Letter

Direct Access to 9-Chloro-1*H*-benzo[*b*]furo[3,4-*e*]azepin-1-ones via Palladium(II)-Catalyzed Intramolecular *syn*-Oxypalladation/Olefin Insertion/sp²-C–H Bond Activation Cascade

Muthu Karuppasamy,[†] B. S. Vachan,[†] Perumal Vinoth,[†] Isravel Muthukrishnan,[†] Subbiah Nagarajan,[‡] Laura Ielo,[§] Vittorio Pace,[§] Subrata Banik,^{||} C. Uma Maheswari,[†] and Vellaisamy Sridharan^{*,†,||}

[†]Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India

[‡]Department of Chemistry, National Institute of Technology, Warangal, Warangal 506004, Telangana, India

[§]Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria

^{II}Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, India

Supporting Information

ABSTRACT: An efficient Pd(II)-catalyzed cascade approach was established for the synthesis of 9-chloro-1*H*-benzo[*b*]furo-[3,4-*e*]azepin-1-ones starting from *N*-propargyl arylamines having a pendant $\alpha_{,\beta}$ -unsaturated ester scaffold. The mechanism of this sequential process involved intramolecular *syn*-oxypalladation followed by olefin insertion and *ortho* sp²-C-Cl bond formation reactions. This high atom- and step-economical cascade sequence generated two heterocycle rings and three new bonds in a single synthetic operation.

edium-sized benzannulated aza-heterocycles comprise the core structure of numerous biologically active compounds that exhibit a broad range of pharmacological activities.^{1,2} Among these compounds, seven-membered nitrogen heterocycles including benzazepines represent an important class of natural products and show antidepressant, anxiolytic, and neuroleptic activities.^{3,4} For instance, LY-411575 has been identified as an effective γ -secretase inhibitor for the treatment of Alzheimer's and Parkinson's diseases,⁵ and fenoldopam, a chiral benzo [d] azepine, acts as dopamine D1 receptor agonist and is used as antihypertensive agent.⁶ Further, mozavaptan, an analogue of 1H-benzo[b]azepine, is a vasopressin V-2 receptor antagonist, and lotensin is a commercially available drug used for the treatment of high blood pressure and congestive heart failure.' Compounds containing a benzazepine nucleus as the key subunit serve as selective 5-HT_{2C} receptor agonists for the treatment of obesity.⁸ Although a considerable number of approaches have been developed for the synthesis of these valuable compounds, straightforward methods to access densely functionalized benzazepine analogues are rather limited.⁵

Inter- and intramolecular nucleopalladation of alkynes and successive cascade reactions via σ -vinylpalladium intermediates

Scheme 1. Inter- and Intramolecular Nucleopalladation of Alkynes

remain excellent strategies to access various structurally diverse molecules in a single synthetic operation (Scheme 1).¹⁰ The in situ generated σ -vinylpalladium intermediates could be captured by carbon monoxide, allylic alcohols, halides, esters,

Received: April 28, 2019

Scheme 2. Nucleopalladation-Initiated Cascade Reactions of N-Propargyl Arylamines with Pendant α,β -Unsaturated Carbonyl Compounds

Previous work (ref. 14): Syn-chloropalladation-olefin insertion-oxidative C-Cl bond formation cascade

allenes, α,β -unsaturated carbonyl compounds, norbornene, styrene, unactivated alkenes, nitriles, and isonitriles to obtain complex compounds.¹¹ Among the various nucleopalladation reactions, oxypalladation-initiated cascade reactions are particularly important as these reactions lead to a variety of biologically significant compounds including oxygen heterocycles.^{12,13}

Recently, we established a *syn*-chloropalladation/olefin insertion/oxidative chlorination cascade for the synthesis of dichlorinated tetrahydroquinolines **2** starting from *N*-propargyl arylamines **1** tethered with α,β -unsaturated ketones in the presence of a palladium catalyst and CuCl₂·2H₂O as the chloride source (Scheme 2, eq 1).¹⁴ When we swapped the α,β -unsaturated ketone moiety of **1** with α,β -unsaturated ester (compound **3**), the reactivity was entirely altered and the unpredicted 1*H*-benzo[*b*]furo[3,4-*e*]azepin-1-ones **4** bearing an Ar–Cl substituent was obtained as the major product (Scheme 2, eq 2). This interesting cascade transformation intrigued us to further explore the reactivity of compounds **3** to obtain the biologically significant tricyclic 1*H*-benzo[*b*]furo-[3,4-*e*]azepin-1-ones **4** and to investigate the mechanism of the annulation/sp²-C–Cl bond formation cascade.

