100

Propyne Iminium Salts By N-Alkylation of Alkynyl Imines

Jens Schlegel, Gerhard Maas*

Abteilung Organische Chemie I, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany Fax: +49(731)5022803; E-mail: gerhard.maas@chemie.uni-ulm.de Received 19 June 1998; revised 24 July 1998

Abstract: *N*-Alkylation of alkynyl imines **5**, **6**, and **8** with methyl triflate or triethyloxonium tetrafluoroborate provides the openchain propyne iminium salts **9** and **10**, the related salts **11a–e** and **12b** where the iminium function is a part of a heteroaromatic ring, and *p*-phenylene-bis(propyne iminium) salts **13a,c**. The method gives access to novel propyne iminium salts in which the C,C triple bond bears an alkyl, SiMe₃, or H substituent.

Key words: alkynyl imines, iminium salts, imine alkylation, imidoyl halides, C,C coupling with alkynes

A convenient route to open-chain and semicyclic propyne iminium salts 3 is provided by O-sulfonylation of enamino ketones 1 with triflic anhydride followed by thermal or base-assisted 1,2-elimination of triflic acid from the resulting 3-trifloxypropene iminium salts $2^{1,2}$ (Scheme 1). However, this synthetic approach has several limitations. Thus, enamino aldehydes cannot be converted into propyne iminium salts due to subsequent rapid reaction of salts 2 ($R^2 = H$),³ and treatment of 3-alkyl-3-trifloxypropene iminium salts (2, $R^2 = CHR_2$) with an amine base causes a deprotonation which initially leads to 1-amino-3-trifloxy-1,3-dienes rather than to propyne iminium salts.⁴ So far, (1-methylbut-2-ynylidene)pyrrolidinium triflate (3, R¹ = $R^2 = Me$) represents the only propyne iminium salt with an alkyl-substituted C,C triple bond that could be prepared by the method under discussion; in this case, the conversion $2 \rightarrow 3$ was achieved by thermally induced HOTf elimination.²

Since propyne iminium salts have proven to be useful building blocks in organic synthesis (e.g. precursors to aminoallenes, 1- and 2-dienamines, and propargyl-amines^{1c,5,6}), we were interested to circumvent some of the limitations of the synthetic approach mentioned above and to enlarge the collection of easily available propyne iminium salts, especially by addition of systems in which the C,C-triple bond is terminal or bears an alkyl or silyl

substituent. We report here that *N*-alkylation of alkynyl imines is a useful and versatile alternative for the preparation of propyne iminium salts. Surprisingly enough, this obvious synthetic strategy has not been used before, except for the *N*-quaternization of rather special alkynyl imines such as 2-alkynylpyridines.^{7,8}

Syntheses of a few acyclic alkynyl imines have been reported. They were prepared by palladium-catalyzed coupling of imidoyl chlorides with terminal alkynes^{9,10} as well as (phenylethynyl)tributyltin,¹¹ by condensation of alkynyl ketones^{12–14} and acetylenic aldehydes¹⁵ with primary amines, or by reaction of alkyl alkynyl ketones with *N*-ethylidenecyclohexanamine.¹² We report here that *N*-alkyl-substituted alkynyl imines **5a–f** can be obtained conveniently from imidoyl chlorides **4a–f** and (alk-1-ynyl) Grignard reagents (Scheme 2). This method also gives access to the *p*-phenylene-bis(alkynyl imines) **6a,c** (Tables 1 and 2).

Synthesis 1999, No. 1, 100–106 ISSN 0039-7881 © Thieme Stuttgart · New York

101

Downloaded by: University of Arizona Library. Copyrighted material.

Prod- uct	Yield	mp (°C) (solvent)	IR (neat or KBr) (cm ⁻¹)		
uct	(%)	or bp (°C)/mbar	$v_{C\equiv C}$	Other Signals	
5a	75	135/0.018	2151	2959, 2899, 1595, 1573, 1449, 1397, 1314, 1277, 1252, 1084, 1075, 1061, 1028	
5b	76	155/0.01	2149	2967, 2933, 2899, 2868, 1591, 1570, 1449, 1314, 1275, 1252, 1100, 1057, 1015	
5c	66	36-38 (Et ₂ O)	2152	2959, 1593, 1567, 1492, 1448, 1314, 1272, 1252, 1087, 1063, 1028	
5d	69	145/0.003	2211	2957, 2931, 2871, 1596, 1574, 1466, 1447, 1327, 1314, 1284, 1028	
5e	54	155/0.003	2207	2962, 2932, 2869, 1593, 1572, 1448, 1314, 1283	
5f	74	oil ^b	2211	2956, 2930, 2870, 1594, 1571, 1491, 1453, 1314, 1282, 1028	
6a	74	100-102 (Et ₂ O)	2205	1594, 1571, 1446, 1317, 1299, 1053, 1027	
6c	70	119–120 (Et ₂ O)	2205	3025, 1586, 1561, 1491, 1446, 1315, 1297, 1054, 1027	
8a	50	120/0.02	2066	2964, 2899, 1549, 1454, 1249, 1206, 1032	
8b	56	112/0.028	2160	2959, 1476, 1428, 1324, 1251, 1161, 1140, 1124, 1064	
8c	45	114–116 ^c	2162	3046, 2955, 1600, 1496, 1482, 1448, 1392, 1354, 1247	
8d	80	40-41 ^d	2107	3195 (≡CH), 1472, 1429, 1313, 1121	

^a Satisfactory microanalyses obtained: C ± 0.40, H ± 0.23, N ± 0.31. EI-HRMS, *m/z*: **5c**: calcd. 291.1439, found 291.1441; **5f**: calcd. 275.1674, found 275.1673.

 $^{\rm b}\,$ Purified by column chromatography (silica gel, Et_2O).

^c Purified by column chromatography (silica gel, CHCl₃).

^d Lit.¹⁵ mp 39–41°C.

