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Abstract: A convenient route to the preparation of 4-methoxy-l-oxido-pyridine-2-methyl N-2-(4,4'- 
dimethoxytrityloxy)ethyl-N-thymin-l-yl-aminomethylphosphonate (la, T') and the corresponding N 4- 
benzoylcytosin-l-yl derivative lb (C °) is reported. These PPNA monomers proved to be suitable 
building blocks in a solid-support synthesis of the tetradecameric fragment 
(C'T'T'T'C'T'T*T'T*C*T'C'T*)dT. Copyright © 1996 Elsevier Science Ltd 

In the last decade much effort has been directed towards the design and synthesis of natural and 

modified nucleic acids ~ that bind specifically to genes at the mRNA (antisense) or double stranded DNA 

(antigene) level. Recently it was revealed 2 that stacking interactions and Watson-Crick base pairing, as in B- 

DNA, could be effectively mimicked by replacing the deoxyribose phosphate backbone in DNA by an 

achiral polyamide backbone comprising N-(2-aminoethyl)glycine repeating units. This so-called PNA forms 
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highly stable PNA-DNA(RNA) complexes in a sequence specific manner and may therefore present a 

promising lead to therapeutics targeting at specific genes. However, the lack of negative charge in PNA, 

which is one of the factors responsible for the stability of PNA-DNA(RNA) duplexes, leads to poor 

solubility in a physiological environment 3. It occurred to us that replacement of the amido group in PNA by 

a charged phosphonate linkage would give a water soluble PNA analogue (i.e. PPNA). 

We here report the preparation of the N-(thymin-l-yl)- and N-(N4-benzoylcytosin-l-yl)-N-2 - 

hydroxyethyl-aminomethylphosphonate building units la-b,  the 4-methoxy-l-oxido-pyridine-2-methyl 
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(MOPM) group of which will facilitate the introduction of the phosphonate linkages *'~ in PPNA. The use of 

the PPNA building units l a -b  is further illustrated in a solid-support synthesis of the tetradecameric 

fragment (C'T°T'T'C*T*T'T*T*C'T'C*T*)dT 15 
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Reagents and Conditions: (0 CH20 (1.2 eq) in ethyl aceta~, 15 rain; (i0 diphenyl phosphite (I.0 eq), toluene, 75°C, 2 h; 
(iii) Bromoacetic anhydride (1.0 eq), N-Me-morpholine (1.0 eq) in toluene (80% based on 2); (iv) Thymine (I.2 eq), DBU 
(1.2 eq) [or N4-benzoylcytosine (1.2 eq), Nail (1.2 eq)] in dimcthylformamide, 75°(2, 1 h (6a: 75%, 6b: 65%); (v) 0.4 M 

DBU in CH3CN/H20 (95/5), 15-30 rain (90-95%); (v0 MOPM-OH (2.0 eq), TPS-CI (2.0 eq), 4-methoxy-l-oxido-pyridine 
(6.0 eq) in CH3CN, 30 rain (70-75%); (vi i)  TPS-CI (1.5 cq) in CH3CN/C6H~N (4/1, v/v), I min (75%). 

The preparation of the required PPNA building units l a -b  could be realized by the sequence of 

reactions depicted in Scheme 1. Condensation of 2-(4,4'-dimethoxytrityloxy)ethylamine (2) 6 in ethyl acetate 

with a slight excess of formaldehyde gave, after workup, the crude imino derivative 3. Treatment of 3 at 

elevated temperature with an equimolar amount of diphenyl phosphite 7 led, as gauged by 3'p-NMR 

spectroscopy, to a near quantitative formation of the diphenyl phosphonate derivative 4 (~p = 20.2 ppm). 

Acylation of crude 4 with bromoacetic anhydride 8 in the presence of N-methyl-morpholine yielded, after 

purification by flash chromatography, homogeneous 59. Reaction of the intermediate bromoacetyl derivative 

5 with thymine in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) resulted, after purification, in 

the isolation of homogeneous 6a (B ° = T) 9 in 75% yield. Similarly, treatment of 5 with hP-benzoylcytosine, 

using sodium hydride as a base, gave the corresponding cytosinyl derivative 6b (B" = CBz) 9 in 65% yield. 