Initially, we tested the reaction conditions established for the syn-chloropalladation-initiated cascade¹⁴ using N-propargyl arylamine 3a bearing an $\alpha_{,\beta}$ -unsaturated ester functionality as the model substrate, and only traces of product 4a were observed in the presence of 10 mol % of $Pd(OAc)_2$ and 2 equiv of CuCl₂·2H₂O in THF and DME at ambient temperature (Table 1, entries 1 and 2). Remarkably, an increase of the reaction temperature to 50 °C in THF triggered the cascade transformation to allow access to the desired product 4a in 58% yield, and the results in DME were inferior (entries 3 and 4). Our investigation moved forward when switching the catalyst to PdCl₂, and a maximum yield of 66% of 4a was observed after 7 h in THF at 50 °C (entries 5-8). Subsequently, with an aim to further improve the yield, we tested the reaction in various common organic solvents including MeCN (entry 9), toluene, DCM, DCE, ethanol, methanol, DMSO, and DMF. Nonetheless, these solvents were completely ineffective to furnish the desired product irrespective of the polarity effects (not shown in the table). It is interesting to note that, in addition to THF (entries 3 and

Table 1. Optimization of the Reaction Conditions^a

	Ts N OMe 3a	Pd Cataly CuCl ₂ .2H Additive	rst 20 Cl	V 4a	
entry	catalyst (10 mol %)	solvent	additive (equiv)	time (h)	yield of 4a (%) ^b
1	$Pd(OAc)_2$	THF		48	traces ^c
2	$Pd(OAc)_2$	DME		48	traces ^c
3	$Pd(OAc)_2$	THF		7	58
4	$Pd(OAc)_2$	DME		48	14
5	PdCl ₂	THF		48	13 ^c
6	PdCl ₂	DME		48	10 ^c
7	PdCl ₂	THF		7	66
8	PdCl ₂	DME		48	23
9	PdCl ₂	MeCN		48	d
10	PdCl ₂	dioxane		7	38
11	PdCl ₂	2-MeTHF		8	68
12 ^e	PdCl ₂	2-MeTHF		4	69
13 ^f	PdCl ₂	2-MeTHF		16	63
14	PdCl ₂	2-MeTHF	$H_2O(4)$	5	72
15	PdCl ₂	2-MeTHF	$H_{2}O(1)$	5	77
16	PdCl ₂	THF	$H_2O(4)$	5	71
17 ^g	PdCl ₂	THF	$H_2O(1)$	5	84
18	$Pd(OAc)_2$	THF	$H_2O(1)$	5	76
19	$PdCl_2(PPh_3)_2$	THF	$H_2O(1)$	48	d
20	$PdCl_2(MeCN)_2$	THF	$H_{2}O(1)$	5	83
21	$Pd(OTf)_2$	THF	$H_2O(1)$	20	31
22 ^h	PdCl ₂	THF	$H_2O(1)$	28	42
23		THF	$H_2O(1)$	48	d
24 ^e		THF	$H_2O(1)$	48	d
25 ⁱ	PdCl ₂	THF	$H_2O(1)$	48	traces
26 ^j	PdCl ₂	THF	${\rm H_{2}O}~(1)$	48	d

^{*a*}Unless otherwise noted, all reactions were carried out with **3a** (0.5 mmol), $CuCl_2 \cdot 2H_2O$ (2.0 equiv), palladium catalyst (10 mol %) in 6 mL of solvent at 50 °C. ^{*b*}Isolated yield. ^{*c*}Reactions were carried out at room temperature. ^{*d*}No reaction. ^{*e*}4.0 equiv of $CuCl_2 \cdot 2H_2O$ was used. ^{*f*}1.0 equiv of $CuCl_2 \cdot 2H_2O$ was used. ^{*g*}Optimized reaction condition. ^{*h*}5 mol % of catalyst was used. ^{*i*}Reaction was carried out without $CuCl_2 \cdot 2H_2O$. ^{*j*}2.0 equiv of $CuBr_2$ was used.

