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Photo-Nickel Dual Catalytic Benzoylation of Aryl Bromides†
Tobias Emanuel Schirmer,a Alexander Wimmer, a Florian Wolfgang Clemens Weinzierl a and 
Burkhard König *a 

The dual catalytic arylation of aromatic aldehydes by aryl bromides 
using irradiation and a nickel catalyst is reported. The reaction 
product serves as photocatalyst and hydrogen atom transfer agent 
of this transformation. 

Photo redox catalysis has emerged into a powerful tool for C−H 
activation.1-4 Particularly, merging photo- and nickel-catalysis 
enabled the functionalization of a wide range of C−H bonds.5-9 
As the field of photocatalysis develops, expensive iridium 
catalysts are successively replaced by novel organic dyes.10, 11 At 
the same time, long known photocatalysts such as 
benzophenones regain interests due to their ability to act as 
efficient triplet sensitizer or photoinduced hydrogen atom 
transfer catalysts. 10,12, 13

In his recent work on dual catalytic sp3
 C−H functionalization, 

Martin demonstrated the efficiency of a carefully designed 
benzophenone in dual catalytic transformations.14 A similar  
approach was later independently reported by Hashmi15 and 
Rueping,16 employing benzaldehyde and benzophenones, 
respectively, as combined HAT-photocatalyst and sensitizer for 
nickel catalysed sp3

 C−H arylations. Besides their utility in recent 
synthetic applications as well as classical photochemistry, diaryl 
ketones are an ubiquitous motive in pharmaceuticals, making 
their synthesis an attractive target of ongoing research.17

As non-catalytic approaches such as the Friedel-Craft acylation 
often lack regioselectivity and the addition of organometallic 
reagents to carbonyls either require prefunctionalization or 
reoxidation (Scheme 1a), catalytic methods have been 
continuously developed over the years.18, 19 Both different acyl 
surrogates and aldehydes have been employed together with 
transition metals such as palladium20-29 rhodium30, 31 nickel32-35 
and cobalt36 to furnish benzophenones. The use of CO as 
carbonyl source is likewise well established (scheme 1b).37, 38 
Recent developments in photoredox catalysis allow to access 
the acyl radical in a mild and selective manner (Scheme 1c). 
However, photochemical methods for the synthesis of ketones 
by C−H activation focused mostly on the coupling of aliphatic 
aldehydes.9 
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Scheme 1 (a) Classical and (b) catalytic methods for the synthesis of diaryl ketones as 
well as novel dual catalytic approaches (c and d).

To extend the catalytic approach to aromatic aldehydes, we 
envisioned a nickel-based dual-catalytic methodology, which 
exploits the ability of diaryl ketones to act as sensitizer and HAT-
catalysts. 
We started our investigation with the coupling of 
4-chlorobenzaldehyde (1a) with 4-bromo-benzonitrile (2a). 
Gratifyingly, the respective ketone 3a was observed under 
various conditions, revealing acetone as the optimal solvent, 
(4,4'-dimethyl-2,2'-bipyridyl)nickel(II) bromide as the most 
efficient precatalyst and sodium carbonate as best base during 
the initial screening (Table 1). 

a. Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of 
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†Electronic Supplementary Information (ESI) available: experimental details, 
characterization data and spectra of all compounds. See DOI: 10.1039/x0xx00000x
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Table 1 Optimization and control reactions a

H

O
Br

O

Cl CN Cl CN

Na2CO3 (2 equiv.)
Ni(dmbpy)Br2 (5 mol%)

acetone (0.25 M)
395 nm LED, 8h, 25 °C

+

1a 2a 3a

Entry Deviation from standard condition Yieldb [%]
1 None 93% (86%)c

2 Ni(dtbbpy)Br2 40%
3 DMSO 0%
4 MeCN 50%
5 PhH 8%
6 Cs2CO3 61%
7 K2CO3 71%
8 K2HPO4 2%
9 no base 8%

10 NiBr2 as catalyst 0%
11 4,4'-dimethyl-2,2'-bipyridne as catalyst 0%
12 no catalyst 0%
13 in the dark 0%
14 55°C in the dark 0%
15 455 nm 0%

a Unless otherwise noted, the reactions were carried out with 4-bromobenzonitrile 
(0.5 mmol), 4-chlorobenzaldehyde (0.75 mmol), Na2CO3 (1.0 mmol) and 
Ni(dmbpy)Br2 (0.025 mmol) in dry acetone (0.25 M) under irradiation with UV-LEDs 
(395 nm) and under N2-atmosphere for 8 h at 25 °C. b Yield determined by 
calibrated GC-FID analysis with 1,3,5-trimethoxybenzene as internal 
standard. c Isolated yield after purification by column chromatography in 
parentheses.

