3-{(1R,3aS,7aR)-1-[2-(R)-(tert-Butyldimethylsilanyloxy)-2-phenylethyl]-3-oxooctahydroisoindol-2-yl}propionitrile (24a): To a solution of alcohol 23a (3.0 g, 9.6 mmol) in CH₂Cl₂ (30 mL) was added, at 0°C, TBDMSOTf (6.6 mL, 28.8 mmol, 3 equiv) and 2,6-lutidine (4.4 mL, 38.5 mmol, 4 equiv.). After being stirred for 10 min at 0°C, and for 4 h at room temperature, the reaction mixture was poured into 5% aqueous HCl. After the water layer (CH₂Cl₂, 5 \times) was extracted, the combined organic fractions were dried (Na₂SO₄) and concentrated in vacuo. The residue was chromatographed (EtOAc/PE, 1:3) to give the product (3.93 g, 9.2 mmol, 96%) as a colourless oil. – IR (CHCl₃): $\tilde{v} = 2220 \text{ cm}^{-1}$, 1681. – ¹H NMR (400 MHz): $\delta = 7.35 - 7.24$ (m, 5 H, *Ph*), 4.76 - 4.74 (dd, 1 H, *J* = 8.3, 3.0 Hz, PhCHOSi), 3.79-3.72 (dt, 1 H, J = 13.5, 6.5 Hz, NCHH), 3.33-3.30 (dd, 1 H, J = 10.2, 2.1 Hz, NCH), 3.05-2.98 (dt, 1 H, J = 13.8, 6.9 Hz, NCHH), 2.66-2.56 [m, 2 H, CHHCN, C(O)CH, 2.49–2.42 (dt, 1 H, J = 16.8, 6.4 Hz, CHHCN), 2.27-2.23 [m, 1 H, C(O)CHCHH], 2.19-2.15 (m, 1 H, NCHCH), 1.86–1.10 (m, 9 H), 0.91 [s, 9 H, SiC(CH₃)₃], 0.06, -0.20, [2 × s, 6 H, Si(CH₃)₂]. - ¹³C NMR (100 MHz): δ = 176.0 [s, NC(O)], 144.2 (s, Ph), 128.3, 127.4, 125.2 (d, Ph), 117.9 (s, CN), 72.2 (d, PhCHOSi), 60.3 (d, NCH), 40.9 [t, PhC(OSi)CH₂], 38.8, 37.7 [d, C(O)CHCH], 37.0 (t, NCH₂), 25.7 [q, SiC(CH₃)₃], 29.0, 24.0, 22.9, 22.8 [t, -(CH₂)₄-], 18.0 [s, SiC(CH₃)₃], 16.0 (t, CH₂CN), -4.7, -5.0 [q, Si(CH₃)]. - HRMS (FAB+) calcd. for C₂₅H₃₉N₂O₂Si (M + H) 427.2781, found 427.2781. $- [\alpha]_D = +1.2 (c = 0.64; CHCl_3).$

3-{(1*R***,3a***S***,7a***R***)-1-[2-(***S***)-(***tert***-Butyldimethylsilanyloxy)-2-phenylethyl]-3-oxooctahydroisoindol-2-yl}propionitrile (24b): According to the procedure described for 24a, 1.76 g (5.6 mmol) of alcohol 23b was transformed into 2.39 g (5.6 mmol, 100%, colourless oil) of 24b. – IR (CHCl₃): \tilde{v} = 2225 \text{ cm}^{-1}, 1681. – ¹H NMR (400 MHz): \delta = 7.35-7.24 (m, 5 H,** *Ph***), 4.81–4.78 (t, 1 H,** *J* **= 5.8 Hz, PhCHOSi), 3.83–3.76 (dt, 1 H,** *J* **= 13.4, 6.4 Hz, NCH***H***),**