7) and DME (entry 8), other ethereal solvents including dioxane and 2-MeTHF were efficient and made the cascade process attainable (entries 10 and 11). Although DME and dioxane could not deliver the product in appreciable yields, the highest yield of 68% was achieved in 2-MeTHF (entry 11). Increasing the amount of $CuCl_2 \cdot 2H_2O$ to 4 equiv did not improve the yield significantly; however, the reaction time was reduced to 4 h (entry 12). Further, the reaction delivered the desired product in a comparable yield of 63% in the presence of 1 equiv of $CuCl_2 \cdot 2H_2O$ in 16 h (entry 13).

Owing to the crucial role of water in the proposed cascade process, the reaction was further investigated in the presence of water as the additive. As anticipated, addition of 1 equiv of water increased the yield to 77%, and the reaction was completed within 4 h in 2-MeTHF (entries 14 and 15). Substantial improvement was observed in THF under similar conditions with a maximum yield of 84% (entries 16 and 17). Next, 10 mol % of palladium catalyst, 2 equiv of CuCl₂·2H₂O, 1 equiv of H₂O, and THF solvent were employed to further screen palladium catalysts including Pd(OAc)₂, PdCl₂(PPh₃)₂, PdCl₂(MeCN)₂, and Pd(OTf)₂ (entries 18–21). In the list of tested catalysts, PdCl₂(MeCN)₂ furnished the product in a manner comparable to that of PdCl₂, and other catalysts displayed inferior results. As shown in entry 22, 5 mol % of PdCl₂ was inefficient and delivered only 42% of the product after 28 h. To prove the role of both palladium catalyst and CuCl₂·2H₂O in the cascade process, the reaction was tested only with 2-4 equiv of CuCl₂·2H₂O (entries 23 and 24) and with 10 mol % of PdCl₂ without CuCl₂·2H₂O (entry 25). In the former case, no product formation was observed and traces of the product were noted in the absence of copper salt. Finally, CuBr2 was tested instead of CuCl2·2H2O to access the corresponding brominated benzazepine; however, the reaction failed to deliver the desired product (entry 26). After an extensive optimization study, the condition given in entry 17 was elected to investigate the scope and limitations of the cascade process (10 mol % of PdCl₂, 2 equiv of CuCl₂·2H₂O, 1 equiv of H₂O, THF, 50 °C).

With the optimal reaction conditions established, the scope and limitations of the cascade process were investigated (Scheme 3). A variety of N(O)-propargyl arylamines 3a-sbearing an α,β -unsaturated ester moiety were treated with 10 mol % of PdCl₂, 2 equiv of CuCl₂·2H₂O, and 1 equiv of water in THF at 50 °C to access the corresponding 9-chloro-1*H*benzo[*b*]furo[3,4-*e*]azepin-1-ones 4. At the outset, a series of electron-donating and -withdrawing substituents were introduced at R¹, R², and R³ positions (Me: 4b, 4c, 4e, and 4f; OMe: 4d; F: 4h; Cl: 4i), and in all cases, the desired products were obtained in high yields of 84–88%. The *N*-propargyl arylamine 3g with a strong electron-withdrawing *m*-nitro substituent delivered the corresponding product 4g in moderate yield (61%).