Table 2 ¹H and ¹³C NMR Data of Compounds 5, 6, 8

Pro- duct	¹ H NMR (CDCl ₃ /TMS), δ , <i>J</i> (Hz)	δ^{13} C NMR (CDCl ₃)
5a	0.30 [s, 9 H, Si(CH ₃) ₃], 3.63 (s, 3 H, NCH ₃), 7.34–7.39 (m, 3 H, CH _{arom}), 7.98–8.03 (m, 2 H, CH _{arom})	-0.39 [Si(CH ₃) ₃], 43.57 (NCH ₃), 95.61, 105.86 (C=C), 127.14, 128.06, 130.19, 137.03 (C _{arom}), 152.20 (C=N)
5b	0.30 [s, 9 H, Si(CH ₃) ₃], 1.35 (t, J = 7.3, 3 H, CH ₃), 3.88 (q, J = 7.3, 2 H, NCH ₂), 7.36–7.41 (m, 3 H, CH _{arom}), 8.01–8.06 (m, 2 H, CH _{arom})	–0.43 [Si(CH ₃) ₃], 15.34 (CH ₃), 50.73 (NCH ₂), 95.83, 104.78 (C=C), 127.23, 128.02, 130.11, 137.16 (C _{arom}), 150.17 (C=N)
5c	0.30 [s, 9 H, Si(CH ₃) ₃], 5.06 (s, 2 H, NCH ₂), 7.20–7.44 (m, 8 H, CH _{arom}), 8.09–8.14 (m, 2 H, CH _{arom})	–0.49 [Si(CH ₃) ₃], 59.97 (NCH ₂), 96.08, 105.59 (C=C), 126.56, 127.43, 127.86, 127.98, 128.16, 130.36, 136.82, 139.66 (C _{arom}), 151.00 (C=N)
5d	0.91 (t, $J = 7.0, 3$ H, CH ₃), 1.39–1.61 (m, 4 H, CH ₂ CH ₂), 2.44 (t, $J = 6.8, 2$ H, \equiv CCH ₂), 3.58 (s, 3 H, NCH ₃), 7.32–7.35 (m, 3 H, CH _{arom}), 7.99–8.04 (m, 2 H, CH _{arom})	13.20 (CH ₃), 18.67, 21.70 (CH ₂ CH ₂), 30.13 (=CCH ₂), 42.96 (NCH ₃), 73.33, 101.54 (C=C), 126.97, 127.74, 129.74, 137.54 (C _{arom}), 152.32 (C=N)
5e	0.93 (t, $J = 7.3$, 3 H, CH ₃), 1.32 (t, $J = 7.3$, 3 H, CH ₃), 1.42–1.63 (m, 4 H, CH ₂ CH ₂), 2.44 (t, $J = 6.8$, 2 H, \equiv CCH ₂), 3.83 (q, $J = 7.3$, 2 H, NCH ₂), 7.31–7.39 (m, 4 H, CH _{arom}), 7.99–8.04 (m, 2 H, CH _{arom})	13.25 (CH ₃), 15.31 (CH ₃) 18.72, 21.74 (CH ₂ CH ₂), 30.16 (\equiv CCH ₂), 50.26 (NCH ₂), 73.49, 100.58 (C \equiv C), 127.12, 127.79, 129.76, 137.73 (C _{arom}), 150.43 (C=N)
5f	0.92 (t, J = 7.0, 3 H, CH ₃), 1.41–1.65 (m, 4 H, CH ₂ CH ₂), 2.48 (t, J = 6.9, 2 H, ≡CCH ₂), 5.01 (s, 2 H, NCH ₂), 7.17–7.74 (m, 8 H, CH _{arom}), 8.06–8.11 (m, 2 H, CH _{arom})	13.33 (CH ₃), 18.83, 21.81 (CH ₂ CH ₂), 30.14 (\equiv CCH ₂), 59.62 (NCH ₂), 73.88, 101.39 (C \equiv C), 126.41, 127.41, 127.70, 127.87, 128.11, 130.09, 137.53, 139.92 (C _{arom}), 151.47 (C=N)
6a	3.71 (s, 6 H, NCH ₃), 7.39–7.45 (m, 6 H, CH _{arom}), 7.58 (s, 4 H, CH _{arom}), 8.04–8.09 (m, 4 H, CH _{arom})	43.63 (NCH ₃), 83.14, 98.03 (C=C), 122.57, 127.13, 128.19, 130.36, 132.06, 137.12 (C _{arom}), 151.87 (C=N)
6c	5.13 (s, 4 H, NCH ₂), 7.24–7.46 (m, 16 H, CH _{arom}), 7.59 (s, 4 H, CH _{arom}), 8.12–8.17 (m, 4 H, CH _{arom})	60.15 (NCH ₂), 83.72, 97.63 (C=C), 122.60, 126.79, 127.55, 127.91, 128.25, 128.39, 130.64, 132.21, 137.12, 139.66 (C _{arom}), 150.92 (C=N)
8a	0.30 [s, 9 H, Si(CH ₃) ₃], 1.50 [s, 6 H, C(CH ₃) ₂], 7.32–7.48 (m, 3 H, CH _{arom}), 7.62–7.70 (m, 1 H, CH _{arom})	-0.69 [Si(CH ₃) ₃], 22.67 (CCH ₃), 55.04 (CCH ₃), 85.55, 88.02 (C=C), 120.25, 121.23, 125.98, 127.79, 144.26, 151.22 (C _{arom}), 176.79 (C=N)
8b	0.30 [s, 9 H, Si(CH ₃) ₃], 7.39–7.45 (m, 2 H, CH _{arom}), 7.74–7.78 (m, 1 H, CH _{arom}), 7.99–8.01 (m, 1 H, CH _{arom})	–0.84 [Si(CH ₃) ₃], 96.60, 102.72 (C=C), 120.98, 123.36, 126.04, 126.35, 134.81, 147.81 (C _{arom}), 152.36 (C=N)
8c	0.21 [s, 9 H, Si(CH ₃) ₃], 5.09 (s, 2 H, NCH ₂), 6.93–7.52 (m, 15 H, CH _{arom})	-0.52 [Si(CH ₃) ₃], 48.62 (NCH ₂), 93.52, 101.55 (C=C), 126.82, 126.99, 127.62, 127.99, 128.20, 128.42, 128.86, 128.98, 129.52, 130.73, 133.24, 133.87, 134.15, 136.17, 138.36 (C _{arom})
8d	3.60 (s, 1 H, ≡CH), 7.38–7.54 (m, 2 H, CH _{arom}), 7.80–7.85 (m, 1 H, CH _{arom}), 8.03–8.08 (m, 1 H, CH _{arom})	76.62, (C=CH), 83.92 (=CH), 121.21, 123.72, 126.45, 126.66, 135.00, 147.27 (C _{arom}), 152.45 (C-2)