Eur. J. Org. Chem. 2000, 105-113

3.13–3.10 (dd, 1 H, J = 9.5, 2.4 Hz, NCH), 3.08–3.01 (dt, 1 H, J = 13.9, 7.0 Hz, NCHH), 2.66–2.58 (dt, 1 H, J = 16.8, 7.1 Hz, CHHCN), 2.55–2.52 [br. t, 1 H, J = 6.0 Hz, C(O)CH], 2.50–2.43 (dt, 1 H, J = 16.8, 6.2 Hz, CHHCN), 2.12–2.09 (m, 1 H, NCHCH) 1.99–1.91 [m, 2 H, C(O)CHCHH, CHHC(OSi]), 1.80–1.75 [m, 1 H, CHHC(OSi]), 1.63–1.01 (m, 8 H), 0.89 [s, 9 H, SiC(CH₃)₃], 0.04, -0.19, [2 × s, 6 H, Si(CH₃)₂]. - ¹³C NMR (100 MHz): $\delta = 175.6$ [s, NC(O)], 143.9 (s, Ph), 128.3, 127.5, 125.6 (d, Ph), 117.8 (s, CN), 73.0 (d, PhCHOSi), 60.6 (d, NCH), 40.8 [t, PhC(OSi)CH₂], 38.8, 38.2 [d, C(O)CHCH], 37.0 (t, NCH₂), 25.7 [q, SiC(CH₃)₃], 28.6, 23.7 22.8, 22.8 [t, $-(CH_{2})_4$ –], 18.0 [s, SiC(CH₃)₃], 16.0 (t, CH₂CN) -4.7, -5.0 [q, Si(CH₃)₂]. - HRMS (EI+) calcd. for C₂₅H₃₈N₂O₂Si 426.2703, found 426.2703. - [α]_D = -4.7 (c = 1.0; CHCl₃).

(3-{(1R,3aS,7aR)-1-[2-(R)-(tert-Butyldimethylsilanyloxy)-2-phenylethyl]-3-oxooctahydroisoindol-2-yl}propyl)carbamic Acid tert-Butyl Ester (25a): According to the procedure described for 16, 3.93 g (9.2 mmol) of 24a was transformed into the corresponding amine (3.45 g, 8.0 mmol, 87%), which was transformed into 2.85 g of 25a (5.4 mmol, 58% from 24a, colourless oil). – IR (CHCl₃): $\tilde{v} = 3400$ cm^{-1} , 1669. – ¹H NMR (200 MHz): $\delta = 7.33-7.24$ (m, 5 H, *Ph*), 5.50 (br. s, 1 H, NHBoc), 4.75-4.70 (dd, 1 H, J = 8.5, 2.9 Hz, PhCHOSi), 3.70-3.55 (m, 1 H, NCHH), 3.35-3.20 (m, 1 H, CHHNHBoc), 3.18-3.12 (dd, 1 H, J = 10.2, 2.0 Hz, NCH), 2.95-2.73 (m, 2 H, NCHH, CHHNHBoc), 2.62-2.52 [m, 1 H, C(O)CH], 2.29-2.07 [m, 2 H, NCHCH, C(O)CHCHH], 1.9-1.5 (m, 8 H), 1.43 [s, 9 H, CO₂C(CH₃)₃], 1.2-0.9 (m, 3 H), 0.90 [s, 9 H, SiC(CH₃)₃], 0.04, -0.22, $[2 \times s, 6 \text{ H}, \text{Si}(CH_3)_2]$. - ¹³C NMR $(100 \text{ MHz}): \delta = 176.0 \text{ [s, NC(O)]}, 156.0 \text{ [s, NHC(O)]}, 144.3 \text{ (s, Ph)},$ 128.2, 127.3, 125.5 (d, Ph), 79.3 [s, CO₂C(CH₃)₃], 72.4 (d, PhCHOSi), 59.5 (d, NCH), 40.5 [t, PhC(OSi)CH2], 38.9, 37.5 [d, NC(O)CHCH], 37.1 (t, NCH₂), not observed (t, CH₂NHBoc), 28.3 [q, CO₂C(CH₃)₃], 27.3 (t, CH₂CH₂NHBoc), 25.6 [q, SiC(CH₃)₃], 29.3, 24.0, 23.0, 22.9 [t, -(CH₂)₄-], 17.9 [s, SiC(CH₃)₃], -4.7, -5.2 $[q, Si(CH_3)_2]$. - HRMS (FAB+) calcd. for $C_{30}H_{51}N_2O_4Si$ (M + H) 531.3618, found 531.3618. $- [\alpha]_D = +65.4$ (c = 1.1; CHCl₃).

