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A B S T R A C T   

Hydrogen has attracted much attention as one of the most promising chemical fuel candidates because of its zero 
emission during consumption. In order to solve the freezing problem of water based hydrolysis process, herein, 
the Pd/C as an efficient and stable catalyst for the methanolysis, ethanolysis, propanolysis and butanolysis of 
B2pin2 for the generation of hydrogen has been first developed. The large kinetic isotope effect (KIE) of kH/kD =

5.0, D2 formation from CD3OD and in situ tandem reaction have confirmed that alcohol is the only hydrogen 
source. Interestingly, the order of Ea of these alcohols in H2 evolution is MeOH (methanol, 29.57 kJ/mol) < EtOH 
(ethanol, 34.80 kJ/mol) < PrOH (propanol, 39.08 kJ/mol) < nBuOH (n-butanol, 41.98 kJ/mol), which is 
consistent with the known order of acidities of these alcohols (MeOH > EtOH > PrOH > nBuOH).   

1. Introduction 

The 21st century, H2 has been regarded as one of the most promising 
alternatives to fossil fuels due to its high energy density, sustainability 
and zero pollution [1–5]. So, a large deal of researches have been 
devoted to H2 evolution upon the hydrolysis of various hydrogen storage 
materials, such as dimethylamine-borane, sodium borohydride, hydra-
zine borane, hydrazine hydrate, formic acid and ammonia borane 
[6–18]. However, it is still a challenge to develop the hydrolysis of 
hydrogen storage materials at subzero temperature (the freezing point of 
water is only 0 ◦C). 

Recently, the H2 evolution upon alcoholysis of hydrogen storage 
materials have attracted considerable attention, because it perfectly 
solves the freezing problem of water based hydrolysis process 
[12,19–24]. In general, NH3 is released along with H2 gas in the hy-
drolysis of hydrogen storage materials. Whereas NH3 is not released in 
the alcoholysis of hydrogen storage materials [25–26], thus pure H2 is 
formed. Furthermore, the by-products of alcoholysis reaction, such as 
NH4B(OCH3)4 and NaB(OCH3)4, can be easily reconverted into 
hydrogen storage materials by reaction with LiAlH4 and NH4Cl [27]. 

Among them, alcoholysis of NH3BH3, NaBH4 or related boron com-
pounds producing H2 with only one H atom provided by alcohol and the 
other one by boron compounds [28–32]. 

(1) 

In fact, our group has a long term active interest in the exploration of 
new H2 evolution system [33]. For example, in 2020, our group reported 
the H2 evlution upon hydrolysis of tetrahydroxydiboron catalyzed by 
graphene quantum dot-stabilized transition metal nanoparticles, in 
which both atoms of H2 evolution are provided by H2O [33a]. Herein, 
we report Pd/C-catalyzed H2 or D2 evolution from alcoholysis of B2pin2, 
in which both two H atoms are obtained from alcohols (including MeOH, 
EtOH, PrOH, and nBuOH (Eq. (1)). Among them, B2pin2 is typically used 
as a current borylation source [34–38], and rarely applied in the 
reduction reactions [39–41]. According to our knowledge, it is the first 
systematic research of H2 evolution from the alcoholysis of B2pin2, 
although Prabhu and Stoke mentioned that H2 gas could be released 
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from B2pin2 and MeOH [42]. In addition, Pd/C, as a commercial, cheap 
and heterogeneous catalyst [43], has been successfully recycled 5 times 
for H2 evolution without any activity loss by the simple filtration. 

2. Material and methods 

2.1. Chemicals and reagents 

All commercial materials were used without further purification, 
unless indicated. The deionized water was prepared in the laboratory. 
MeOH, EtOH, PrOH, nBuOH were purchased from Saen Chemical 
Technology (Shanghai) Co., Ltd. B2Pin2 was purchased from Shanghai 
McLin Biochemical Technology Co., Ltd; CD3OD, Pd/C, norbornene and 
were purchased from Aladdin Reagent Co., Ltd. (Shanghai, China, 
http://www.aladdin-e.com/). 