Efforts to synthesize *N*-phenyl alkynyl imines **5**g,**h** analogously were abandoned since the reactions were slow and preparatively useless product mixtures were obtained. However, these compounds have been obtained before by palladium-catalyzed coupling of imidoyl chloride **4g** with the corresponding alk-1-yne^{9,10} (Scheme 3). Sonogashiratype coupling reactions also allowed the preparation of (trimethylsilyl)ethynyl imines **8a–c**, in which the imine function is part of a heteroaromatic system (Tables 1 and 2). Related systems, such as 2-[(trimethylsilyl)ethynyl]pyridine¹⁶ and (2-alkynyl)imidazoles,¹⁷ have been prepared before by this method.

Desilylation of **8b** provided 2-ethynyl-1,3-benzothiazole (**8d**) in good yield. Certainly, this short route to **8d** is more convenient than the published procedure¹⁸ which requires the synthesis and dehalogenation of 2-(2,2-dichloro-1-fluorovinyl)-1,3-benzothiazole.

N-Alkylation of imines **5**, **6**, and **8** could be achieved with hard alkylating reagents such as methyl triflate or triethyloxonium tetrafluoroborate (Meerwein's salt). All alkynyl imines **5** and **8** used in this study could be converted smoothly into the corresponding *N*-methyl propyne iminium triflates **9** and **11** (Scheme 4, Tables 3 and 4). The salts readily separated (as a solid or an oil) from the reaction mixture, when the alkynyl imine was added slowly to a solution of methyl triflate in diethyl ether. The twofold alkylation with methyl triflate of bis(imines) **6a,c**, however, was cleaner with CH_2Cl_2 as the solvent. Alkylation re-

actions with Et_3OBF_4 required a higher temperature to go to completion. Since they had to be performed in CH_2Cl_2 solution in order to dissolve the alkylating reagent, the formed propyne iminium salt remained in solution, and only the Me₃Si-substituted salts **10a,b,g** and **12b** could be prepared under these conditions, while the iminium salts derived from **5d–f** seemed not to be stable in the reaction medium and gave rise to further reactions such as oligomerization. Similarly, 2-ethynyl-1,3-benzothiazole (**8d**) underwent clean *N*-methylation with methyl triflate, while treatment with Meerwein's salt led to oligomerization.

In this context, it is interesting to note that alkylation of 2ethynylpyridine with alkyl halides in MeCN was used to prepare polyacetylene derivatives [poly-(*N*-alkyl-2-ethynylpyridinium salts)],¹⁹ while methyl triflate gave the *N*-methylpyridinium salt monomer cleanly.⁸ Mechanistic investigations²⁰ suggest that the neutral (ethynyl)pyridine acts as a nucleophilic initiator for the oligomerization of the *N*-methylpyridinium salts according to a zwitterionic/

Prod-	\mathbb{R}^1	\mathbb{R}^2	R ³	Condi-	Yield	mp	IR (neat or KBr) (cm ⁻¹)		
uct				tions	(%)	(°C)	$v_{C=C}$	Other Signals	
9a	Ph	SiMe ₃	Me	0°C, 2 h	73	83-85	2166	2954, 1633, 1458, 1377, 1344, 1275, 1223, 1153, 1034	
9b	Ph	SiMe ₃	Et	0°C, 2 h	61	62–64	2160	2966, 2853, 1614, 1450, 1376, 1344, 1275, 1222, 1151, 1030	
9c	Ph	SiMe ₃	CH ₂ - Ph	0°C, 1h; 20°C, 1 h	62	74–76	2159	2918, 2853, 1605, 1452, 1344, 1276, 1222, 1151, 1030	
9d	Ph	Bu	Me	20°C, 2h,	34	oil	2219	2960, 2934, 2873, 1626, 1598, 1450, 1362, 1261, 1224, 1153, 1032	
9e	Ph	Bu	Et	20°C, 2 h	40	oil	2214	2959, 1619, 1449, 1360, 1272, 1224, 1155, 1031	
9f	Ph	Bu	CH ₂ - Ph	0°C, 2 h	60	oil	2213	2960, 2933, 1613, 1596, 1450, 1359, 1277, 1224, 1200, 1160, 1031	
10a ^d	Ph	SiMe ₃	Me	60°C, 2 h	70	74–76	2152	2962, 1598, 1451, 1375, 1339, 1283, 1250, 1166, 1048	
10b	Ph	SiMe ₃	Et	60°C, 2 h	72	107–109	2153	2924, 2854, 1591, 1450, 1377, 1341, 1274, 1252, 1051	
10g ^d	Ph	SiMe ₃	Ph	60°C, 2 h	59	112–114	2156	3065, 1596, 1581, 1563, 1490, 1449, 1339, 1318, 1269, 1255, 1056	
11a ^e				0°C, 1 h; 20°C, 1 h	70	122–124	2073	2960, 1596, 1460, 1260, 1220, 1030	
11b ^e				20°C, 2 h	95	147–149	2158	1285, 1251, 1221, 1032	
11c ^e				20°C, 2 h	55	116–118	2121	1625, 1591, 1498, 1264, 1223, 1153, 1052, 1030	
11d ^e				20°C, 2 h	80	120-122	2113	3184 (≡CH), 1466, 1446, 1257, 1224, 1163, 1030	
12b ^e				20°C, 5 h	93	155–156	2159	3101, 1498, 1473, 1459, 1435, 1287, 1273, 1252, 1211, 1175, 1056	
13a ^e				0°C, 2 h	60	130–132	2203	3055, 1620, 1596, 1361, 1277, 1224, 1155, 1030	
13c ^{d,e}				0°C, 2 h	73	70–72	2199	3062, 1595, 1448, 1363, 1260, 1150, 1028	

Table 3 Propyne Iminium Salts 9-13 Prepared^a (Scheme 4)

^a Satisfactory microanalyses obtained: $C \pm 0.4$, $H \pm 0.4$, $N \pm 0.4$.

