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Abstract

Phosphine-arenesulfonate ligands that contain B{Bomy substituents on the benzo linker, P(2-
OMe-Ph}(2-SO:Na-5-OMe-Ph) (Nala]), P(2-MeO-Ph)2-SQ:Na-4,5-(OMe)-Ph) (Na[1b])
and P(2-MeO-Phj2-SGsLi-3,4,5-(OMe}-Ph) (Li[1c]) were synthesized and isolated in 52-85 %
yield. Reaction of Ndlab] and Li[lc] with (COD)PdMeCl and pyridine generates the
corresponding (PO)PdMe(pyridine) comple®asc. 2a and2b were isolated in crystalline form
in 59 % and 86 % vyield, respectively, wh2e decomposed during attempted isolati@a,b
polymerize ethylene to linear polyethylene and ¢yperize ethylene with vinyl fluoride (VF)

to linear copolymer with ca. 0.5 mol % VF incorpioa.
1. Introduction

Palladium alkyl complexes that contain phosphirenasulfonate ligands ((PO)PdRA,
Chart 1) polymerize ethylene to linear polyethyléRE) and copolymerize ethylene with a wide
range of polar Ck=CHX vinyl monomers (e.g. X = CR&, OR, OAr, CN, F).[1,2] However,

(PO)PdRL catalysts usually exhibit lower activitpmdaproduce PEs with lower molecular



weights (MWs) compared to other single-site catal{®] Moreover, the catalyst performance is
further compromised by the polar monomers, whighfaaction as inhibitors, poisons and chain

transfer agents.

Electronic modifications of theR3 groups orthe PO ligands have been explored in order to
improve the performance of (PO)PdRL catalystJlerie and co-workers studied a series of
(PO)PdRL complexes with a range of —RArP(alkyly and —PAr(alkyl) unitsA4, L = pyridine
or lutidine, Chart 1)[4b] and found a strong pasticorrelation between the phosphine donor
ability and the ethylene polymerization activity.ebking and coworkers investigated the
electronic effects opara substituents (R') on theAR, rings of catalysts of typB (L = dmso,
Chart 1) on ethylene polymerization.[4a] Catalystgh electron-donating R' substituents
generally exhibited slightly lower productivity bptoduced PE with higher MW compared to
catalysts with electron-withdrawing R' substituefets). R' = OMe: productivity = 1344 kg mbl
h™ M, = 19,000 vs. R' = GF productivity = 2016 kg mot h™, M, = 10,100). Modifications of
the benzo linker within the PQgand have also been explored.[5] Incorporatibaroelectron-
donating Me grouppara to the sulfonate group i{PPh-CsHsSOs;)PdMe(py) results in lower
ethylene polymerization activity but does not affée MW of the PE product significantly.[5a]
Replacement of the benzo linker that connects flesghine and sulfonate unitsAnwith a 1,2-
naphthalene linker increases the ethylene polymgoiz activity 2 to 10-fold but has only a

minor effect on the MW of the PE that is producgld] [

The present work is focused on (PO)PdMe(py) catslgé typeA that contain methoxy
substituents on the benzo ring that links the phime&pand sulfonate groups. The motivation for
this work was twofold. First, we were interested pmbe how the incorporation of such

substituents influence catalyst performance. A methgroup is electron-donating to toetho



and para positions through the resonance effegh4 = -0.27) and electron-withdrawing from
the meta positions through the inductive effeeiqta = 0.12). Second, we recently reported that
(OPO-Li)PdMeL complexes based on the phosphinedmesulfonate ligand PPh(2-$@,5-
(OMe)-Ph), (OPT), which contains two methoxy groups on each bdimker, self-assemble
into Pd, species that are held together by aSI®,+Li,Cl, cage C, Chart 1).[6] These Pd
species function as single-site catalyst for thémerization of ethylene to high-molecular
weight PE ¢, = 640,000, PDI = 2.3)n hexanes suspension. Studies of mononuclear gunedo

are of interest for understanding the origins of thehavior.

We report the synthesis of three new ligarntsq, Scheme 2.1) that contain 1-3 methoxy
groups on benzo linker and the corresponding (PMfay) complexes. The ethylene
polymerization and ethylene/vinyl-fluoride (VF) adpmerization behavior of these complexes

is also discussed.

Chart 1. (PO)PdR complexes. py’ = 4-(5-nonyl)-pyridine. lpy, dmso or other neutral ligand.

The lower (Li-OPO)PdMe(py’) units in the schematinucture ofC are denoted by “Pd”.
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2. Resultsand Discussion

2.1 Synthesis of Na[la-b] and Li[1c]. The synthetic route used to prepare the new ligands
studied here is shown in Scheme 1. The appropm@thoxy-substituted aryl lithium reagents
were generated bgrtho-lithiation or lithium-halogen exchange of the @sponding arene or
arylbromide3a—c—iBu with "BulLi, and reacted with P(2-OMe-RR) to afford pro-ligandda-c-
'Bu.[7] 1a-c-'Bu were purified by chromatography and isolated ird8 yield.1a-'Bu and1b-

'Bu were converted to the corresponding’ Salfonate salts Naf,b] by reaction with Nal in
CH3CN. Nafla,b] precipitated from the reaction mixture and wes@ated by filtration in 57-85 %
yield. Na[lc] was generated in an analogous manner but islealulCHCN and thus is difficult
to separate from the excess Nal used in the readfiwerefore, Lilc] was generated by reaction

of 1c-'Bu with Lil in CHsCN and isolated in 52 % yield.

Scheme 1. Synthesis of Na[l1a-b] and Li[1c]. Ar = 2-OMe-Ph.
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2.2 Synthesis of Methoxy-Substituted (PO)PdMe(py) Complexes. The reaction of
Na[la,b] with (COD)PdMeClI and pyridine in CGi&l, generated a clear yellow solution2#-b
(Scheme 2)2a,b were isolated by layering pentane onto the,Cli solution to give X-ray
quality crystals in 59-86 % vyield. The synthesis2of by this route was unsuccessful. The
reaction of Liflc] with (COD)PdMeClI and pyridine in Ci€l, gave a cloudy solution, and the

formation of Pd black was observed upon attempgeldiion of the product.

Scheme 2. Synthesis of 2a,b. Ar = 2-OMe-Ph.
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Na[1b] R®=H, R*= OMe 2b R®=H, R*= OMe

An alternative metalation procedure was explored itvolves the direct reaction dé-'Bu
with (COD)PdMeCl and pyridine (Scheme 3). This teacresults in the clean generation2of
which was characterized by NMR. HoweV2e could not be isolated in pure form due to
apparent thermal decomposition. It is likely thhistmetalation process proceeds by initial
formation of kZ-P,O-(lc-iBu)]PdMeCI, displacement of chloride by pyridine, amacleophilic
attack of the free Cbn the activatetBu group to form2c and'BuCl, as shown in Scheme 2

was synthesized by this route on a preparatorgscal



Scheme 3. Synthesis of 2b,c by direct metalation of 1b,c. Ar = 2-OMe-Ph
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2.3 X-ray crystallography. The solid-state structures @h,b were determined by X-ray

crystallography and are shown in Figures 1 and2ach case®-P,0O coordination of the PO

ligand and a&is relationship of the phosphine and methyl groupcdrservedThe six-membered

(PO)Pd chelate rings adopt boat conformations. At distances ia (2.022(2) A) anb

(2.0237(18) A) are very similar to that iR%P,0-P(2-OMe-Ph)2-SQ;-Ph)}PdMe(py) 4, Chart

2,2.028A), the analogue dfa,b that lacks methoxy substituents on the benzo tif§eThe Pd-

P distance ir2a (2.2368(5) A) is slightly longer than that2b (2.2234(4) A), which may be due

to the electron donating effect of the second metlgyoup that igara to the phosphine i@b.