Transformation of 6a,b into the PPNA building block units la,b,  carrying the catalytic 4-metboxy-l-oxido- 

pyridine-2-methyl phosphonate protecting group, entailed the following three-step procedure. Conversion '° 

of the individual diphenyl phosphonates 6a,b under the influence of DBU-H20 led to corresponding 

monopbenyl phosphonates 7a,b 9. Condensation" of the latter compounds with 2-hydroxymethyl-4-methoxy- 

l-oxido-pyddine (MOPM-OH) under the agency of 2,4,6-triisopropylbenzenesulfonyl chloride (TPS-C1) and 
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4-methoxy-l-oxido-pyridine led to compounds 8a,b 9. Finally, removal ~ of the phenyl phosphonate 

protecting group from both 8a,b with DBU-H20 proceeded smoothly to give, after purification, l a  9 and lb  9 

in an overall yield of 65% and 60%, respectively. 

Scheme 2 
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Prior to the intended solid-support synthesis of the tetradecameric fragment 15, the rate of the 

phosphonylation of the thymidine derivative 9 with l a  was monitored by 3JP-NMR spectroscopy. It was 

established that the TPS-CI mediated condensation went to completion within 1 min. Workup and 

purification gave the homogeneous dimer 10 (Sp = 22.7 and 23.1 ppm) in 75% yield. The favourable 

outcome of the latter condensation was a stimulus to assemble tetradecamer 15 using a fully automated 

DNA synthesizer. The assembly of the target oligomer 15 comprises (see Scheme 2) extension of the 

thymidine derivative 11, immobilized to controlled pore glass via a succinyl linker, with the PPNA units la-  

b ~2. Thus, sequential elongation of immobilized 11 with the appropriate units la -b  following the stepwise 

15rotocol summarized in Table 1 afforded, after thirteen elongation cycles, the fully protected and 

immobilized fragment 12. The coupling efficiency of each elongation cycle was higher than 96%, as gauged 

spectrophotometrically by the released DMT-cation. Immobilized 12 was deblocked and released from the 

solid-support by the following three-step procedure. Acidolysis of the DMT group (R =) from 12, and 

subsequent removal of the MOPM group (R 2) in 13 with neat piperidine 5, led to partially protected and 

immobilized 14. Finally, N-debenzoylation and release from the solid-support was effected by ammonolysis 

of 14. Purification of the resulting crude product by ion-exchange chromatography (Q-Sepharose) and 

subsequent desalting (Sephadex G-25) gave tetradecameric fragment 15, the homogeneity and identity of 

which was established by fast protein liquid chromatography (FPLC, Figure 1) ~3 as well as mass spectro- 

Table 1: Chemical steps involved in each elongation cycle 
of PPNA 

I Step Manipulation 

1 Detritylation 
2 Wash 
3 Coupling 

4 Wash 
5 Capping 

6 Wash 

Solvents and reagents a 

3% CHCI2COOH in CH2CI 2 
CH3CN 
la-b b, TPS-CI c in CH3CN/ 
CeHsN (4/1, v/v) 
CH3CN 
Ac20/N- M e-imidazole/Collidine 
/THF, (2/3/2/32, v/v/v/v) 
CH3CN 

Time 
(rain) 

1.5 
3.0 
5.0 

30.0 
0.5 

2.0 

a Reactions were performed on 28 mg (1 I.mtole) of resin, b 0.08 M 1"  (or lb )  in 
CH3CN/C6HsN (4/1, v/v), 5 eq. c0.25 M TPS-CI in CHsCN/CeHsN, (4/1, v/v), 15 eq. 

Figure 1: FPLC pattern of purified 1513 
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scopy (MAL DI-T OF ) .  

In conclus ion ,  the success fu l  a s s emb l y  o f  te t radecameric  f r agment  15 presented  in this paper may  open 

the way for a general  so l id-suppor t  syn thes i s  o f  h o m o g e n e o u s  PPNA.  

A full report on the sol id-suppor t  synthes is  and b iochemical  propert ies  o f  h o m o g e n e o u s  PPNA will be 

publ i shed  in due course .  
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