^b Reactions in CH₂Cl₂ solution at 60°C were carried out in a Schlenk pressure tube.

^c Crystallization from CH₂Cl₂/Et₂O.

^d Mixture of *E*- and *Z*-isomers with respect to the C=N⁺ bond.

^e For the structures of **11–13**, see Scheme 4.

anionic mechanism. Therefore, in order to suppress the oligomerization reaction of the formed propyne iminium salts, the *N*-alkylation of the alkynyl imines in general should be fast and quantitative, and the quick separation of the formed iminium salts from the reaction solution may also be helpful.

When alkynyl imines **5a**,**g** were alkylated with Et₃OBF₄ at 60 °C, iminium salts **10a**,**g** were formed as a mixture of diastereomers with respect to the C=N⁺ bond. In contrast, alkylation with MeOTf at 0 °C gave only one diastereomer of **9**, while the reaction at 60 °C furnished a diastereomeric mixture again, as was demonstrated for **5b** \rightarrow **9b**. A ROESY NMR experiment carried out on **10a** suggested that **10aA** was the dominating isomer. By comparison with the chemical shifts observed for **10aA/B** [δ (Me-A) $> \delta$ (Me-B) and δ (CH₂-A) $< \delta$ (CH₂-B), see Table 4], isomeric pairs in other cases can be assigned either to series **A** or series **B**. We then conclude that *methylation* of *N-ethyl* imine **5b** forms isomer **9bB** exclusively at 0°C or predominantly at 60°C, while *ethylation* of *N-methyl* imine **5a**

yields a mixture in which **10aA** predominates. Combined with the ¹H NMR spectroscopic test that pure **9bB** did not undergo *cis/trans* isomerization at 60°C, these findings suggest that the C=N configuration of alkynyl imines **5a**,**b** is exclusively (0°C) or largely (60°C) the one where the lone electron pair at N is *cis* to the phenyl group.

Different results were also obtained when 8a was treated with the two alkylating reagents. Again, reaction with methyl triflate was fast and gave iminium salt **11a** cleanly (Scheme 4). On the other hand, reaction of **8a** with Et₃OBF₄ in CH₂Cl₂ at 20°C was much slower and instead