The solution NMR data foPa,b are consistent with the solid-state structureshBa and2b

exhibit *Jp.cHs values <3 Hz and?Jp.chs values<4 Hz, indicating acis relationship of the

phosphine and methyl groups.



Figure 1. Molecular structure o2a. Hydrogen atoms are omittedtom color scheme: C: grey;
O: red; P: orange; S: yellow; N: blue; Pd: tealeSed bond lengths (A) and angles (deg): Pd1-
P1 2.2368(5), Pd1-O1 2.1618(13), Pd1-N1 2.1535@8)-C1 2.022(2), 01-S1 1.4834(1@)]-
Pd1-P1 94.09(4), N1-Pd1-P1 174.86(4), N1-Pd1-O0&3), C1-Pd1-P1 87.37(6), C1-Pd1-O1

176.32(7), C1-Pd1-N1 91.77(7).

= .

S1
o1 Pd1
o1

Figure 2. Molecular structure o2b. Hydrogen atoms are omitted. Atom color schemegréy;

O: red; P: orange; S: yellow; N: blue; Pd: tealeSted bond lengths (A) and angles (deg): Pd1-
P12.2234(4), Pd1-01 2.1768(11), Pd1-N1 2.1189@8);C1  2.0237(18), S1-01
1.4840(11), O1-Pd1-P1 94.88(3), N1-Pd1-P1 175.96M)-Pd1-O1 88.92(5), C1-Pd1-P1

86.83(5), C1-Pd1-O1 177.78(7), C1-Pd1-N1 89.41(6).



Chart 2. Structures of (PO)PdMe(py) complexeand5.
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2.4 Ethylene Homopolymerization. The ethylene polymerization behavior &b is
summarized and compared to that of the benchmaakystd in Table 1 In toluene solvent at 80
°C, 2a,b display activities in the range 450-515kwl-Pd*+h™ (entries 1,2,7,8), similar to that
of 4 (entry 13).[4b,9] The main difference in the peniance of these catalysts is tiZab
produce PE with lower MWM,, = 25-30 kDa) compared # (M,, = ca. 50 kDa)2a,b both
exhibit higher activity with lower catalyst loadirf§able 1, entry 1 and\&. 5 and 6; 7 and &s.

11 and 12). Possible explanations for this obsemanclude mass transport effects, bimolecular
catalyst decomposition, and a greater extent ofidme dissociation at lower catalyst
concentrations. The activity and polymer MWs 2arb observed for polymerizations in hexane

suspension are lower than in toluene solution. Kithear PE is formed in all cases.



Table 1. Homopolymerization of ethylene [2a and2b.

Entry | Cat Pc Solvent | Yield Activity M.S | PDIF| T,°

(umol) (9) | (kgemol*h™) | (10% (°C)

12 2a 10 toluene | 8.9z 44¢€ 29.€ | 2.C [ 136.:

2° 2a 10 toluene | 9.8¢ 494 20.C | 1.€ | 134¢

3 2a 10 | hexanes| 3.1¢ 157 29.7 | 2.1 | 132«

42 2a 10 hexanes| 3.1¢€ 15¢ 302 | 26 | 132.¢

5aP 2a 0.8¢ | toluene/| 1.5¢ 86¢ 29.7 | 1.7 | 135.1
PhCI

62" 2a 0.8¢ | toluene/| 1.72 087 275 | 1.€ | 134
PhClI

7° 2b 10 toluene | 10.2 51F 26.1 | 1.€ | 134:F

g 2b 10 toluene | 10.1 50¢ 25.6 | 1.7 | 135.¢

9° 2b 10 | hexanes| 1.2¢ 62.C 18.€ | 2.2 | 131z

1067 2b 10 | hexanes| 1.22 60.¢ 191 | 2.3 | 131¢

112° | 2b 0.8¢ | toluene/| 2.57 1462 27.C | 1.€ [ 135.1
PhClI

122° | 2b 0.8¢ | toluene/| 2.0t 1162 27.7 | 1.€ | 135.1
PhClI

13 4 20 toluene | 9.97 49¢ 46.€ | 2.5 | 134

14 4 10 toluene | 2.1 21C 51.C | 2.€ | 129.(

2 Conditions: 410 psi &4, 80 °C, 2 h, 50 mL solvent.Solvent = 49 mL toluene + 1 mL
chlorobenzene; catalyst added to the reactor &sck solution in chlorobenzene to facilitate
accurate control of catalyst loadinfgDetermined by GPC Determined by DSC. ref 9.
Conditions: 580 psi §H,4, 80 °C, 1 h, 100 mL toluenferef 4b. Conditions: 300 psi»8a, 85
°C, 1 h, 200 mL toluene.

2.5 Ethylene/Vinyl Fluoride Copolymerization. Complexes2a,b copolymerize ethylene
and VF to low-MW copolymer with ca. 0.5 mol % VFcorporation(Table 2) The catalyst
activity is strongly depressed and the copolymer dMave lower compared to the results of
ethylene homopolymerization reactions, as obsefwedther (PO)PdRL catalysts.[20,p, 10] The
microstructure of copolymers produced2syb was determined b¥F{*H} NMR (Figure 3) and
'H NMR spectroscopy (See SI).[20,p,10,11] VF is imposated primarily as in-chain -
CH,CHFCH,- units. Chain-end -C¥FHCH;, -CH,CF,H, and -CHCFH, units are also present

in lower amounts. The -CIE@FHCH; chain ends are most likely formed ByH elimination to



generate a (PO)Pd-H species, followed by 2,1 Vertien. The -CHCFH and -CHCFH, chain
ends are most likely formed I¢F elimination to generate a (PO)Pd-F speciesoviad by 1,2
VF insertion or ethylene insertion and subsequkaincgrowth.[11] An alternative source of the
-CH,CFH, chain ends is 1,2 VF insertion into the (PO)Pd-tctes. The ethylene/VF
copolymerization results fd2za,b and the copolymer microstructures are very sintaresults
for {k%-P,0-P(2-OMe-Ph)(2-SQ:-5-Me-Ph)}PdMe(py) b, Chart 1), which contains a methyl

substituenpara to the sulfonate group on the bezno linker.[11]

Table 2. Ethylene/Vinyl Fluoride Copolymerization [2a and?2b.

