Baeyer-Villiger Reaction in the Solid State

Fumio Toda,* Minoru Yagi, and Koji Kiyoshige

Department of Industrial Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790, Japan

Some Baeyer–Villiger oxidations of ketones with m-chloroperbenzoic acid proceed much faster in the solid state than in solution.

Relatively few organic reactions have been carried out in the solid state. We have found that some Baeyer-Villiger oxidations of ketones with *m*-chloroperbenzoic acid (1) proceed much faster in the solid state than in solution.

The oxidations were carried out at room temperature with a mixture of powdered ketone and 2 mol. equiv. of powdered peroxy acid (1). When the reaction time was longer than 1 day, the reaction mixture was ground once a day with agate pestle

Table 1. Yields of Baeyer-Villiger oxidation products in the solid state and in CHCl₃^a.

$$\begin{array}{c}
R^{1}COR^{2} \xrightarrow{m\text{-CIC}_{6}H_{4}CO_{2}H} \\
 & (1)
\end{array}$$

	D		Yield (%)	
Ketone	Reaction time	Product	Solid state	CHCl ₃ ^b
Bu ^t ——0	30 min	Bu ^t (3)	95	94
Br COMe	5 days	Br (5)	ме 64	50
(4) PhCOCH ₂ Ph (6)	24 h	PhCO ₂ CH ₂ Ph (7) PhCO ₂ Ph	97	46 13
PhCOPh (8)	24 h	PhCO ₂ Me	85 50	12
PhCO Me	24 h	(11) Me PhCO ₂		
PhCO (12)	4 days	(13) Me PhO ₂ C	1) 39	6
		(14)		

^a Molar ratio of ketone and (1) is 1:2. ^b The reaction was carried out with 1 g of ketone in 50 ml of CHCl₃.

and mortar. The excess of peroxy acid (1) was decomposed with aqueous 20% NaHSO₃, and the product was taken up in ether. The solution was washed with aqueous 20% NaHCO₃ and water, dried (Na₂SO₄), and evaporated. The crude product was chromatographed on silica gel (benzene-CHCl₃); yields are shown in Table 1. The ratio of (13) to (14) was determined by ¹H n.m.r.

For comparison, the oxidation was also carried out in CHCl₃. Yields obtained from a solution of the ketone and 2 molar equiv. of peroxy acid (1) in CHCl₃ at room temperature are also summarized in Table 1.

In the case of ketones (2) and (4), there is no marked difference between reactions in the solid state and in CHCl₃. However, there is a large difference with the ketones (6), (8), (10), and (12) (Table 1). It is surprising that the reaction occurs more easily in the solid state than in solution. Since Baeyer-Villiger reaction in solution usually takes a long time,²

a reaction which proceeds faster and does not need solvent has many advantages.

We have shown that the movement of molecules in host-guest complex formation in the solid state is easy. Some host-guest complexes can be formed by mixing host and guest compounds in the solid state or by keeping a mixture of powdered host and guest at room temperature.³ Therefore, the ease of oxidation in the solid state is not unexpected.

Received, 25th January 1988; Com. 8/00271A

References

- 1 'Organic Solid State Chemistry,' ed. G. R. Desiraju, Elsevier, Amsterdam, 1987.
- 2 S. L. Friess and A. H. Soloway, J. Am. Chem. Soc., 1951, 73, 3968.
- 3 F. Toda, K. Tanaka, and A. Sekikawa, J. Chem. Soc., Chem. Commun., 1987, 279.