(3-{(1R,3aS,7aR)-1-[2-(S)-(tert-Butyldimethylsilanyloxy)-2-phenylethyl]-3-oxooctahydroisoindol-2-yl}propyl)carbamic Acid tert-Butyl Ester (25b): According to the procedure described for 16, 2.40 g (5.6 mmol) of 24b was transformed into the corresponding amine (1.9 g, 4.4 mmol, 79%), which was transformed into 1.1 g of 25b (2.1 mmol, 50% from 24b, colourless oil). – IR (CHCl₃): $\tilde{v} = 3400$ cm^{-1} , 1668. – ¹H NMR (250 MHz): $\delta = 7.34-7.24$ (m, 5 H, *Ph*), 5.54 (br. s, 1 H, NHBoc), 4.79-4.74 (t, 1 H, J = 5.7 Hz, PhCHOSi), 3.66-3.54 (m, 1 H, NCHH), 3.26-3.21 (m, 1 H, CHHNHBoc), 2.93-2.78 (m, 3 H, NCH, NCHH, CHHNHBoc), 2.54-2.52 [m, 1 H, C(O)CH], 1.9-1.4 (m, 8 H), 1.41 [s, 9 H, CO₂C(CH₃)₃], 1.2-0.9 (m, 3 H), 0.87 [s, 9 H, SiC(CH₃)₃], 0.03, -0.12, $[2 \times s, 6 \text{ H}, \text{Si}(CH_3)_2]$. $- {}^{13}\text{C}$ NMR (100 MHz): $\delta = 175.7$ [s, NC(O)], 156.0 [s, NHC(O)], 144.0 (s, Ph), 128.3, 127.4, 125.6 (d, *Ph*), 78.7 [s, CO₂*C*(CH₃)₃], 73.1 (d, Ph*C*HOSi), 59.7 (d, N*C*H), 40.4 [t, PhC(OSi)CH₂], 38.9, 37.5 [d, NC(O)CHCH], 37.1 (t, NCH₂), not observed (t, CH₂NHBoc), 28.3 [q, CO₂C(CH₃)₃], 28.0 (t, CH₂CH₂NHBoc), 25.7 [q, SiC(CH₃)₃], 29.3, 23.8, 22.9, 22.9 [t, $-(CH_2)_4-$], 18.0 [s, SiC(CH_3)_3], -4.7, -5.0 [q, Si(CH_3)_2]. HRMS (FAB+) calcd. for $C_{30}H_{51}N_2O_4Si$ (M + H) 531.3618, found 531.3629. $- [\alpha]_{\rm D} = -4.7$ (c = 1.0; CHCl₃).

(3-{(1*R*,3a*S*,7a*R*)-1-[2-(*R*)-(*tert*-Butyldimethylsilanyloxy)-2-phenylethyl]-3-thioxooctahydroisoindol-2-yl}propyl)carbamic Acid *tert*-Butyl Ester (26a): According to the procedure described for 17, 2.75 g of 25a (5.2 mmol) was transformed into 2.76 g of the product (5.1 mmol, 97%, colourless oil). – IR (CHCl₃): $\tilde{v} = 2275$ cm⁻¹, 1699, 1683. - ¹H NMR (200 MHz): $\delta = 7.38 - 7.25$ (m, 5 H, *Ph*), 5.37 (br. s, 1 H, NHBoc), 4.79-4.73 (dd, 1 H, J = 7.8, 3.6 Hz, PhCHOSi), 4.38-4.31 (m, 1 H, NCHH), 3.50-3.44 (dd, 1 H, J =9.4, 2.7 Hz, NCH), 3.31-3.21 (m, 1 H, CHHNHBoc), 3.06-2.81 [m, 3 H, NCH, CHHNHBoc, C(S)CH], 2.61-2.54 (m, 1 H, NCHCH), 2.39-2.27 [m, 1 H, C(S)CHCHH], 1.9-1.4 (m, 8 H), 1.45 [s, 9 H, CO₂C(CH₃)₃], 1.3-1.1 (m, 3 H), 0.91 [s, 9 H, SiC(CH₃)₃], 0.05, -0.20, [2 × s, 6 H, Si(CH₃)₂]. - 13 C NMR (100 MHz): δ = not observed [s, NC(S), CH₂NHCO₂C(CH₃)₃], 143.8 (s, Ph), 128.3, 127.5, 125.4 (d, Ph), 72.4 (d, PhCHOSi), 66.4 (d, NCH), 49.2 [d, C(S)CH], 42.6 (d, NCH₂), 39.4 (d, NCHCH), 39.4 [t, C(OSi)CH₂], 28.3 [q, CO₂C(CH₃)₃], 26.6 (t, CH₂CH₂NHBoc), 25.7 [q, SiC(CH₃)₃], 28.6, 24.0, 22.0 [t, $-(CH_2)_4$ -], 17.9 [s, SiC(CH_3)_3] -4.8, -5.0 [q, Si(CH_3)_2]. HRMS (FAB+) calcd. for $C_{30}H_{50}N_2O_4Si (M + H) 547.3390$, found 547.3390. $- [\alpha]_{\rm D} = -0.2$ (c = 0.4; CHCl₃).