Entr | Cat.| Yiel | Activity | My | PDI| VFincorg| Tuf
y d | (kgmol™h (mol %) | (°C)
(mg) Y (10°)
12 | 2a | 115 5.8 13.5] 2.3 0.59 131/4
22 | 2b | 102 5.1 12.1] 2.0 0.51 131/4
3| 5 [ 90 4.5 15.00 1.9 0.48 131.6

& Conditions: 220 psi ethylene, 80 psi VF, [Pd] =puhol, temperature = 80 °C, time = 2 h,
solvent = 40 mL toluene + 10 mL chlorobenzeheef 10.° Determined by GPC! VF
incorporation in copolymer determined By NMR. ¢ Determined bypSC.

Figure 3. **F{*H} NMR spectrum of ethylene/VF copolymen-@ichlorobenzenel,, 100°C)

produced byb (Table 2, entry 2). P = polymeryl.
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3. Conclusions

The phosphine-arenesulfonate ligaridia{1a-b] and Li[1c], which contain 1-3 methoxy
substituents on the arenesulfonate rings, have gahesizedNa[la,b] andLi[1c] react with
(COD)PdMeClto form (PO)PdMe(pyridine) complex&a-c, however2c decomposed during
attempted isolation. The structures2stb have been analyzed by X-ray crystallograpPe;b
polymerize ethylene to linear PE and copolymertbglene with VF to linear copolymer with ca.
0.5 mol% VF incorporation. Catalysts,b exhibit similar polymerization behavior compared t
the benchmark catalys# and 5, indicating that the methoxy groups have only adesb

influence on the reactivity.

4. Experimental Section

4.1 General Procedures. All experiments were performed under a nitrogemcasphere

using drybox or Schlenk techniques. Nitrogen wasfipd by passage through Q-5 oxygen

11



scavenger and activated molecular sieves. Methyhlwide, diethyl ether and THF were dried
by passage over activated alumina. Toluene, persanehexane were purified by passage
through BASF R3-11 oxygen scavenger and activaigtiina. CDC}CDCl, and CHC}CHCL,
were dried over 4 A molecular sieves. LIy was dried over #s. The following materials
were obtained from commercial sources and used owithfurther purification: 4-
methoxybenzenesulfonyl chloride (Aldrich, 99 %)hb#moveratrole (Aldrich, 98 %), 5-bromo-
1,2,3-trimethoxybenzene (Aldrich, 97 %), chlorosuit acid (Aldrich, 99 %), 2-methyl-1-
propanol (Aldrich, 99 %), 2-bromoanisole (Aldric®7 %), pyridine (Aldrich, 99.8 %),
dichloro(diethylamino)phosphine (Alfa aesar, 97 98uLi solution (Aldrich, 2.5 M in hexanes),
HCI solution (Aldrich, 2 M in diethyl ether), sodiuiodide (Aldrich, > 99 %), lithium iodide
(Aldrich, 99.9 %). The following compounds were paeed by literature proceduresbromo-
4,5-di-methoxybenzenesulfonyl chloride[E2ld (COD)PdMeCI.[13]

NMR spectra were acquired on Bruker DRX-500 or BrubRX-400 spectrometers at
ambient temperature unless otherwise indicdtdcand**C chemical shifts are reported relative
to SiMe, and are internally referenced to residttaland*C solvent resonance¥P chemical
shifts are reported relative to externally refeeh85% HPO,. °F spectra were referenced to
external BE*Et,0, and"*F chemical shifts are reported relative to GFGIMR resonances were
assigned based on COSY, HMQC, HMBC at{3'P} experiments, as well as trends in
chemical shifts and coupling constants derived fthese experiments. Coupling constants are
given in Hz. Mass spectrometry was performed onehgi6224 TOF-MS (high resolution) or
Agilent 6130 LCMS (low resolution) instruments.

Gel permeation chromatography (GPC) data were médaon a Polymer Laboratories PL-

GPC 220 instrument at 150 °C with 1,2,4-trichlonobene (stabilized with 125 ppm BHT) as the

12



mobile phase. Three PLgel 16n Mixed-B LS columns were used. Molecular weightsrav
calibrated using narrow polystyrene standards f@nt calibration with M from 570 Da to
5670 kDa) and are corrected for linear polyethylepeiniversal calibration using the following
Mark-Houwink parameters: polystyrene, K = 1.75 %10r°g?, a = 0.67; polyethylene, K = 5.90
x10% cnPg?, o = 0.69.[14] DSC measurements were performed oA &ndtruments DSC 2920
instrument. DSC samples (10 mg) were annealed agirfgeto 170 °C at 20 °C/min, cooled to
40 °C at 20 °C/min, and then analyzed while beiegtéd to 170 °C at 20 °C/min.

4.2 Synthesis of Compounds.

4.2.1 3a-'Bu. [15] A flask was charged witlBBuOH (5.0 mL, 54 mmol), pyridine (8.4 mL,
0.10 mol) and CHGI(50 mL), and cooled to 0 °C. A solution of 4-metilbgnzenesulfonyl
chloride (10 g, 50 mmol) in CHE(30 mL) was added, and the mixture was stirredlibh at
room temperature. HCI solution (0.1 M in® 40 mL) was added, and the mixture was stirred
for 5 min and transferred to a separatory funnleé THC} layer was separated and washed with
H,0 (3 x 50 mL) and brine (10 mL), and dried over N\bgSThe volatiles were removed under
vacuum to yield a yellow oil. The crude product wasified by silica gel chromatography using
CHxCl, as the eluent. The product was isolated as a esouil (11 g, 88 %). The ethyl ester of
4-methoxybenzenesulfonate, which is formed by #stion with EtOH instead dBuOH, was
present as a minor impurity. Commercial Cki@ntains EtOH as stabilizéHd NMR (CD,Cly):
§7.81 (d33 =9, 2H, H), 7.03 (d33n = 9; 2H, H), 4.05 (9,23 = 7, 2H, -SQCH,CHs), 3.88
(s, 3H, -O®4), 3.75 (d,*}n = 6, 2H, -SQCH,CH(CHs),), 1.91 (sept3}y = 7, 1H, -
SO;CH,CH(CHs),), 1.26 (t, 33 = 7, 3H, -S@CH,CH3), 0.87 (d, %} = 7, 6H, -
SO;CH,CH(CH3),). *C{*H} NMR (CD.Cl,): & 164.2 (s, ¢), 130.4 (s, &), 127.9 (s, &), 114.8

(s, @), 76.6 (s, -S@CH,CH(CHs),), 67.2 (s, -S@CH,CHs), 56.1 (s, -@Hs), 28.4 (s, -

13



SO;CHCH(CHz3),), 18.7 (S, -SE@CHCH(CH3),), 14.9 (s, -SE@CHCH3). HRMS (APCI/ESI-

Mixed mode;z): Calcd. for [GiH1604S+ H] 245.0848, Found: 245.0859.