Table 4 ¹H and ¹³C NMR Data of Salts 9–13

Pro-	¹ H NMR (CD ₃ CN/TMS) $\sum_{i} L(Hz)_{i}$ isomer A (isomer B	13 C NMR (CD ₃ CN)
<u>9a</u>	0.30 [s, 9 H, Si(CH ₃) ₃], 3.61 (s, 3 H, NCH ₃), 3.92 (s, 3 H, NCH ₃), 7.57–7.76 (m, 5 H, CH _{arom})	$\begin{array}{l} -1.27 \ [\text{Si}(\text{CH}_3)_3], \ 46.63 \ (\text{NCH}_3), \ 49.09 \ (\text{NCH}_3), \ 97.11 \ (\text{NCC}=\text{C}), \ 122.04, \ (\text{q}, \ J_{\text{C,F}} = 320.8, \ \text{CF}_3), \ 130.27, \ 130.37, \ 130.78 \ (\text{NCC}=\text{C}), \ 134.84, \ 137.77 \ (\text{C}_{\text{arom}}), \ 163.19 \ (\text{C=N}) \end{array}$
9b ^a	A: 0.31 [s, 9 H, Si(CH ₃) ₃], 1.40 (t, $J = 7.2$, 3 H, CH ₃), 3.87 (s, 3H, NCH ₃), 3.90 (q, $J = 7.2$, 2H, NCH ₂); B : 0.31 [s, 9 H, Si(CH ₃) ₃], 1.52 (t, $J = 7.3$, 3 H, CH ₃), 3.60 (s, 3 H, NCH ₃), 4.28 (q, $J = 7.3$, 2 H, NCH ₂), 7.60–7.78 (m, CH _{arom})	A: -1.22 [Si(CH ₃) ₃], 13.04 (CH ₃), 45.70 (NCH ₃), 54.13 (NCH ₂), 97.50 (NCC=C), 129.39, 129.71, 130.53, 131.77, 134.49, 163.94 (C=N); B : -1.34 [Si(CH ₃) ₃], 12.21 (CH ₃), 44.19 (NCH ₃), 57.83 (NCH ₂), 96.80 (NCC=C), 122.07 (q, $J_{C,F} = 320.9$, CF ₃), 130.23, 130.65, 131.41 (NCC=C), 135.03, 137.81 (C _{arom}), 162.86 (C=N)
9c	0.32 [s, 9 H, Si(CH ₃) ₃], 3.57 (s, 3 H, NCH ₃), 5.54 (s, 2 H, NCH ₂), 7.40–7.84 (m, 10 H, CH _{arom})	−1.38 [Si(CH ₃) ₃], 44.34 (NCH ₃), 55.14 (NCH ₂), 97.67 (NC <i>C</i> ≡C), 122.02 (q, $J_{C,F} = 320.8$, CF ₃), 129.97, 130.16, 130.29, 130.62, 130.78, 130.93, 131.54, 135.36, 138.24, 164.02 (C=N)
9d	0.90 (t, $J = 7.3$, 3 H, CH ₃), 1.33–1.67 (m, 4 H, CH ₂ CH ₂), 2.72 (t, $J = 7.0$, 2 H, \equiv CCH ₂), 3.56 (s, 3 H, NCH ₃), 3.86 (s, 3 H, NCH ₃), 7.61–7.70 (m, 5 H, CH _{arom})	13.66 (CH ₃), 20.84, 22.65 (CH ₂ CH ₂), 29.87 (\equiv CCH ₂), 46.36, 48.61 (NCH ₃), 77.45 (NCC \equiv C), 122.55 (q, $J_{C,F} = 320.3$, CF ₃), 130.03, 130.20, 130.95, 132.25, 134.54 (C _{arom}), 164.30 (C=N)
9e	0.92 (t, $J = 7.1$, 3 H, CH ₃), 1.36–1.74 (m, 7 H, CH ₂ CH ₂ , CH ₃), 2.74 (t, $J = 7.0$, 2 H, \equiv CCH ₂), 3.60 (s, 3 H, NCH ₃), 4.28 (q, $J = 7.2$, 2 H, NCH ₂), 7.57–7.82 (m, 5 H, CH _{arom})	12.33 (CH ₃), 13.72 (CH ₃), 20.86, 22.68 (CH ₂ CH ₂), 29.84 (\equiv CCH ₂), 43.82 (NCH ₃), 57.27 (NCH ₂), 77.13 (NCC \equiv C), 130.11, 130.29, 130.59, 131.20, 134.59 (NCC \equiv C and C _{arom}), 164.10 (C=N)
9f	0.89 (t, $J = 7.2$, 3 H, CH ₃), 1.35–1.78 (m, 4 H, CH ₂ CH ₂), 2.85 (t, $J = 6.9$, 2 H, \equiv CCH ₂), 3.58 (s, 3 H, NCH ₃), 5.56 (s, 2 H, NCH ₂), 7.34–8.20 (m, 10 H, CH _{arom})	13.75 (CH ₃), 21.07, 22.71 (CH ₂ CH ₂), 29.82 (=CCH ₂), 44.00 (NCH ₃), 54.80 (NCH ₂), 64.65 (NCC=C), 127.37, 129.78, 129.98, 130.21, 130.54, 130.67, 131.50, 135.00, 137.84 (NCC=C and C _{arom}), 163.41 (C=N)
10a ^b	A: 0.31 [s, 9 H, Si(CH ₃) ₃], 1.40 (t, $J = 7.3$, 3 H, CH ₃), 3.90 (s, 3 H, NCH ₃), 3.92 (q, $J = 7.3$, 2 H, NCH ₂); B : 0.33 [s, 9 H, Si(CH ₃) ₃], 1.54 (t, $J = 7.3$, 3 H, CH ₃), 3.62 (s, 3 H, NCH ₃), 4.31 (q, $J = 7.3$, 2 H, NCH ₂), 7.59–7.79 (m, CH _{arom})	A: -1.22 [Si(CH ₃) ₃], 13.04 (CH ₃), 45.70 (NCH ₃), 54.13 (NCH ₂), 97.50 (NCC=C), 163.94 (C=N); B: -1.22 [Si(CH ₃) ₃], 12.24 (CH ₃), 44.13 (NCH ₃), 57.84 (NCH ₂), 96.86 (NCC=C), 162.9 (C=N); further signals: 129.39, 129.71, 130.28, 130.53, 130.63, 131.33, 131.77, 134.49, 135.04 (C _{arom})
10b	0.32 [s, 9 H, Si(CH ₃) ₃], 1.41 (t, J = 7.2, 3 H, CH ₃), 1.57 (t, J = 7.2, 3 H, CH ₃), 3.94 (q, J = 7.2, 2 H, NCH ₂), 4.32 (q, J = 7.2, 2 H, NCH ₂), 7.63–7.76 (m, 5 H, CH _{arom})	-1.25 [Si(CH ₃) ₃], 13.05 (CH ₃), 13.64 (CH ₃), 51.87 (NCH ₂), 54.37 (NCH ₂), 97.36 (NCC≡C), 129.44, 130.51, 131.28 (NCC≡C), 131.88, 134.54 (C _{arom}), 163.84 (C=N)
10g ^c	A : 0.40 [s, 9 H, Si(CH ₃) ₃], 1.41 (t, $J = 7.3$, 3 H, CH ₃), 4.73 (q, $J = 7.3$, 2 H, NCH ₂); B : 0.03 [s, 9 H, Si(CH ₃) ₃], 1.29 (t, $J = 7.3$, 3 H, CH ₃), 4.36 (q, $J = 7.3$, 2 H, NCH ₂), 7.30–7.98 (m, CH _{arom})	A: -1.29 [Si(CH ₃) ₃], 12.19 (CH ₃), 60.38 (NCH ₂), 97.77 (NCC=C), 163.81 (C=N); B: -1.57 [Si(CH ₃) ₃], 13.35 (CH ₃), 56.00 (NCH ₂), 98.68 (NCC=C), 166.20 (C=N); further signals: 126.03, 126.68, 128.10, 129.78, 130.49, 130.91, 131.24, 132.00, 132.26, 133.45, 133.96, 135.11, 135.70, 140.62, 142.37 (C _{arom})
11a	0.30 [s, 9 H, Si(CH ₃) ₃], 1.53 [s, 6 H, C(CH ₃) ₂], 4.00 (s, 3 H, NCH ₃), 7.53–8.02 (m, 4 H, CH _{arom})	$\begin{array}{l} -0.70 \left[\text{Si}(\text{CH}_3)_3 \right], 24.30 \left(\text{CCH}_3 \right), 55.04 \left(\text{CCH}_3 \right), 40.15 \left(\text{NCH}_3 \right), 89.07 \left(\text{NCC}{\equiv} \text{C} \right), \\ 121.20, 122.00, 124.63, 125.98, 126.80, 147.34, 155.22, 179.63 \left(\text{C}_{\text{arom}} \right) \end{array}$
11b	0.40 [s, 9 H, Si(CH ₃) ₃], 4.32 (s, 3 H, NCH ₃), 7.79– 7.96 (m, 2 H, CH _{arom}), 8.11–8.15 (m, 1 H, CH _{arom}), 8.25–8.29 (m, 1 H, CH _{arom})	−1.20 [Si(CH ₃) ₃], 39.15 (NCH ₃), 89.06 (NCC=C), 118.31, 125.24, 127.37 (NCC= <i>C</i>), 130.65, 130.80, 131.73, 141.48 (C _{arom}), 153.35 (C-2)
11c	0.30 [s, 9 H, Si(CH ₃) ₃], 3.73 (s, 3 H, NCH ₃), 5.38 (s, 2 H, NCH ₂), 7.10–7.45 (m, 15 H, CH _{arom})	-1.09 [Si(CH ₃) ₃], 35.37 (NCH ₃), 51.60 (NCH ₂), 85.06 (NCC≡C), 125.80, 128.49, 128.69, 129.42, 129.64, 129.89, 130.28, 130.98, 131.44, 131.50, 131.67, 131.85, 133.47, 134.34, 134.61, 134.88 (NCC≡C and C _{arom})
11d	4.32 (s, 3 H, NCH ₃), 5.51 (s, 1 H, C=CH), 7.72–7.99 (m, 2 H, CH _{arom}), 8.12–8.18 (m, 1 H, CH _{arom}), 8.26–8.33 (m, 1 H, CH _{arom})	39.40 (NCH ₃), 69.80 (NC <i>C</i> =C), 106.16 (NCC= <i>C</i>), 118.38, 121.75 (q, $J_{C,F}$ =307, CF ₃), 125.31, 130.87, 131.04, 131.92, 141.50 (C _{arom}), 153.60 (C=N)
12b	0.40 [s, 9 H, Si(CH ₃) ₃], 1.57 (t, <i>J</i> = 7.3, 3 H, CH ₃), 4.86 (q, <i>J</i> = 7.3, 2 H, NCH ₂), 7.81–7.99 (m, 2 H, CH _{arom}), 8.16–8.30 (m, 2 H, CH _{arom})	-1.23 [Si(CH ₃) ₃], 14.17 (CH ₃), 48.67 (NCH ₂), 88.83 (NCC≡C), 118.38, 125.49, 127.49 (NCC≡C), 130.90, 131.37, 131.92, 140.55 (C _{arom}), 152.60 (C-2)
1 3 a	3.65 (s, 6 H, NCH ₃), 3.98 (s, 6 H, NCH ₃), 7.60– 7.90 (m, 14 H, CH _{arom})	_
13c ^d	A : 3.59 (s, 6 H, NCH ₃), 5.59 (s, 4 H, NCH ₂); B : 3.87 (s, 6 H, NCH ₃), 5.24 (s, 4 H, NCH ₂), 7.35–	_