(3-{(1R,3aS,7aR)-1-[2-(S)-(tert-Butyldimethylsilanyloxy)-2-phenylethyl]-3-thioxooctahydroisoindol-2-yl}propyl)carbamic Acid tert-Butyl Ester (26b): According to the procedure described for 17, 1.71 g (3.2 mmol) of lactam 25b was transformed into 1.36 g of the product (2.5 mmol, 80%, colourless oil). – IR (CHCl₃): $\tilde{v} = 2275$ cm⁻¹, 1692, 1681. – ¹H NMR (400 MHz): δ = 7.35–7.25 (m, 5 H, Ph), 5.30 (br. s, 1 H, NHBoc), 4.84-4.81 (t, 1 H, J = 5.6 Hz, PhCHOSi), 4.38-4.34 (m, 1 H, NCHH), 3.28-3.26 (m, 2 H, NCH, NCHH), 3.09-3.06 (m, 1 H, CHHNHBoc), 2.89-2.78 [m, 2 H, CHHNHBoc, C(S)CH], 2.50-2.47 [m, 1 H, C(S)CHCHH], 1.98-1.40 (m, 9 H), 1.43 [s, 9 H, CO₂C(CH₃)₃], 1.25-1.10 (m, 3 H), 0.90 [s, 9 H, SiC(CH₃)₃], 0.05, -0.16, $[2 \times s, 6 H, Si(CH₃)₂].$ $- {}^{13}C$ NMR (100 MHz): $\delta = 203.7$ [s, NC(S)], not observed [CH₂NCO₂C(CH₃)₃], 143.6 (s, Ph), 128.3, 127.6, 125.5 (d, Ph), 72.8 (d, PhCHOSi), 66.5 (d, NCH), 49.2 [d, C(S)CH], 42.6 (t, NCH₂), 39.9 (d, NCHCH), 39.3 [t, C(OSi)CH₂], 28.2 [q, CO₂C(CH₃)₃], 26.6 (t, CH₂CH₂NHBoc), 25.7 [q, SiC(CH₃)₃], 28.3, 25.9, 23.8, 22.0 [t, $-(CH_2)_4$ -], 18.0 [s, SiC(CH_3)_3], -4.8, -5.0 [q, Si(CH_3)_2]. HRMS (FAB+) calcd. for $C_{30}H_{50}N_2O_4Si (M + H) 547.3390$, found $547.3390. - [\alpha]_{\rm D} = -5.2 \ (c = 0.5; \text{ CHCl}_3).$