3 2 3 2
MeO“l@LSO{_< MeO“l@LSO{_

422 3b-'Bu. 3b-Bu was synthesized analogously &&-'Bu from 2-bromo-4,5-di-
methoxybenzenesulfonyl chloride (9.8 g, 35 mmi@@)OH (3.3 mL, 36 mmol), pyridine (4.8
mL, 60 mmol) and CHGK70 mL). The product was purified by silica gel @matography using
CH,Cl, as the eluent, and isolated as a white solid (78d6). 'H NMR (CD,Cl,): & 7.53 (s,
1H, H°), 7.20 (s, 1H, B), 3.91 (s, 3H, B), 3.89 (s, 3H, B, 3.80 (d 33 = 6, 2H, H), 1.98 (sept,
3%an = 7, 1H, H%, 0.93 (d,*34n = 7, 6H, HY). *C{*H} NMR (CD.,Cl,): § 153.3, 148.1, 127.0,
117.7, 114.4, 112.2, 77.1, 56.5, 56.4, 28.1, 1#RMS (ESI mode;n/z): Calcd. for

[C12H17BrOsS+ NaJ 374.9878, Found: 374.9863.

11
8Meo 5 6
4.2.3 3c-'Bu. A flask was charged with chlorosulfonic acid (12,1018 mol) and cooled to
0 °C. A solution of 5-bromo-1,2,3-trimethoxybenz€8ed g, 32 mmol) in CkCl, (40 mL) was
added and the mixture was stirred for 90 min. Thdure was slowly poured onto ice. After the
ice had thawed, the mixture was transferred topars¢ory funnel, and the aqueous layer was
extracted with CHICl, (3 x 40 mL). The organic fractions were combined dried with MgSQ,
and the volatiles were removed under vacuum toeld ywellow oil. The oil was dissolved in
CHCIl;(60 mL), and a solution SBUOH (4.5 mL, 49 mmol) and pyridine (8.0 mL, 99 mijrin
CHCI3(20 mL) was added. The mixture was stirred for 1& hoom temperature. HCI solution

(0.1 M in KO, 80 mL) was added, and the mixture was stirredbfonin and transferred to a

14



separatory funnel. The CH{hyer was separated and washed wid K3 x 50 mL) and brine
(10 mL), and dried over MgSQOThe volatiles were removed under vacuum to yéejellow oil.
The crude product was purified by silica gel chrtogeaphy using a mixture of 4/1
hexanes/ethyl acetate as the eluent. The produstsetated as a yellow oil (3.0 g, 24 %)
NMR (CD.Cl,): & 7.08 (s1H, H°), 3.94 (s, 3H, B), 3.92 (s, 3H, B), 3.87 (d33 = 6, 2H, HY,
3.84 (s, 3H, H), 1.98 (sept’3y = 7, 1H, HY, 0.93 (d,3}n = 6, 6H, H?). *C{*H} NMR
(CD.,Clp): 6 157.7, 155.4, 143.3, 122.8, 116.6, 115.1, 77.%,621.1, 56.8, 28.5, 18.8. ESI-MS

(1/1 CHOH/H,0; m/2): Calcd. For [2(GH19006BrS) + Naf 789.0, Found: 789.1.

12
8 MeO ° Bome 9
4.2.4 P(2-OMe-Ph),Cl.[4a,16] A Schlenk flask was charged wizkbromoanisole (5.0 mL,
40 mmol) and THF (210 mL), and cooled to -78 °BuLi (2.5 M solution in hexanes, 16 mL,
40 mmol) was added via syringe over 15 min. Thetunéwas stirred at -78 °C for 1 h and a
solution of PCINEt, (3.5 g, 20 mmol) in BEO (30 mL) was added. The mixture was stirred at
room temperature for 18 h to yield a clear yellmluson. The volatiles were removed under
vacuum. The resulting yellow solid was taken ufe#O (100 mL) and washed with,8 (100
mL). The aqueous layer was extracted withOE(3 x 75 mL). The combined organic fractions
were washed with brine (20 mL) and dried over MgShd the volatiles were removed under
vacuum to afford P(2-OMe-PiNEt, as a yellow solid (5.7 g, 87 %). A Schlenk flasksw
charged withP(2-OMe-PhNETL; (3.1 g, 10 mmol) and THF (50 mL), and cooled t8 °C. HCI
solution (2.0 M solution in diethyl ether, 10 mL) 2nmol) was added via syringe to form a
white cloudy solution. The mixture was stirred a8 °C for 1 h and filtered, and the volatiles

were removed from the filtrate under vacuum todyialwhite solid (2.5 g, 89 %). The typical
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purity was ca. 93% as determined B{*H} NMR. The product was used without further
purification. 3'P{*H} NMR (CD,Cl,): & 69.6."H NMR (CD,Cl,): & 7.43 (33 = 8, 2H), 7.36-
7.34 (m2H), 7.00 (t334n = 8, 2H), 6.93 (ddfduy = 8,331 = 5, 2H), 3.82 (s, 6H).

4.2.5 1a-'Bu. A Schlenk flask was charged wila-'Bu (1.2 g, 5.0 mmol) and THF (38 mL),
and cooled to -78 °CBuLi (2.5 M solution in hexanes, 2.0 mL, 5.0 mmulas added via
syringe over 5 min. The mixture was stirred at 2Z8for 1 h and a solution of P(2-OMe-R@)
(2.4 g, 5.0 mmol) in THF (10 mL) was added. The tonig was stirred at room temperature for
18 h to yield a clear yellow solution. The volatileere removed under vacuum. The resulting
yellow oil was taken up in #0 (50 mL) and extracted with GBI, (3 x 50 mL). The combined
organic fractions were washed with brine (20 mLJ dned over MgSQ and the volatiles were
removed under vacuum to yield a yellow solid. Thede product was purified by silica gel
chromatography, using a 4/1 hexanes/ethyl acetatéum® as the eluent. The product was
isolated as a white solid (0.720 g, 30%R{*H} NMR (CD,Cl,): § -28.1.*H NMR (CD.Cl,): §
8.06 (dd33y = 8,%Jn = 4, 1H, H), 7.36 (t,°3u = 8; 2H, HY), 6.96 (dd 33y = 8,%Jun = 3, 1H,
H%, 6.92 (dd 3 = 8,%%n = 5, 2H, H), 6.85 (%% = 8, 2H, HY, 6.57 (m, 3H, B and H?),
3.79 (d,%3n = 6, 2H, HY), 3.72 (s, 6H, £, 3.64 (s, 3H, &), 1.85 (sept®duy = 7, 1H, HY),
0.88 (d,334 = 7, 6H, H"). *C{*H} NMR (CDCl,): & 163.1 (d3Jpc = 1, C), 161.5 (d2Jpc = 17,
C?), 141.6 (d1Jpc= 33, C), 134.2 (s, &), 133.1 (d3Jpc = 4, C), 132.7 (d?Jpc = 26, C), 130.8
(s, C9), 125.1 (d}Jpc =16, C), 122.6 (d2pc= 1, C), 121.4 (s, &Y, 113.3 (s, ), 110.8 (dJpc
=1, @), 76.7 (d,°Jpc = 3, C?), 56.0 (d,*Jc = 1, C*, 55.7 (s, &), 28.4 (s, &9, 18.9 (s, &).