2.2. Pd/C catalyzed H2 evolution 

As a conventional method, the methanolysis of B2pin2 was executed 
in MeOH at 303 K. Further details, B2pin2 (0.5 mmol) and 2–8 mol‰ of 
Pd/C were added into a 10 mL round bottom flask. Then, 5 mL MeOH 
was injected and stopwatch was opened. The hydrogen volume was 
recorded periodically by a water-filled gas burette through displacement 
of water. A quantitative conversion of B2pin2 produced 1.0equivalents of 
H2, and occupied ca. 22.4 mL at atmospheric pressure. Prior to the re-
actions, the volumes were measured at atmospheric pressure and cor-
rected for water vapor pressure at room temperature. 

3. Results and discussion 

Firstly, the commercial Pd/C has been measured by transmission 
electron microscope (TEM), the size of Pd/C is 3.29 nm (Fig. 1a and S1). 
The X-ray diffraction (XRD) of Pd/C has also been recored in the Fig. 1b. 
It shows a typical profile with a broad peak at around 24◦ corresponding 
to the C (002) peak (JCPDS Card No, 75-0444). While the peaks at 
40.01◦, 46.53◦ and 67.92◦ are belonged to (111), (200) and (220) of Pd 
(JCPDS Card No, 88-2335). The commercial Pd/C has been acted as 
catalysts for the H2 generation from the alcoholysis of the B2pin2. The 
evolution of H2 upon reaction between B2pin2 and alcohol (including 
MeOH, EtOH, PrOH, and nBuOH) catalyzed by 6 mol‰ Pd/C was con-
ducted at 30 ◦C and atmospheric pressure. The volume of produced H2 
gas has been monitored by water displacement via a gas burette. For all 
the results with different alcohols shown in Fig. 2a, it is clear that 1 
mmol of H2 gas was provided from 1 mmol of B2pin2 and the order of 
reaction rate constant of these alcohols in H2 evolution is MeOH > EtOH 
> PrOH > nBuOH (Fig. 2b). Among them, methanolysis of B2pin2 pre-
sents the highest TOF of 220.21 mol(H2)⋅molPd

− 1⋅min− 1. 
In order to obtain the kinetic data of methanolysis of B2pin2, the 

effects of concentrations of Pd/C and B2pin2, and reaction temperature 
have been investigated in the Fig. 3. The Fig. 3a shows the time plots of 
the catalytic H2 evolution upon methanolysis of B2pin2 in the presenct of 
various amount of Pd/C, we find Pd/C follows first-order reaction ki-
netics as a function of catalyst amount (Fig. 3b). The H2 evolution upon 
methanolysis of B2pin2 have been carried out with different amount of 
B2pin2 (from 0.25 to 1 mmol) in the presence of 0.002 mol of Pd/C 
(Fig. 3c). The methanolysis of B2pin2 is also first-order reaction kinetics 
as a function of B2pin2 amount (Fig. 3d). The Activation energy (Ea) is 
the minimum energy required to start a chemical reaction, and it has 

Fig. 1. (a) TEM image of Pd/C obtained at 200 kV voltage; (b) XRD of Pd/C.  

Fig. 2. (a) Comparison of the evolution of H2 from alcoholysis of B2pin2 catalyzed by 6 mol‰ Pd/C; (b) The initial TOF comparison about different alcoholysis at 
40% conversion. 
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been widely used for evaluation of catalyst. Then the H2 evolution upon 
methanolysis of B2pin2 have been carried out at different temperatures 
(from 298 to 313 K) in the Fig. 3e, and the k values are corrected by an 
Arrhenius-type expression: Lnk = LnA − Ea