(3-{(1R,3aS,7aR)-1-[2-(R)-Hydroxy-2-phenylethyl]-3-thioxooctahydroisoindol-2-yl}propyl)carbamic Acid tert-Butyl Ester (27a): According to the procedure described for 18, 2.35 g of 26a (4.3 mmol) was transformed into 1.66 g of 27a (3.8 mmol, 90%, colourless oil). - IR (CHCl₃): $\tilde{v} = 3452 \text{ cm}^{-1}$, 2360, 1703. - ¹H NMR (200 MHz): $\delta = 7.35 - 7.26$ (m, 5 H, *Ph*), 4.81 - 4.75 (dd, 1 H, *J* = 9.6, 2.9 Hz, PhCHOH), 4.45-4.31 (dt, 1 H, J = 13.4, 8.2 Hz, NCHH), 3.72-3.68 (dd, 1 H, J = 9.7, 2.7 Hz, NCH), 3.37-3.14 (m, 2 H, CH₂NHBoc), 3.03-2.87 [m, 2 H, C(S)CHCHH], 2.57-2.50 (m, 1 H, NCHCH), 2.35-2.25 (m, 1 H), 2.0-1.5 (m, 8 H), 1.44 [s, 9 H, $CO_2C(CH_3)_3$], 1.2–1.0 (m, 3 H). – ¹³C NMR $(50 \text{ MHz}): \delta = 203.5 \text{ [s, NC(S)]}, 155.9 \text{ [s, NHC(O)]}, 143.7 \text{ (s, Ph)},$ 128.5, 127.8, 125.2 (d, Ph), 79.0 [s, CO₂C(CH₃)₃], 71.5 (d, PhCHOH), 66.9 (d, NCH), 49.2 [t, C(S)CH], 42.6 (t, NCH₂), 38.9 (d, NCHCH), 38.0 [t, PhC(OH)CH₂], 37.3 (t, CH₂NHBoc), 28.2 [q, CO₂C(CH₃)₃], 26.7 (t, CH₂CH₂NHBoc), 28.6, 25.8, 23.8, 21.9 $[t, -(CH_2)_4-]$. - HRMS (FAB+) calcd. for $C_{24}H_{36}N_2O_3S$ (M + H) 433.2525, found 433.2525. $- [\alpha]_D = -33.8$ (c = 1.0; CHCl₃).

(3-{(1*R*,3a*S*,7a*R*)-1-[2-(*S*)-Hydroxy-2-phenylethyl]-3-thioxooctahydroisoindol-2-yl}propyl)carbamic Acid *tert*-Butyl Ester (27b): According to the procedure described for 18, 1.36 g of 26b (2.50 mmol) was transformed into 1.05 g of 27b (2.40 mmol, 96%, colourless oil). – IR (CHCl₃): $\tilde{v} = 3500 \text{ cm}^{-1}$, 3300, 1699. – ¹H NMR (400 MHz): $\delta = 7.40-7.26$ (m, 5 H, *Ph*), 5.28 (br. s, 1 H, N*H*Boc) 4.83–4.80 (t, 1 H, *J* = 6.2 Hz, PhCHOH), 4.44–4.36 (dt, 1 H, *J* = 14.8, 7.8 Hz, NCH*H*), 3.37–3.34 (dd, 1 H, *J* = 8.4, 3.9 Hz, NC*H*), 3.27–3.16 (m, 2 H, NC*H*H and C*H*HNHBoc), 2.97–2.86 [m, 2 H, CH*H*NHBoc, C(S)C*H*], 2.51–2.47 [m, 1 H, C(S)CHC*H*H], 2.35–2.17 (m, 2 H), 2.06–1.88 (m, 2 H), 1.80–1.50 (m, 5 H), 1.44 [s, 9 H, CO₂C(C*H*₃)₃], 1.20–1.10 (m, 2 H), 0.99–0.80 (m, 2 H). $^{-13}$ C NMR (100 MHz): $\delta = 203.7$ [s, NC(S)], not observed [CO₂C(CH₃)₃], 143.5 (s, *Ph*), 128.8, 128.2, 125.5 (d, *Ph*), 79.0 [s, CO₂C(CH₃)₃], 72.3 (d, PhCHOH), 67.0 (d, NCH), 49.4 [d, C(S)CH], 43.2 (t, NCH₂), 40.0 (d, NCHCH), 38.0 [t, CH₂C(OH)], 37.3 (t, CH₂NHBoc) 28.3 [q, CO₂C(CH₃)₃], 26.4 (t, CH₂CH₂NHBoc), 28.3, 25.9 23.8, 22.0, [t, $-(CH_2)_4$ –]. – HRMS (FAB+) calcd. for C₂₄H₃₆N₂O₃S (M + H) 433.2525 found 433.2525. – [α]_D = -5.4 (c = 0.32; CHCl₃).