HRMS (APCI/ESI-Mixed modenvz): Calcd. for [GsH290sPS+ H]* 489.1501, Found: 489.1495.
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4.2.6 1b-'Bu. 1b-'Bu was synthesized analogouslyl®'Bu from 3b-Bu (0.71 g, 2.0 mmol)
and P(2-OMe-PREI (0.56 g, 2.0 mmol). The volatiles were removetler vacuum, and the
resulting yellow oil was taken up in,® (20 mL) and extracted with ethyl acetate (3 0.
The combined organic fractions were washed witheofb mL) and dried over MgSQand the
volatiles were removed under vacuum to yield aoyelsolid. The crude product was purified by
silica gel chromatography using a 3/1 hexanes/etbgtate mixture as the eluent. The product
was isolated as a white solid (0.450 g, 43 $4#P{*H} NMR (CD.Cl,): & -27.6.'H NMR
(CD.CLy): & 7.59 (dJn = 3, 1H, H), 7.35 (3 = 8, 2H, HY, 6.91 (dd 33 = 8,%%1 = 5, 2H,

H®), 6.85 (t,°3u = 8, 2H, HY), 6.60 (br, 2H, Ff), 6.50 (d,Jn = 2, 1H, H), 3.92 (s, 3H, 1),

3.84 (d,%3un = 6, 2H, HY, 3.72 (s, 6H, FP), 3.41 (s, 3H, &), 1.86 (sept®dyy = 7, 1H, HY),
0.89 (d,33 = 6, 6H, H?). *C{*H} NMR (CD,CL): & 161.4 (d,%Jec = 17, &), 152.5 (s, ©),
149.3 (s, €), 134.0 (s, &), 133.2 (d,2Jpc = 28, &), 131.5 (d,"Joc = 31, G), 130.7 (s, &),
125.7 (d,'Jpc =17, C), 121.4 (s, &Y, 118.4 (s, €), 113.7 (d3Jc= 5, C), 110.7 (s, €), 76.8 (d,
e = 4, C9, 56.5 (s, &), 56.0 (s, &), 55.8 (s, &Y, 28.4 (s, &), 18.9 (s, ). HRMS

(APCI/ESI-Mixed modemvz): Calcd. for [GeH3:0,PS+ H]" 519.1606, Found: 519.1616.
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4.2.7 1c-'Bu. 1c-'Bu was synthesized analogouslyl® 'Bu from 3c-'Bu (1.2 g, 3.0 mmol)
and P(2-OMe-PREI (0.85 g, 3.0 mmol)The volatiles were removed under vacuum, and the
resulting yellow oil was taken up in,® (50 mL) and extracted with ethyl acetate (3 0.
The combined organic fractions were washed witheb(L.O mL) and dried over MgQQand the
volatiles were removed under vacuum to yield aoyelsolid. The crude product was purified by
silica gel chromatography using a 5/1 hexanes/etbgtate mixture as the eluent. The product
was isolated as a white solid (0.800 g, 49 %JP{*H} NMR (CD.Cly): & -21.9."H NMR
(CD.CLy): & 7.36 (t,°J4n = 8, 2H, HY, 6.93 (dd 33 = 8,%%1 = 5, 2H, H), 6.87 (£33 = 8, 2H,
H™), 6.70 (br, 2H, #f), 6.32 (s, 1H, B, 3.99 (s, 3H, ), 3.86 (s, 3H, &), 3.75 (s, 6H, Ef),
3.72 (d,334n = 6, 2H, H"), 3.38 (s, 3H, P), 1.89 (septdyy = 7, 1H, H?), 0.86 (d 23y = 7, 6H,
H9). BC{*H} NMR (CD,Cl,): & 161.7 (d,*Jpc = 17, &), 156.8 (s, €), 154.4 (d3Jc = 4, C),
143.1 (s, ¢), 136.4 (d,'Joc = 37, C), 134.5 (s, &), 130.8 (s, &), 126.6 (d,%Jc = 21, ©),
126.5 (d,2Jpc =19, C), 121.5 (s, &), 113.9 (s, 6, 110.8 (s, &), 76.7 (d,Jpc = 2, C"), 62.1 (s,
c"), 60.9 (s, &, 56.1 (s, &), 55.7 (s, &), 28.5 (s, ¢?), 18.8 (s, &%). HRMS (ESI modem/2):
Calcd. for [G7H330sPS+ H]* 549.1712, Found: 549.1710.
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4.2.8 Na[1a]. A flask was charged withha-'Bu (0.72 g, 1.5 mmol), Nal (0.64 g, 4.0 mmol)
and CHCN (20 mL). CHCI, (15 mL) was added to afford a clear solution. Tingture was
stirred at room temperature for 2 d to afford ate/lsuspension, which was filtered to afford
Na[1a] as a white powder. The product was dried undenwmcfor 18 h (0.39 g, 57 %J:P{*H}
NMR (CDs;OD): § -28.4."H NMR (CDs;OD): & 8.02 (dd33 = 8,%Jn = 4, 1H, H), 7.30 (t,°3um
= 8; 2H, H9), 6.93 (dd 23} = 8,%Jpn =5, 2H, H), 6.91 (dd33n = 9,%% = 3, 1H, H), 6.80 (t,
334u = 8, 2H, HY), 6.60 (br, 2H, BP), 6.47 (t,33n = “Jun = 3, 1H, H), 3.69 (s, 6H, Kf), 3.56 (s,
3H, H). *c{*H} NMR (CD30OD): 5 162.4 (dJpc = 16, &), 161.8 (s, €), 143.2 (d*Jpc = 27,
CY, 138.2 (d2Jpc = 23, &), 134.8 (s, &), 131.1 (s, &), 130.5 (d3Jc = 5, C), 127.0 (d Jpc
=14, C), 122.3 (s, €, 121.9 (s, &, 113.8 (s, ), 111.5 (s, &), 56.0 (s, &Y, 55.5 (s, &°).

HRMS (ESI modem/z): Calcd. for [GiH20NaGsPS + Cl] 489.0304, Found: 489.0325.
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4.2.9 Na[1b]. Na[1b] was synthesized analogously Na[1a] from 1b-Bu (0.36 g, 0.70
mmol), Nal (0.450 g, 3.0 mmol) and @EN (5 mL). The mixture was stirred at room
temperature for 2 d to afford a white suspensidmclwvwas filtered to afforéNa[1b] as a white
powder. The product was dried under vacuum for {8.29 g, 85 %)>**P{*H} NMR (CD3OD):

§ -27.7."H NMR (CD;OD): & 7.68 (d,*Jen = 4, 1H, H), 7.29 (t,3 = 8, 2H, HY, 6.93 (dd,
33 = 8,"Jpn = 4, 2H, H), 6.81 (t,°3u = 8, 2H, HY), 6.64 (br, 2H, Ff), 6.46 (d,°F = 2, 1H,
H®), 3.89 (s, 3H, ), 3.69 (s, 6H, ), 3.36 (s, 3H, £f). *c{*H} NMR (CD3sOD): 5 162.5 (d,
2Jpc =16, &), 150.9 (s, ©), 149.9 (s, ), 144.5 (d%Jpc = 29, G), 134.8 (s, &), 130.9 (s, &),