RT, where Ea, the activation 
energy (kJ/mol) and A, the pre-exponential factor (min− 1), are deduced 
using the plot of Ln k to the 1/T depicted in the Fig. 3f. The Ea of the Pd/ 
C has been calculated to be 29.57 kJ/mol. In parallel, in order to obtain 
the kinetic data of ethanolysis (Fig. 4), propanolysis (Fig. 5) and buta-
nolysis (Fig. 6) of B2pin2, the effects of concentrations of Pd/C and 
B2pin2, and reaction temperature have also been investigated. The 
activation energy (Ea) of the Pd/C catalyzed H2 evolution upon etha-
nolysis (Fig. 4f), propanolysis (Fig. 5f) and butanolysis (Fig. 6f) of B2pin2 
has been calculated to be 34.80 kJ/mol, 39.08 kJ/mol and 41.98 kJ/ 
mol, respectviely. Interestingly, the order of activation energy constant 
of these alcohols in H2 evolution is MeOH < EtOH < PrOH < nBuOH, 
which is consistent with the order of acidities of these alcohols in H2 

evolution. Then, the kinetic isotope effect (KIE) using CD3OD instead of 
CH3OH for methanolysis of B2pin2 has been investigated in the Fig. 7a. A 
large KIE of kH/kD = 5.0 is obtained, suggesting that the O-H bond 
cleavage of methanol is the rate-determining step of H2 evolution. In 
summary, the order of activation energy constant of these alcohols in-
dicates that, consistent with the known order of acidities of these alco-
hols resulting from the rate limiting O-H activation step, the most acidic 
alcohol MeOH are the most active one. 

In addition, the H2 evolution upon methanolysis of B2pin2 catalyzed 
by 0.5 mol% Pd/C has been carred out at − 15 ◦C, Fig. 7b shows that the 
H2 evolution still works well. It is clear that the H2 evolution upon 
alcoholysis of B2pin2 could solve the freezing problem of water based 
hydrolysis process at subzero temperature. 

The reusability of the Pd/C catalyst has also been tested in the 
methanolysis of B2pin2 (Fig. 8a). The Pd/C catalyst was re-obtained and 
reused by filtration, washing and drying after each H2 evolution. It is 

Fig. 3. (a) Time plots of the catalytic H2 evolution upon methanolysis of B2pin2 by various amount of Pd/C; (b) Plots of the rates of H2 generation vs. the amount of 
the Pd/C, both on natural logarithmic scale. (c) Plots of the volume of hydrogen generated vs. time for methanolysis of B2pin2 catalyzed by 0.002 mmol of Pd/C (5% 
w/w) at various amount of B2pin2; (d) and the plot of hydrogen generation rate versus the concentration of B2pin2 both in natural logarithmic scale. (e) Plots of 
volume of H2 vs. time for the 2 mol‰ of Pd/C catalyzed methanolysis of B2pin2 at different temperatures; (f) Arrhenius plots obtained from the kinetic data. 
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obvious that the hydrogen generation rate is mostly constant even after 
5 times cycles. After the 5th catalyst recycling, in the Fig. 8b, the TEM 
shows the size of Pd/C (3.31 nm) remains unchanged (Fig. S2), which is 
indicative of stable catalytic activity and good recyclability of Pd/C in 
the methanolysis of B2pin2. 

(2)  

(3) 

After studying Pd/C catalyzed H2 evolution upon alcoholysis of 
B2pin2, we next investigate the tandem catalysis by using in situ gener-
ated H2 upon methanolysis of B2pin2 for hydrogenation of norbornene in 
a sealed two-chamber system (Scheme S1). The result exhibits that the 
norbornene hydrogenation provided 99% yield of the desired products 
after 12 h at 30 ◦C (Eq. (2)), confirming the evolution of H2 upon the 
reaction of B2pin2 and CH3OH. For the hydrogenation of norbornene 
with D2, which is in situ generated from the reaction of B2pin2 and 
CD3OD, the desired product 2b is also obtained in 99% yield (Eq. (3)). 
This suggests both two H atoms of H2 gas are provided by MeOH, rather 
than one H atom by MeOH and the other one by boron compounds [7]. 