(1R)-2-[(4bS,8aR,9R)-1,2,3,4b,5,6,7,8,8a,9-Decahydro-4,9a-diazafluoren-9-yl]-1-phenylethanol (8): A solution of 25a (1.40 g, 3.3 mmol) in MeI (10 mL) was stirred for 17 h at room temperature and in the dark. After concentration in vacuo, the iodine salt was obtained as a pale yellow foam (1.89 g, 3.3 mmol, 100%). This iodine salt (250 mg, 0.44 mmol) was dissolved in CH₂Cl₂ (3 mL). TFA (1 mL) was added at $0\,^{\circ}\mathrm{C}$ and the resulting yellow solution was stirred for 2 h at room temp., after which the reaction mixture was concentrated in vacuo. This concentrated reaction mixture was redissolved in CH₂Cl₂ (4 mL), and at 0°C, Et₃N (122 mL, 0.87 mmol, 2 equiv.) was added. The mixture decolorized; stirring was continued for 2 h. The reaction mixture was extracted with 5% aqueous HCl $(3 \times)$, and solid NaOH was added at 0°C until the water layer was basic. The basic aqueous solution was extracted (CH₂Cl₂, 5 \times). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The amidine was obtained as a white foam (106 mg, 0.36 mmol, 82%). After purification by crystallization from benzene/2-propanol, the product was obtained as a colourless crystalline compound (65.7 mg, 52%), m.p. 104-107°C. - IR (CHCl₃): $\tilde{v} = 3400 \text{ cm}^{-1}$, 1652. – ¹H NMR (400 MHz): $\delta =$ 7.35-7.24 (m, 5 H, Ph), 4.74-4.72 (dd, 1 H, J = 9.4, 3.5 Hz, PhCHOH), 3.38-3.06 (m, 5 H), 2.71 (m, 1 H), 2.10-1.95 (m, 3 H), 1.76–1.64 (m, 4 H), 1.53–1.44 (m, 3 H), 1.27–1.16 (m, 4 H). - ¹³C NMR (100 MHz): δ = 161.5 (s, C=N), 144.6 (s, Ph), 128.5, 127.7, 125.5, (d, Ph), 71.5 (d, CHOH), 64.5 (d, NCH), 41.7, 39.9, (t, C=NCH₂ and NCH₂), 39.4, 38.9, (d, N=CCH and NCHCH), 28.4, 23.9, 23.9, 22.6, 22.6, 20.5. $- [\alpha]_{D} = +66.9 (c = 0.13; CHCl_3).$ - Crystallographic data for 8: $P2_1$, a = 10.070(1), b = 17.244(5), c = 10.508(1) Å, $\beta = 106.720(6)^{\circ}$, V = 1747.7(5) Å³, Z = 2, $D_X =$ 1.17 g cm⁻³, λ (Cu- K_{α}) = 1.5418 Å, μ (Cu- K_{α}) = 5.47 cm⁻¹, F(000) = 668, -25 °C. Final R = 0.059 for 2326 observed reflections. There is one H₂O molecule between two molecules which are connected by four hydrogen bonds. N1a-O1s 2.708(8), N1b-O1s 2.723(7), O1b-O1s 2.725(7), O1a-O1s 2.752(7) Å.[19]