128.1 (d,"Jpc =11, C), 128.0 (d}Jpc= 23, C), 121.8 (s, &Y, 119.2 (s, &), 112.6 (s, &), 111.4
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(s, @), 56.4 (s, &), 56.0 (s, &), 55.9 (s, ). HRMS (ESI mode;m/2): Calcd. for

[C22H22NaO,PS+ CIJ 519.0410, Found: 519.0430.
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4.2.10 Li[1c]. A vial was charged withic-'Bu (0.31 g, 0.60 mmol), Lil (0.35 g, 2.6 mmol)
and CHCN (10 mL), and covered with aluminum foil. The mose was stirred at room
temperature for 4 d. The volatiles were removedeurdcuum. THF was added to afford a white
suspension, which was filtered to affdrg 1c] as a white powder. The product was dried under
vacuum for 18 h (0.14 g, 52 %}P{*H} NMR (CDsOD): & -22.7."H NMR (CD;0D): § 7.29 (t,
334 = 8, 2H, HY), 6.93 (dd2Jn = 8,%1 = 5, 2H, H), 6.82 (£33 = 7, 2H, HY), 6.68 (br, 2H,
H'), 6.27 (d2%n = 2, 1H, H), 3.97 (s, 3H, &), 3.84 (s, 3H, k), 3.70 (s, 6H, £P), 3.32 (s, 3H,
H'). ESI-MS (1/1 CHOH/H,O; mV2): Caled. for [GaH240sPS + 2H[ 493.1, Found: 493.2;

Calcd. for [GaH2404PS] 491.1, Found: 491.3.
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4.2.11 2a. A vial was charged witiNa[1a] (0.14 g, 0.30 mmol), (COD)PdMeCI (80 mg,
0.30 mmol) and CkCl, (6 mL), and the mixture was stirred at room terapee for 1h to afford
a cloudy yellow solutionPyridine (24uL, 0.30 mmol) was added, and the mixture was stirre

for 18 h, filtered through a Celite pipette, layereith pentane and cooled to -40 °C. After 1 d,
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colorless X-ray quality crystals formed. The cristaere collected by filtration and dried under
vacuum for 18 h (0.11 g, 59 %}P{*H} NMR (CD,Cl,): & 21.8."H NMR (CD,Cl,): & 8.76 (dd,
33hm = 5,%n = 2, 2H, H3), 8.01 (dd33un = 9,%Jpr = 6, 1H, H), 7.88 (tt,3%y = 8,°3n = 1, 1H,
H), 7.54 (t33 = 8, 2H, HY), 7.48 (t33uy = 7, 2H, HY), 7.56-7.46 (br, overlap with and
H, 2H, H?), 7.03 (t,°34 = 8, 2H, HY, 6.99 (dd 3y = 8,%Jpn =5, 2H, H), 6.95 (dd 33y = 8,
“an = 2, 1H, H), 6.78 (dd3Jen = 12,%3n = 3, 1H, H), 3.71 (s, 6H, &), 3.67 (s, 3H, £,
0.26 (d,3Jpn = 3, 3H, Pd-Ei3). *C{*H} NMR (CD.Cl,): § 161.0 (dJpc = 3, C), 159.8 (d3Jc
=9, @), 150.7 (s, &), 141.6 (d,Jc = 15, ©), 138.7 (s, &), 137.8 (br, ¢, 133.6 (s, &),
129.8 (d,*J}c = 9, C), 129.6 (d,Jpc = 48, G), 125.5 (d,*Jpc =2, C), 121.3 (d2Jpc = 3, O),
120.9 (d3%kc = 12, CY), 116.5 (d,'Joc =56, C), 114.2 (s, ¢, 111.8 (d2kc = 5, C), 55.8 (s,
c!, 55.7 (s, €°), 0.3 (d,%Jec = 4, PACH3). The H? and G2 resonance are broad because the
rate of anisyl group exchange is not in the fasharge limit. HRMS (ESI modex/z): Calcd.
for [Co7H2eNOsPPdSH H]* 632.0488, Found: 632.0492.
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4.2.12 2b. Route 1. 2b was synthesized analogously2emfrom Na[1b] (0.15 g, 0.30 mmol),
(COD)PdMeClI (80 mg, 0.30 mmol), pyridine (2&, 0.30 mmol) and CKCl, (5 mL). The
CH,CI; solution was layered with pentane and cooled to “@0 After 1 d, colorless X-ray
guality crystals formed. The crystals were collddvg filtration and dried under vacuum for 18 h
(0.17 g, 86 %).3'P{*H} NMR (CDCl,): & 21.0.*H NMR (CD,Cl,): 6 8.76 (dd33y = 5,3y =

2, 2H, H3), 7.88 (tt,%3u = 8,3un = 2, 1H, H), 7.61 (031 = 4, 1H, H), 7.54 (£33 = 8, 2H,
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H®), 7.48 (t,234n = 7, 2H, H%, 7.62-7.46 (br, overlap with HH and H*, 2H, H?), 7.03 (t,
3341 = 8, 2H, HY, 6.99 (dd 23 = 8,%Jpn =5, 2H, H), 6.68 (d,*Jpy = 11, 1H, H), 3.90 (s, 3H,
H), 3.71 (s, 6H, ), 3.50 (s, 3H, ), 0.29 (d,%Jy = 3, 3H, Pd-Els). *C{*H} NMR
(CD,Cl,): 8 161.0 (d2Jpc = 3, &), 150.8 (s, &), 150.5 (s, €), 149.0 (d3Jkc = 8, ©), 143.3 (d,
2Joc = 16, &), 138.6 (s, &), 137.5 (br, &), 133.5 (s, &), 125.5 (s, &), 120.9 (d3Jpc = 11,
c'), 118.9 (d,*Jpc = 53, C), 117.6 (d2Jpc = 4, ©), 117.0 (d}Jpc =57, C), 111.7 (dJpc = 5,
C?, 111.6 (d2¥kc = 12, C), 56.4 (s, €9, 56.0 (s, &), 55.8 (s, %), 0.3 (d,2Jpc = 4, PACH3).
The H? and G? resonance are broad because the rate of aniayb gxchange is not in the fast
exchange limit. HRMS (APCI/ESI-Mixed modewz): Calcd. for [GgHzoNO,PPdS+ H]*
662.0594, Found: 662.060Route 2. A vial was charged witlib-'Bu (52 mg, 0.10 mmol),
(COD)PdMeCI (26 mg, 0.10 mmol) and €, (3 mL), and the mixture was stirred at room
temperature for 1h to afford a clear yellow solatiByridine (8.1uL, 0.10 mmol) was added,
and the mixture was stirred for 18 h, filtered thigh Celite, layered with pentane, and cooled to -
40 °C. After 1 d, colorless X-ray quality cryst&smed. The crystals were collected by filtration

and dried under vacuum for 18 h (34 mg, 51 %).
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4.2.13 Generation of 2c. A J-Young valved NMR tube was charged wih'Bu (11 mg,
0.020 mmol) and (COD)PdMeCl (10 mg, 0.037 mmol)d &D,Cl, was added by vacuum
transfer. The mixture was thawed and formed a gtetiow solution3'P{*H} NMR (CD,Cl,): &

25.0."H NMR (CD,Cl,) PdMe region:5 0.81 (d,*Jor; = 3Hz).After 18 h,pyridine (1.6uL, 0.020

mmol) was added, and the reaction was monitoreMiR and found to be complete after 3 d.
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3p{'H} NMR (CD.Cl,): & 20.1."H NMR (CD:Cl) PdMe region:s 0.46 (d,*Jo1 = 2 Hz). These
data indicate th&c was successfully generated by this route. Howeategmpted isolation dfc
was unsuccessful due to decomposition.