^c Isomer ratio $\mathbf{A}:\mathbf{B} = 3.6$. ^d Isomer ratio $\mathbf{A}:\mathbf{B} = 1.4$.

Synthesis 1999, No. 1, 100–106 $\,$ ISSN 0039-7881 $\,$ © Thieme Stuttgart \cdot New York

of a propyne iminium salt, 2-ethoxy-3*H*-indolinium salt **14** and buta-1,3-diyne **15** were formed in an unidentified reaction sequence and were isolated in high yields (Scheme 5, Tables 3 and 4). The identity of **14** was established not only by its NMR and analytical data, but also by hydrolytic transformation into 3*H*-indolin-2-one **16**.²¹

In summary, we have shown that *N*-quaternization of alkynyl imines with hard alkylating reagents constitutes a new, convenient method to prepare propyne iminium salts, especially those with an alkyl, silyl, or H substituent at the C,C triple bond, which were not easily accessible previously. Since a variety of alkynyl imines can be synthesized easily by coupling of imidoyl chlorides with terminal alkynes, the method is open to further substituent variations.

All reactions were carried out in rigorously dried glassware under an Ar atmosphere. THF was freshly distilled from Na/benzophenone ketyl. Et₂O was dried over Na/benzophenone ketyl and stored over 4 Å molecular sieves under Ar. CH₂Cl₂ was dried over P₂O₅ and stored over 4 Å molecular sieves under Ar. Column chromatography was performed using silica gel (Macherey & Nagel, 0.063–0.2 mm). NMR spectra were recorded on a Bruker AC 200 spectrometer operating at 200.13 MHz for ¹H and 50.32 MHz for ¹³C. TMS served as internal standard for ¹H and CDCl₃ (δ = 77.0) or CD₃CN (δ = 118.2) for ¹³C NMR spectroscopic measurements. IR spectra were obtained on a Perkin-Elmer IR-883 spectrometer. Elemental analyses were carried out using a Perkin-Elmer EA-240 instrument. Melting points were determined in a apparatus after Dr. Tottoli (Büchi) and are uncorrected.

The following starting materials were prepared according to literature procedures: 4a-c,²² 7a,²³ 1,4-diethynylbenzene,²⁴ (trimethylsilyl)acetyl-ene,²⁵ methyl trifluoromethanesulfonate.²⁶

N-Methyl-1-phenyl-3-(trimethylsilyl)prop-2-yn-1-imine (5a); Typical Procedure

To a solution of EtMgBr, prepared from magnesium turnings (0.80 g, 33.0 mmol) and bromoethane (2.9 mL, 39.6 mmol), in THF (30 mL) was slowly added at 0°C (trimethylsilyl)acetylene (5.4 mL, 39.6 mmol). The solution was stirred for 30 min and *N*-methylchloro(phenyl)methanimine²² (4a) was added in one portion

at 0 °C. The mixture was stirred for 1 h at this temperature, and after addition of Et_2O (100 mL), it was washed with satd aq NaHCO₃ solution. The organic layer was dried (Na₂SO₄) and concentrated. The residue was distilled in vacuo to give **5a** as a colorless oil (5.30 g, 75%) (Tables 1 and 2).

EI-HRMS: m/z = 215.1130; calcd for C₁₃H₁₇NSi: 215.1130.

Compounds **5b–f**, **6a**, and **6c** were prepared analogously; see Tables 1 and 2 for yields, physical and spectroscopic data.

2-[(Trimethylsilyl)ethynyl]-1,3-benzothiazole (8b): Typical Procedure

A solution of 2-iodo-1,3-benzothiazole²⁷ (**7b**) (40.00 g, 0.153 mol), (trimethylsilyl)acetylene (40 mL, 0.280 mol), $PdCl_2(PPh_3)_2$ (0.56 g, 0.8 mmol) and CuI (0.50 g, 2.62 mmol) in Et₃N (300 mL) was stirred at 70 °C for 2 days. The solvent was replaced by CH₂Cl₂ (200 mL), and after treatment with satd aq NaHCO₃ solution, the organic solution was dried (Na₂SO₄) and concentrated. The residue was distilled in vacuo to give **8b** as a yellow oil (20.0 g, 56%) (Tables 1 and 2).

Anal. calcd for $C_{12}H_{13}NSSi$ (231.41): C, 62.27; H, 5.65; N, 6.04. Found: C, 62.17; H, 5.61; N, 6.05.