2-(S)-[(4bS,8aR,9R)-1,2,3,4b,5,6,7,8,8a,9-Decahydro-4,9a-diazafluoren-9-yl]-1-phenylethanol (9): A solution of 25b (1.05 g, 2.4 mmol) in MeI (10 mL) was stirred for 17 h at room temperature in the dark. After concentration in vacuo, the iodine salt was obtained as a pale yellow foam (1.42 g, 2.4 mmol, 100%). This iodine salt (250 mg, 0.44 mmol) was dissolved in CH₂Cl₂ (3 mL). TFA (1 mL) was added at 0°C and the yellow solution was stirred for 2 h at room temp., after which the reaction mixture was concentrated in vacuo. This concentrated reaction mixture was redissolved in CH₂Cl₂ (4 mL) and, at 0°C, Et₃N (122 mL, 0.87 mmol, 2 equiv.) was added. The mixture decolorized; stirring was continued for 2 h. The reaction mixture was extracted with 5% aqueous HCl (3 \times), and solid NaOH was added at 0°C until the water layer was basic. The basic aqueous solution was extracted (CH_2Cl_2 , 5 ×). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The amidine was obtained as a white foam (126 mg, 0.43 mmol, 98% crude). The product could not be purified by crystallization and was washed with benzene. – IR (CHCl₃): $\tilde{v} = 3400$ cm⁻¹, 1651. – ¹H NMR (400 MHz): $\delta = 7.32 - 7.22$ (m, 5 H, *Ph*), 4.74-4.71 (dd, 1 H, J = 7.9, 5.2 Hz, CHOH), 3.37-2.98 (m, 5 H), 2.68 (m, 1 H), 2.01–1.05 (m, 14 H). – ¹³C NMR (100 MHz): δ = 161.3 (s, C=N), 145.5 (s, Ph), 128.2, 127.2, 125.7, (d, Ph), 71.4 (d, CHOH), 64.5 (d, NCH), 42.7, 41.1, (d, N=CCH and NCHCH), 39.7, 39.3, (t, C=NCH₂ and NCH₂), 28.1, 24.0, 23.8, 22.9, 22.6, 20.7. - HRMS (FAB+) calcd. for C₁₉H₂₇N₂O (M + H) 299.2123, found 299.2125. $- [\alpha]_D = +21.1$ (c = 0.9; CHCl₃).

Thiophenol Addition Product 28: A mixture of thiophenol (51.0 mL, 0.29 mmol) and amidine 6 (5.0 mg, 0.015 mmol) was dissolved in toluene (1 mL). Cyclohexenone (43.7 mL, 0.29 mmol) was added and after being stirred for 20 min at room temperature, the reaction mixture was diluted with toluene and washed (5% aqueous HCl, 2 ×). The organic layer was dried (MgSO₄) and concentrated in vacuo, yielding the product (66.6 mg, 0.32 mmol, 72%) as a colourless oil. Spectral data was as reported previously.^[3a] – $[\alpha]_D = +21.3$ $(c = 0.70; \text{ CCl}_4). \ [\alpha]_{578} = +22.4. - \text{ O.p. } 23\%.^{[3a]}$

Malonate Addition Product 29: A mixture of dimethyl malonate (20.0 mL, 0.18 mmol) and amidine 7 (9.6 mg, 0.043 mmol) was dissolved in toluene (1 mL). Cyclohexenone (16.7 mL, 0.17 mmol) was added and after being stirred for 24 h at room temp., the reaction mixture was diluted with toluene and washed (5% aqueous HCl, 2 ×). The organic layer was dried (MgSO₄) and concentrated in vacuo, yielding the product (27 mg, 0.12 mmol, 70%) as a colourless oil. Spectral data was as reported previously.^[18] – $[\alpha]_D = +1.4$ $(c = 0.5; \text{CHCl}_3). - \text{O.p.}^{[18]} 35\%.$

Acknowledgments

Eur. J. Org. Chem. 2000, 105-113

This research was financially supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO). We kindly thank K. Goubitz and J. Fraanje (Laboratory of Crystallography, University of Amsterdam) for the X-ray crystal structure determinations.

- ^[1] R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, **1994**. ^[2] ^[2a] U. Eder, G. Sauer, R. Wiechert, *Angew. Chem.* **1971**, *83*,
- 492–493; Angew. Chem. Int. Ed. Engl. **1971**, 10, 496–497. ^[2b] Z. G. Hajos, D. R. Parrish, J. Org. Chem. **1974**, 39, 1615–1621. ^[2c] A. P. Kozikowski, B. B. Mugrage, J. Org. *Chem.* **1989**, *54*, 2274–2275. ^[3] ^[3a] H. Hiemstra, H. Wynberg, J. Am. Chem. Soc. **1981**, *103*,

417–430. – ^[3b] H. Wynberg, E. G. J. Staring, J. Am. Chem. Soc. **1982**, 104, 166–168. – ^[3c] G. D. H. Dijkstra, R. M. Kel-logg, H. Wynberg, Recl. Trav. Chim. Pays-Bas **1989**, 108, 195–204.