4.3 Polymerization Procedures.

4.3.1 Ethylene Homopolymerization. Polymerization reactions were performed in a Parr
300 mL stainless steel autoclave, which was equdippiéh a mechanical stirrer, thermocouple
and water cooling loop and controlled by a Parr248dntroller. In a glovebox, a 200 mL glass
autoclave liner was charged with solution of th&lgat in chlorobenzene (1 mL), and toluene
(49 mL) was then added. For catalyst loadings fatian 5umol, the catalyst was weighed
directly into the glass liner and 50 mL of solvevdas added. The glass liner was placed in a
stainless steel autoclave, which was sealed andvenfrom the glovebox. The autoclave was
heated to the target temperature and pressurizédethylene while the contents were stirred.
After 2 h, the autoclave was cooled to 25 °C andte@d Acetone (50 mL) was added to
precipitate the polymer. The polymer was colledtgdiltration, rinsed with acetone, and dried
under vacuum.

4.3.2 Ethylene/VF Copolymerization. In a glove box, an injection cylinder was charged
with a solution of the catalyst (10mol) in chlorobenzene (10 mL) and connected to the
autoclave. Toluene (40 mL) was added to glass Ewediner. The liner was placed in the
autoclave, and the autoclave was sealed and renfowedthe glove box. The autoclave was
pressurized with VF to the desired pressure angllexte was added until the total pressure
reached 300 psi, while the mixture was stirred (Af¥0). The reactor was heated to the 80 °C
and the catalyst solution was injected from thedtipn cylinder by 450 psi of NThe stirring

rate was increased to 170 rpm after the temperatat®lized at 80 °C. After 2 h, the autoclave
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was cooled to 25 °C and vented. Acetone (50 mL) added to precipitate the polymer. The

polymer was collected by filtration, rinsed witheémne, and dried under vacuum.
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Graphical Abstract Synopsis (50 word)

The phosphine-arenesulfonate ligamdis 1a,b] andLi[1c] react with (COD)PdMeCl and
pyridine to generate (PO)PdMe(pyridine) complexa<, which contain 1-3 methoxy groups on
the benzo linker2a,b have been characterized by X-ray crystallographiter2c is thermally
unstable. The ethylene polymerization and ethyleng/fluoride copolymerization behavior of

2a,b have been investigated.

Highlights
» Phosphine-arenesulfonate ligands with OMe-substitbenzo linkers were prepared
* The corresponding (PO)PdMe(py) complexes were peejpand characterized
* These (PO)PdMe(py) complexes polymerize ethyleni@éar polyethylene

* These (PO)PdMe(py) complexes copolymerize ethyderakevinyl fluoride
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|. Polymerization Results

Figure S-1. GPC analysis of PE produced 2gin toluene at 80 °C for 2 h (Table 1, entry 1).
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Figure S-2. GPC analysis of PE produced 2gin toluene at 80 °C for 2 h (Table 1, entry 2).



Figure S-3. GPC analysis of PE produced 2yin hexanes suspension at 80 °C for 2 h (Table 1,

entry 3).
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ACCEPTED MANUSCRIPT

Figure S-4. GPC analysis of PE produced 2yin hexanes suspension at 80 °C for 2 h (Table 1,

entry 4).
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Figure S-5. GPC analysis of PE produced 2gin toluene/chlorobenzene at 80 °C for 2 h (Table

1, entry 5).
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Figure S-6. GPC analysis of PE produced 2gin toluene/chlorobenzene at 80 °C for 2 h (Table

1, entry 6).
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Polymer Laboratories
PL Caliber GPC Software

Figure S-7. GPC analysis of PE produced By in toluene at 80 °C for 2 h (Table 1, entry 7).
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Figure S-8. GPC analysis of PE produced ®yin toluene at 80 °C for 2 h (Table 1, entry 8).
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Figure S-9. GPC analysis of PE produced Blyin hexanes suspension at 80 °C for 2 h (Table 1,

entry 9).
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ACCEPTED MANUSCRIPT

Figure S-10. GPC analysis of PE produced Bly in hexanes suspension at 80 °C for 2 h (Table

1, entry 10).
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Figure S-11. GPC analysis of PE produced Bl in toluene/chlorobenzene at 80 °C for 2 h

(Table 1, entry 11).

Polymer Laboratories
PL Caliber GPC Software 13:04 Thu Jun 16 2016
Unknown QL4453.E00 Acquired :  11:00 Thu Jun 16 2016
>PE Operator Richard F. Jordan
Concentration : Detector
Injection Volume : Temperature :
Solvent : Flow Rate : 1.000
Column Set : Standards
Method 1
Comments :
Calibration Using : Narrow Standards Curve Used :  3rd Order Polynomial
Calibration Limits : 14.87 to 24.53 Mins  Last Calibrated : Thu Jun 16 11:14:14 2016
Flow Rate Marker : foundat: NotFound in Standards at : 0.00 Mins
Broad Peak Start : 17.68 End: 22.92 Mins
0 20 40 60 80 10q
0
5
10

High
Limit

Low
Limit

354
<

40 N\
Minutes
?

Molecular Weight Averages

Mp = 26246 Mz = 41945
Mn = 15122 Mz+1 = 58565
Mw = 26995 Mv = 25000
Polydispersity = 1.785 Peak Area= 273698

S-12



Figure S-12. GPC analysis of PE produced Bl in toluene/chlorobenzene at 80 °C for 2 h

(Table 1, entry 12).
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ACCEPTED MANUSCRIPT

Figure S-13. GPC analysis of ethylene/VF copolymer produce@din toluene/chlorobenzene

at 80 °C for 2 h (Table 2, entry 1).
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Figure S-14. GPC analysis of ethylene/VF copolymer produce@byn toluene/chlorobenzene

at 80 °C for 2 h (Table 2, entry 2)
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I1. X-ray Crystallography.

Data were collected on a Bruker D8 Venture diffoactter using Mo K radiation (0.71073
A). Direct methods were used to locate many atoromfthe E-map. Repeated difference
Fourier maps enabled location of all expected ngardgen atoms. Following anisotropic
refinement of all non-H atoms, ideal H atom posisiovere calculated. Final refinement was
anisotropic for all non-H atoms and isotropic-rgliior H atoms.

Specific details for structure refinement for 2a:2(CH,Cl,). Crystals were grown by
layering pentane onto a GEll; solution and cooling to -4TC under nitrogen.