After performing the control experiments and confirming the 
essential contribution of all reaction components to the product 
formation, we explored the scope of this transformation. 
The reaction of electron deficient substrates gave cyano-, 
ester-, sulfonyl- and trifluoromethyl-substituted benzophenons 
(3a, 3g, 3i, 3j, 3l) in good to excellent yields. Dihalogenated 
ketons (3d, 3h) were obtained in moderate to good yields. The 
reaction is not limited to phenyl bromides. For example, 
benzothiazoyl ketone 3f was obtained in 59% yield (Scheme 2). 
Heteroaryl ketones (3b, 3e, 3k) were formed from 
bromopyridines and -pyrimidine in moderate yield. However, 
neither 2-bromo-4-(trifluoromethyl)pyridine nor 2-bromo-
benzothiazole furnished significant amounts of product. The 
same was observed for 4-bromobiphenyl, 2-bromotoluene and 
9-bromophenanthrene.39 Using benzaldehyde as coupling 
partner allowed benzoylation of bromobenzene and electron 
rich aryl bromides in moderate to good yields (4a-c).
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3e, 60% yield

3h, 78% yield

3k, 40% yield

O
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3l, 79% yield

4a, 81% yield 4b, 56% yield 4c, 72% yield
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Scheme 2 (a) Aryl bromide scope. All reactions were carried out with aryl 
bromide (0.5 mmol), 4-chlorobenzaldehyde or benzaldehyde (0.75 mmol), 
Na2CO3 (1.0 mmol) and Ni(dmbpy)Br2 (0.025 mmol) in dry acetone (0.25 M) under 
irradiation with UV-LEDs (395 nm) and under N2-atmosphere for 8 h at 
25 °C. Isolated yield after purification by column chromatography. (b) Unsuccessful 
aryl bromides under standard conditions.

After establishing the aryl bromide scope, we investigated the 
aldehyde scope, using 4-bromobenzonitrile as the coupling 
partner (Scheme 3). 
Benzaldehyde reacted smoothly under the developed reaction 
conditions and afforded 5a in very good yield. Fluorinated 
benzaldehydes formed the respective ketones in good to 
excellent yields (5e, 5i-k). Both very electron poor 
benzophenons (5b-e, 5k) as well as “push-pull” systems (5f-i), 
bearing an electron donating on one side, and one electron 
withdrawing substituent on the other, were synthesized in good 
to excellent yields (5f-i). Whilst benzoyl-protected 
hydroxybenzaldehyde was transformed into ketone 5l in good 
yield, neither 4-hydroxybenzaldehyde nor 4-amino-
benzaldehyde reacted to the ketone.40
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Scheme 3 (a) Aldehyde scope. All reactions were carried out with 
4-bromobenzonitrile (0.5 mmol), aldehyde (0.75 mmol), Na2CO3 (1.0 mmol) and 
Ni(dmbpy)Br2 (0.025 mmol) in dry acetone (0.25 M) under irradiation with UV-LEDs 
(395 nm) and under N2-atmosphere for 8 h at 25 °C. Isolated yield after purification 
by column chromatography. (b) Unsuccessful aldehydes under standard conditions

The mechanism of different nickel-based metalla-
photocatalyzed reactions have been investigated in 
computations and experimental studies.14, 40, 41 Different modes 
of C-H activation are discussed, including σ-bond metathesis by 
a sensitized nickel(II)-aryl bromide complex (complex B, Scheme 
4) and HAT by bromine radicals that form upon homolytic 
fragmentation of the same excited complex. The use of 
benzophenones (BP*) as photocatalyst, however, opens a new 
potential reaction pathway, as triplet excited BP* can serve as 
sensitizer to facilitate energy transfer based pathways, but 
additionally can act as HAT catalyst itself.42, 43 A plausible 
mechanism based on the latter property is shown below.

Ar
O

Ar'
Ar

OH

Ar'

Ar
O

Ar'

hv

N
N

NiIII

Br

Ar

O Ar'
N

N
NiII

Br

Ar

N
N

NiI Br
N

N
Ni0

SET

Ar'
H

O

Ar'

O

HAT

A

B

C

D

BP

BP*

BP-H

1

1

ArBr

Scheme 4 Plausible mechanism.

The photocatalytic cycle starts with benzophenone BP 
absorbing a photon to reach its triplet-state BP* and hence 
enabling it to abstract a hydrogen atom from aldehyde 1 to 
form both the acyl radical 1· and radical BP-H. The oxidative 
addition of the nickel(0)-complex A into the aryl bromide bond 
furnishes nickel(II) species B, which serves as radical-trap for 
acyl radical 1·. The formed nickel(III) species C is believed to 
undergo reductive elimination to benzophenone BP and 
complex D. Single electron transfer (SET) from BP-H to the 
nickel(I) bromide D is closing the catalytic cycle, furnishing both 
nickel(0) complex A and the ground state benzophenone BP.
However, the formation of the first photocatalytically active 
species remains elusive. Attempted photoreduction of the 
precatalyst with a mixture of benzaldehyde and sodium 
carbonate allows the observation of an apparently air sensitive 
species formed after already a few minutes of irradiation (see 
supporting information). GC-MS analysis of the mixture 
revealed traces of different products known to form upon 
photolysis of benzaldehyde such as benzene, benzil and its 
decarbonylation product benzophenone, of which we consider 
the latter ones together with the aldehyde capable to initiate 
the reaction.44

In conclusion, we have developed a photochemical nickel-
catalyzed benzoylation of aryl bromides with a variety of 
aldehydes. The reaction does not need the initial addition of a 
photocatalyst, since the products of the reaction serve as 
photocatalysts after the reaction was initiated by photolysis of 
the respective benzaldehyde.  Financial support from the 
German Science Foundation (DFG; KO 1537/18-1) is 
acknowledged. Shun Wang, Qing-Yuan Meng and Indrajit Gosh 
are acknowledged for helpful discussions. We thank Julia Zach 
for her technical support and Ranit Lahmy for her help on the 
manuscript.
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