Based on our previous work [33a], a conjectural mechanism of Pd/C 
catalyzed H2 evolution upon alcoholysis of B2pin2 has been proposed in 
the Fig. 9. First, B2pin2 reacts with Pd/C to form intermediate I, subse-
quently transformed to intermediate II after the attack of alcoholysis 
(ROH) molecules. Finally, a dihydride Pd(H)2 species III is produced 
from II by releasing two molecule of BpinOR, simultaneously affording 

Fig. 4. (a) Time plots of the catalytic H2 evolution upon ethanolysis of B2pin2 by various amount of Pd/C; (b) Plots of the rates of H2 generation vs. the amount of the 
Pd/C, both on natural logarithmic scale. (c) Plots of the volume of hydrogen generated vs. time for ethanolysis of B2pin2 catalyzed by 0.002 mmol of Pd/C (5% w/w) 
at various amount of B2pin2; (d) and the plot of hydrogen generation rate versus the concentration of B2pin2 both in natural logarithmic scale. (e) Plots of volume of 
H2 vs. time for the 4 mol‰ of Pd/C catalyzed ethanolysis of B2pin2 at different temperatures; (f) Arrhenius plots obtained from the kinetic data. 
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H2. 

4. Conclusion 

In summary, the Pd/C has been first developed as an efficient and 
stable catalyst for the methanolysis, ethanolysis, propanolysis and 
butanolysis of B2pin2 for the generation of hydrogen. This method is 
found to be facile, scalable and economical. The commercial Pd/C 
catalyst exhibits high catalytic activity for the alcoholysis of B2pin2, 
which is typically used as a current borylation source. The large KIE of 
kH/kD = 5.0 using CD3OD instead of CH3OH for methanolysis of B2pin2 
and tandem reaction for hydrogenation of norbornene have confirmed 
both two H atoms of H2 gas are provided from CH3OH. Interestingly, the 
order of Ea of these alcohols in H2 evolution is MeOH (29.57 kJ/mol) <
EtOH (34.80 kJ/mol) < PrOH (39.08 kJ/mol) < nBuOH (41.98 kJ/mol), 
which is consistent with the known order of acidities of these alcohols 
(MeOH > EtOH > PrOH > nBuOH) and resulting from the rate limiting 
O-H activation step. So the most acidic MeOH is the most active one. 
Moreover, It is clear that the H2 evolution upon methanolysis of B2pin2 

(at − 15 ◦C) could solve the freezing problem of water based hydrolysis 
process at subzero temperature. In addition, Pd/C catalyst could be 
easily separated and re-obtained from reaction with excellent stability 
amd catalytic activity. 
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Fig. 5. (a) Time plots of the catalytic H2 evolution upon propanolysis of B2pin2 by various amount of Pd/C; (b) Plots of the rates of H2 generation vs. the amount of 
the Pd/C, both on natural logarithmic scale. (c) Plots of the volume of hydrogen generated vs. time for propanolysis of B2pin2 catalyzed by 0.004 mmol of Pd/C (5% 
w/w) at various amount of B2pin2; (d) and the plot of hydrogen generation rate versus the concentration of B2pin2 both in natural logarithmic scale. (e) Plots of 
volume of H2 vs. time for the 8 mol‰ of Pd/C catalyzed propanolysis of B2pin2 at different temperatures; (f) Arrhenius plots obtained from the kinetic data. 
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Fig. 6. (a) Time plots of the catalytic H2 evolution upon butanolysis of B2pin2 by various amount of Pd/C; (b) Plots of the rates of H2 generation vs. the amount of the 
Pd/C, both on natural logarithmic scale. (c) Plots of the volume of hydrogen generated vs. time for butanolysis of B2pin2 catalyzed by 0.004 mmol of Pd/C (5% w/w) 
at various amount of B2pin2; (d) and the plot of hydrogen generation rate versus the concentration of B2pin2 both in natural logarithmic scale. (e) Plots of volume of 
H2 vs. time for the 8 mol‰ of Pd/C catalyzed butanolysis of B2pin2 at different temperatures; (f) Arrhenius plots obtained from the kinetic data. 

Fig. 7. (a) Hydrogen evolution from B2pin2 with CH3OH and CD3OD; (b) The Time plots of the catalytic H2 evolution upon methanolysis of B2pin2 catalyzed by 0.5 
mol% Pd/C at − 15 ◦C. 
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