Specific details for structure refinement for 2b-CH.Cl,. Crystals were grown by layering
pentane onto a Gi&l, solution and cooling to -40C under nitrogen. One of the Ph-OMe
substituents and a solvent molecule of ,CH were found to be disordered. Each was
individually modeled over two orientations with th@plication of SIMU/RIGU restraints on

thermal parameters.
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Table S-1. X-ray crystallographic parameters2s#-2(CH,Cl>).

Empirical formula GaH32CIsNOsPPdS
Formula weight 801.78
Temperature/K 100(2)

Crystal system triclinic

Space group P-1

alA 11.4869(5)

b/A 12.1515(5)

c/A 13.0397(5)

al® 78.4180(10)

pre 80.2470(10)

v/° 67.7760(10)
Volume/A® 1641.81(12)

z 2

peaig/cnt 1.622

w/mm* 1.045

F(000) 812.0

Crystal size/mm 0.36 x 0.2 x 0.18
Radiation Mok (A = 0.71073)
20 range for data collectior4.734 to 57.51
Index ranges -14 h<14, -15< k<16, -17<1<17
Reflections collected 32815

Independent reflections 7777, 0.0268, Bgm: = 0.0240]
Data/restraints/parameters ~ 7777/0/392

Goodness-of-fit on ¥ 1.040

Final R indexes [I>=2 (I)] Rj=0.0262, wR=0.0591

Final R indexes [all data] 1R 0.0321, wRr=0.0616

Largest diff. peak/hole / e A1.05/-0.86
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Table S-2. X-ray crystallographic parameters2if-CH,Cl..

Empirical formula GoH32CIL,NO,PPdS
Formula weight 746.88
Temperature/K 100(2)

Crystal system monoclinic
Space group P2:/n

alA 11.4737(8)

b/A 20.1607(14)

c/A 13.5917(10)

al® 90

pre 91.464(2)

v/° 90

Volume/A® 3143.0(4)

z 4

Peacg/cn 1.578

w/mm* 0.924

F(000) 1520.0

Crystal size/mm 0.18 x 0.18 x 0.16
Radiation Mok (A = 0.71073)
20 range for data collectior4.588 to 60.992
Index ranges -15h<16, -27<k<28,-19<1<18
Reflections collected 250766

Independent reflections 8717;{R= 0.0442]
Data/restraints/parameters ~ 8717/449/486
Goodness-of-fit on ¥ 1.058

Final R indexes [I>=2 (I)] Ri=0.0265, wR=0.0574
Final R indexes [all data] R 0.0366, wRR=0.0610
Largest diff. peak/hole / e 30.98/-0.45

S-18



[11. NMR Spectra of Compounds
Figure S-15. NMR spectra of 3a-'Bu

(a) *H (CD.Cl,, 500 MHz):
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Figure S-16. NMR spectra of 3b-Bu

(a) *H (CD.Cl,, 500 MHz):
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Figure S-17. NMR spectra of 3c-'Bu

(a) *H (CD.Cl,, 500 MHz):8 1.53 = HO
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(b) **c{*H} (CD.Cl,, 125 MHz):
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Figure S-18. NMR spectra of 1a-'Bu

(a) **P{*H} (CD-Cl,, 202 MHz):
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(c) Y*c{*H} (CD.Cl,, 125 MHz):
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Figure S-19. NMR spectra of 1b-'Bu

(a) **P{*H} (CD.Cl,, 202 MHz):
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(b) *H (CD.Cl,, 500 MHz):5 0.08 = grease
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Figure S-20. NMR spectra of 1c-'Bu

(a) **P{*H} (CD-Cl,, 202 MHz):
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(b) *H (CD.Cl,, 500 MHz):5 4.08, 2.00, 1.23 = EtOAc; 1.53 %®; 0.08 = grease.
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(c) Y*c{*H} (CD.Cl,, 125 MHz):
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Figure S-21. NMR spectra of Na[1a]

(a) **P{*H} (CD0D, 202 MHz):
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(b) 'H (CDsOD, 500 MHz):5 4.88 = HO: 2.04 = CHCN
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(c) **c{*H} (CDs0OD, 125 MHz):5 0.8 = CHCN

| |

)
o

I

T
8
o
<

80—

GGG~
095"

MLMWWWM

ppm

T T T T T T T T
920

170 160 150 140 130 120 110 100

S-27



Figure S-22. NMR spectra of Na[1b]

(a) **P{*H} (CDOD, 202 MHz):
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(b) *H (CD;0OD, 500 MHz):3 4.88 = HO; 2.16 = acetone; 2.04 = GEN
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(c) Y*c{*H} (CD30D, 125 MHz):
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Figure S-23. NMR spectra of Li[1c]

(a) **P{*H} (CDsOD, 202 MHz):
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(b) *H (CDsOD, 500 MHz):$ 4.88 = HO; 3.73 and 1.87 = THF; 2.16 = acetone
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Figure S-24. NMR spectra of 2a
(a) **P{*H} (CD.Cl,, 202 MHz):
bl Wil ot e L L ]
9‘0 8I0 7I0 5‘0 5‘0 4‘0 3‘0 2I0 1 IU (; 1‘ [} -2‘0 -:;0 -4I.0 ‘ppm

S-30



(b) *H (CD.Cl,, 500 MHz):
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(d) COSY (CDCly, aryl region):
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(f) HMQC (CD.Cl,, aryl region):
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Figure S-25. NMR spectra of 2b

(a) **P{*H} (CD-Cl,, 202 MHz):
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(c) Y*c{*H} (CD.Cl,, 125 MHz):
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(e) HMQC (CD.Cl,, -OMe region):
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(g) HMBC (CD,Cl,, C-aryl region):
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Figure S-26. NMR spectra of ethylene/VF copolymer produced by 2a (Table 2, entry 1)
(a) *H (o-dichlorobenzenel, 120 °C, 400 MHz)5 0.77 — 0.96 (-Me chain ends or branches),
1.28 (-H,CH,CH,-), 1.50 — 1.65 (8;CH=CH,CH,-, -CH,CH,CHFCH,CH,-), 1.88 — 2.04

(CH3CH:CH2CH2-, CHzZCHC|‘|2-).
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(b) *H (o-dichlorobenzenel, 120 °C,5 6.0-4.0 region). P = polymeryl.
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(c) “*F{*H} (o-dichlorobenzenek, 100 °C, 470 MHz). P = polymeryl.
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Figure S-27. NMR spectra of ethylene/VF copolymer produced by 2b (Table 2, entry 2)

(a) *H (o-dichlorobenzenel, 120 °C, 400 MHz)5 0.77 — 0.96 (-Me chain ends or branches),

1.28 (-GH,CH,CH,-), 1.50 — 1.65 (E1sCH=CH,CH,-, -CH,CH,CHFCH,CH,-), 1.88 — 2.04

(CH3CH:CH2CH2-, CHzZCHC|‘|2-).
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(b) *H (o-dichlorobenzenel;, 120 °C,5 6.0-4.0 region). P = polymeryl.
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