Compounds **8a** (5 mmol scale) and **8c** were prepared analogously; see Tables 1 and 2 for yields, physical and spectroscopic data.

2-Ethynyl-1,3-benzothiazole (8d)

To a solution of **8b** (9.00 g, 37 mmol) in CH_2Cl_2 (50 mL) was added KF (5.00 g, 86 mmol) and 18-crown-6 (10.00 g, 37 mmol). After stirring at r.t. for 2 h, the mixture was washed twice with H_2O , and the organic layer was dried (Na_2SO_4) and concentrated in vacuo. Flash chromatography on silica gel (Et_2O as eluent) of the residual brown oil afforded **8d**; yield: 5.00 g (80%) (Tables 1 and 2).

Anal. calcd for C_9H_5NS (159.15): C, 67.91; H, 3.14; N, 8.79. Found: C, 67.93; H, 3.37; N, 8.74.

Dimethyl-[1-phenyl-3-(trimethylsilyl)-2-propyn-1-ylidene]ammonium Trifluoromethanesulfonate (9a); Typical Procedure for Alkylation with Methyl Triflate

To a solution of methyl triflate (0.87 mL, 8 mmol) in Et₂O (10 mL) was slowly added a mixture of **5a** (1.07 g, 5 mmol) in Et₂O (10 mL) at 0 °C. The reaction mixture was stirred for 1 h at 0 °C. The Et₂O layer was pipetted off, and the residual oil was triturated twice with Et₂O and crystallized from CH₂Cl₂/Et₂O at -30 °C. Salt **9a** was obtained as white crystals (1.40 g, 73%).

Anal. calcd for $C_{15}H_{20}F_3NO_3SSi$ (379.47): C, 47.47; H, 5.31; N, 3.69. Found: C, 47.45; H, 5.35; N, 3.65.

Compounds **9b–f** and **11a–d** were prepared in the same manner. Reactions to prepare **13a**,**c** were run in CH_2Cl_2 at 0°C, and the products were precipitated as brown solids with Et₂O. For yields, physical and spectroscopic data see Tables 3 and 4.

Diethyl-[1-phenyl-3-(trimethylsilyl)-2-propyn-1-ylidene]ammonium Tetrafluoroborate (10b); Typical Procedure for Alkylation with Meerwein's Salt

A mixture of **5b** (2.29 g, 10 mmol) and Et₃OBF₄ (1.89 g, 10 mmol) in CH₂Cl₂ (20 mL) was heated for 2 h at 60 °C in a Schlenk pressure tube. The crude product was precipitated with Et₂O. Crystallization from CH₂Cl₂/Et₂O gave brown crystals (2.50 g, 72%) (Tables 3 and 4).

Anal. calcd for $C_{16}H_{24}BF_4NSi$ (345.03): C, 55.69; H, 7.01; N, 4.05. Found: C, 55.68; H, 6.98; N, 4.03.

Compounds **10a**,g and **12b** were prepared analogously; for yields, physical and spectroscopic data see Tables 3 and 4.

1-Benzyl-2-iodo-4,5-diphenylimidazole (7c)

To a solution of 1-benzyl-4,5-diphenylimidazole²⁸ (0.85 g, 2.7 mmol) in THF (20 mL) at 0°C was added BuLi (1.6 M in hexane, 2 mL, 3.2 mmol). The solution was stirred for 1 h and then cooled to -78 °C. A solution of I₂ (0.80 g, 3.1 mmol) in THF (5 mL) was added and stirred for 30 min. The reaction mixture was allowed to reach r.t. The solution was evaporated, triturated with CH₂Cl₂ (50 mL) and washed with aq $Na_2S_2O_3$ solution, then with H_2O , and dried (Na₂SO₄). Evaporation of the solvent and column chromatography on silica gel (CHCl₃ as eluent) gave a yellow powder; yield: 0.58 g (50%); mp 103-104°C.

IR (KBr): v = 3056, 3028, 1598, 1493, 1447, 1411, 1349, 1325, 1177, 1118, 1070, 1024 cm⁻¹.

¹H NMR (CDCl₃): δ = 4.98 (s, 2 H, NCH₂), 6.83–7.48 (m, 15 H, CH_{arom}).

¹³C NMR (CDCl₃): $\delta = 50.4$ (NCH₂), 91.8 (C-2), 126.2, 126.4, 126.6, 127.4, 127.9, 128.5, 128.8, 129.0, 130.2, 130.6, 132.6, 133.6, 136.1, 141.8 (Carom).

Anal. calcd for $C_{22}H_{16}N_2$ (433.90): C, 60.56; N, 3.92; N, 6.42. Found: C, 60.33; H, 4.11; N, 6.16.

Alkylation of 8a with Meerwein's Salt

A solution of 8a (5.00 g, 20.7 mmol) and $\rm Et_3OBF_4$ (3.92 g, 20.7 mmol) in CH₂Cl₂ (30 mL) was stirred for 12 h at r.t. 2-Ethoxy-1-ethyl-3,3-dimethyl-3H-indolinium tetrafluoroborate (14) was precipitated with Et₂O and recrystallized from CH₂Cl₂/Et₂O; yield: 4.50 g (74%); mp 104–106°C. Evaporation of the mother liquor left crude 1,4-bis(trimethylsilyl)buta-1,3-diyne (15). Purification by column chromatography on silica gel (petroleum ether as eluent) furnished colorless crystals, (1.74 g, 90%), mp 109-111°C (Lit²⁹ mp 106-107°C).

Treatment of salt 14 in a mixture of CH₂Cl₂/H₂O (30/10 mL) overnight, evaporation and distillation of the residue at 80-82°C/ 0.02 mbar gave N-ethyl-3,3-dimethyl-3H-indolin-2-one (16).

14:

IR (KBr): v = 2984, 2944, 2878, 1598, 1575, 1447, 1392, 1246, 1045 (very broad, BF_4) cm⁻¹.

¹H NMR (CD₃CN): $\delta = 1.46 - 1.67$ (m, 12 H, 2×CH₂CH₃, C(CH₃)₂), 4.58 and 4.66 (2 q, each 2 H, OCH₂, NCH₂), 7.62-7.91 (m, 4 H, CH_{arom}).