- ^[4] ^[4a] K. Tanaka, A. Mori, S. Inoue, J. Org. Chem. 1990, 55, 181–185. ^[4b] M. N. Iyer, K. M. Gigstad, N. D. Namdev, M. Lipton, J. Am. Chem. Soc. 1996, 118, 4910–4911.
 ^[5] E. J. Corey, F. Xu, M. C. Noe, J. Am. Chem. Soc. 1997, 119,
- 12414-12415.
- ^[6] E. J. Corey, M. J. Grogan, Org. Lett. 1999, 1, 157-160.
- [7] M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901-4902.
- J. Leonard, E. Diez-Barra, S. Merino, *Eur. J. Org. Chem.* 1998, 2051–2061. [8]
- ^[9] ^[9a] R. Schwesinger, *Chimia* 1985, *39*, 269–273. ^[9b] R. W. Alder, *Chem. Rev.* 1989, *89*, 1215–1223. ^[9c] R. Schwesinger, *Nuclear Chem. Tech. Lett.* 1000, 28, 1214, 1224.
- ¹⁰ J. Dijkink, K. Goubitz, M. N. A. van Zanden, H. Hiemstra, *Tetrahedron: Asymmetry* 1996, 7, 515–524.
 ¹¹ E. J. Corey, C. J. Helal, *Angew. Chem. Int. Ed.* 1998, 37, 1987.
- ^[12] ^[12a] M. Ostendorf, R. Romagnoli, I. Cabeza Pereiro, E. C. Roos, M. J. Moolenaar, W. N. Speckamp, H. Hiemstra, *Tetrahedron:* Asymmetry **1997**, 8, 1773–1789. – ^[12b] R. Romagnoli, E. C. Roos, H. Hiemstra, M. J. Moolenaar, W. N. Speckamp, B. Kaptein, H. E. Schoemaker, Tetrahedron Lett. 1994, 35, 1087 - 1090.
- [13] For a review see: H. Hiemstra, W. N. Speckamp in *Comprehensive Organic Synthesis* (Eds.: B. M. Trost, I. Fleming), Pergamon Press, Öxford, **1991**, vol. 2, p. 1047–1082. ^[14] ^[14a] A. G. M. Barrett in *Comprehensive Organic Synthesis* (Eds.:
- B. M. Trost, I. Fleming), Pergamon Press, Oxford, **1991**, vol. 8, p. 251–252. ^[14b] A. Echavarren, A. Galán, J. de Mendoza, A. Salmerón, J.-M. Lehn, Helv. Chim. Acta 1988, 71, 685-693. A. Salmeron, J.-M. Lenn, Helv. Chim. Acta 1966, 71, 663-695.
 - [^{14c}] J. O. Osby, S. W. Heinzman, B. Ganem, J. Am. Chem. Soc. 1986, 108, 67-72.
 [¹⁵] B. Yde, N. M. Yousif, U. Pedersen, I. Thomsen, S. -O. Lawesson, Tetrahedron 1984, 40, 2047-2052.
 [¹⁶] [^{16al} Methoden der Organischen Chemie (Houben-Weyl) (Eds.: O Daran U. Margin K. Zierlen) Control Thirds Vicker
- O. Bayer, H. Meerwein, K. Ziegler), Georg Thieme Verlag, Stuttgart, **1952**, vol. 8, p. 531–531. ^[16b] D. S. Noyce, R. M. Pollack, *J. Am. Chem. Soc.* **1969**, *91*, 119–124.
- ^[17] L. C. Xavier, J. J. Mohan, D. J. Mathre, A. S. Thompson, J. D. Carroll, E. G. Corly, R. Desmond, *Org. Synth.* **1996**, *74*, 50–70. [18] Determined from the known specific rotation: H. Sasai, T. Arai,
- M. Shibasaki, J. Am. Chem. Soc. 1994, 116, 1571-1572. [19] Experimental details of the X-ray structure determinations and tables of fractional atomic coordinates, thermal parameters, and interatomic distances and angles of 7, 8 and 13 were deposited by the authors at the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-114104 (7), -114106 (8), and -114105 (13). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) + 44-1223/336-033;

E-mail: deposit@ccdc.cam.ac.uk].

Received March 1, 1999 [I99106]