¹³C NMR (CD₃CN): δ = 12.7, 12.8 (CH₂CH₃), 23.3 [C(CH₃)₂], 45.7 (NCH₂), 57.0 [C(CH₃)₂], 84.8 (OCH₂), 116.7, 124.8, 130.7, 131.8, 141.0, 142.0 (C_{arom}), 185.1 (C-2).

Anal. calcd for C₁₄H₂₀BF₄NO (305.12): C, 55.11; H, 6.60; N, 4.59. Found: C, 54.83; H, 6.72; N, 4.38.

16:

IR (neat): v = 2968, 2930, 2869, 1713, 1614, 1487, 1469, 1462, 1382, 1361, 1212, 1131 cm⁻¹.

¹H NMR (CDCl₃): $\delta = 1.06$ (t, J = 7.2, 3 H, CH₃), 1.17 [s, C(CH₃)₂], 3.57 (q, J = 7.2, 2 H, NCH₂), 6.67 (d, J = 7.8, 1 H, CH_{arom}), 6.83 (t, J = 7.4, 1H, CH_{arom}), 6.99–7.08 (m, 2 H, CH_{arom}).

¹³C NMR (CDCl₃): δ = 12.3 (CH₃), 24.0 [C(CH₃)₂], 34.1 (NCH₂), 43.6 [C(CH₃)₂], 107.8, 121.9, 122.0, 127.2, 135.6, 141.2 (C_{arom}), 180.4 (C=O)

Anal. calcd for C₁₂H₁₅NO (189.24): C, 76.15; H, 7.98; N, 7.40. Found: C, 76.06; H, 7.97; N, 7.02.

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- (1) (a) Maas, G.; Singer, B.; Wald, P.; Gimmy, M. Chem. Ber. 1988, 121, 1847. (b) Reinhard, R.; Maas, G.; Bohrisch, J.; Liebscher, J. Liebigs Ann. Chem. 1994,429. (c) Maas, G.; Reinhard, R.; Neumann, R.; Glaser, M. J. prakt. Chem. 1996, 338, 441. (2) Rahm, R.; Maas, G. Synthesis 1994, 295.
- (3) Singer, B.; Maas, G. Chem. Ber. 1987, 120, 485.
- (4) Singer, B.; Maas, G. Chem. Ber. 1987, 120, 1683.
- (5) Maas, G.; Mayer, T. Synthesis 1991, 1209.
- (6) Brunner, M.; Maas, G. Synthesis 1995, 957.
- (7) Kiprianov, A. J.; Dyadyusha, G. G., Zh. Obshch. Khim. 1959, 30, 3647; Chem. Abstr. 1961, 55, 22833.
- (8) Subramanyam, S.; Chetan, M.S.; Blumstein, A. Macromolecules 1993, 26, 3212.
- (9) Austin, W. B.; Bilow, N.; Kelleghan, W. J.; Lau, K. S. Y. J. Org. Chem. 1981, 46, 2280.
- (10) Lin, S.-Y.; Sheng, H.-Y.; Huang, Y.-Z. Synthesis 1991, 235.
- (11) Kobayashi, T.-A.; Sakakura, T.; Tanaka, M. Tetrahedron Lett. 1985, 26, 3463.
- (12) Margaretha, P.; Schröder, C.; Wolff, S.; Agosta, W. C. J. Org. Chem. 1983, 48, 1925.
- (13) Iwasaki, G.; Shibasaki, M. Tetrahedron Lett. 1987, 28, 3257. Shibasaki, M.; Ishida, Y.; Iwasaki, G.; Iimori, T. J. Org. Chem. 1987, 52, 3489.
- (14) Faust, R.; Göbelt, B.; Weber, C. Synlett 1998, 64.
- (15) Suvorova, I. V.; Stadnichuk, M. D. J. Gen. Chem. USSR 1982, 52, 397. Suvorova, I. V.; Stadnichuk, M. D., Mingaleva, K. S. ibid. 1983, 52, 716. Piterskaya, Y. L.; Khramchikhin, A. V.; Stadnichuk, M. D. ibid. 1994, 64, 1614.
- (16) Sakamoto, T.; Shiraiwa, M.; Kondo, Y.; Yamanaka, H. Synthesis 1983, 312.
- (17) Evans, D. A.; Bach, T. Angew. Chem. 1993, 105, 1414; Angew. Chem. Int. Ed. Engl. 1993, 32, 1326.
- (18) Okuhara, K. J. Org. Chem. 1976, 41, 1487.
- (19) Subramanyam, S.; Blumstein, A.; Macromolecules 1991, 24, 2668

Zhou, P.; Samuelson, L.; Alva, K.S.; Chen, C.-C.; Blumstein, R. B.; Blumstein, A. Macromolecules 1997, 30, 1577.

- (20) Balogh, L.; Blumstein, A. Macromolecules 1995, 28, 25 and 5691
- (21) The ¹³C chemical shifts of 16 are in close agreement with those of the N-methyl analogue, but different from those of the positional isomer of 16, 2-ethoxy-3,3-dimethyl-3H-indole; see: Dobrowolski, P.; Stefaniak, L.; Webb, G. A. J. Mol. Struct. 1987, 160, 319.
- (22) Ugi, I.; Beck, F.; Fetzer, U. Chem. Ber. 1962, 95, 126.
- (23) Hünig, S.; Balli, H. Liebigs Ann. Chem. 1957, 609, 160.
- (24) MacBride, J. A. H.; Wade, K. Synth. Commun. 1996, 26, 2309
- (25) Cambie, R. C.; Chambers, D.; Rutledge, P. S.; Woodgate, P. D. J. Chem. Soc. Perkin Trans. 1 1981, 40.
- (26) Ranganathan, N.; Storey, B. T. J. Heterocycl. Chem. 1980, 17, 1069.
- (27) Iversen, P. E. Acta Chem. Scand. 1968, 22, 1690.
- (28) Milgrom, L. R.; Dempsey, P. J. F.; Yahioglu, G. Tetrahedron 1996, 52, 9877.
- (29) Ballard, D. H.; Gilman, H. J. Organomet. Chem. 1968, 15, 321.