The alkyne bearing a terminal ethyl group delivered the nonchlorinated 1H-benzo[b]furo[3,4-e] azepin-1-one **5**j in 54% yield under reflux conditions in 36 h, and attempts to insert the 9-chloro substituent by adding excess CuCl₂·2H₂O were unsuccessful. Further, a set of *N*-propargyl arylamines 3k-n bearing a bromo substituent on the *N*-aryl ring was synthesized to derive densely substituted benzazepines. Unexpectedly, alkynes 3k and 3l afforded the nonchlorinated products 5k and 5l in 85% yields under the optimized conditions. In the cases of alkynes 3m and 3n, inseparable mixtures of chlorinated benzazepines **4** together with nonchlorinated products **5** in

Scheme 3. Scope and Limitations of the *syn*-Oxypalladation-Initiated Cascade

64-66% overall yields were isolated. The reaction also tolerated an additional N-protecting mesyl functionality. Two examples of N-mesyl 9-chloro-1H-benzo[b]furo[3,4-e]azepin-1-ones 40 and 4p were synthesized in 81-84% yields under similar conditions. Next, benzo[b]furo[3,4-e]oxepin-1-ones 4q and 4r were derived in 60-64% yields starting from the corresponding O-propargyl arylamines. Finally, the *tert*butyloxycarbonyl (Boc)-protected N-propargyl arylamine 3s was also tested; however, the reaction failed to furnish the desired product 4s due to the poor stability of compound 3s under the experimental conditions. The structures of the synthesized compounds were established by NMR and confirmed by single-crystal X-ray analysis of the representative compound 4a.

Our mechanistic rationale for the cascade process involves the activation of alkyne 3 by a palladium(II) catalyst followed by intramolecular *syn*-oxypalladation to generate σ -vinylpalladium intermediate **B** via species **A** (Scheme 4).^{12a,c} Subsequent olefin insertion comprising a 5-*exo-trig* cyclization

Scheme 4. Plausible Mechanism for the *syn*-Oxypalladation-Initiated Cascade

generates intermediate **C** bearing the furanone ring system, where β -hydride elimination would be difficult to occur due to geometrical constrains. The *ortho*-chlorination process involving sp²-C–H bond activation could be visualized through σ – π – σ rearrangement of intermediate **C** to deliver species **E** via π -benzylpalladium(II) species involving the dearomatization reaction as summarized by Trost.^{15,16} Final rearomatization followed by the CuCl₂·2H₂O-mediated *ortho*-chlorination/oxidation sequence would afford the desired product 4 via the intermediacy of **E** by regenerating the Pd(II) species.

Further, we carried out DFT calculations using the M062x functional to understand the formation of intermediate E from species C. Our study reveals the formation of intermediate E by migration of the hydrogen atom from sp^2 -C to sp^3 -C via transition state D. Such a migration process is triggered by sp^2 -C-H bond activation by an adjacent Pd(II) species. The activation energy of this transformation is estimated to be about 53.7 kcal mol⁻¹ in our calculations. Additional computational calculations to understand the reaction pathway in detail are in progress.

Formation of nonchlorinated 1*H*-benzo[*b*]furo[3,4-*e*]azepin-1-ones **5** observed in sterically hindered substrates ($R^{I} = Br$) could be explained by protonation followed by Letter

of the bulky bromine atom. To further attain additional information concerning the mechanism of the cascade process, the reaction was performed using α,β -unsaturated acid **6a** under optimized conditions, and the expected product **4a** was obtained in 71% yield (Scheme 5). On the basis of this experiment, an alternative mechanism

involving a carboxylic acid intermediate is depicted in Scheme 6. Initial hydrolysis of ester 3 to carboxylic acid 6 could be

achieved under the experimental conditions, which would generate the key σ -vinylpalladium intermediate **G** via *syn*-oxypalladation of palladium species **F** generated in situ from the carboxylic acid **6** and the palladium catalyst.

In summary, we have established a Pd(II)-catalyzed nucleopalladation-initiated cascade process for the direct synthesis 9-chloro-1*H*-benzo[*b*]furo[3,4-*e*]azepin-1-ones in good yields. The reaction involved a sequential intramolecular *syn*-oxypalladation/olefin insertion/sp²-C-H bond activation of *N*-propargyl arylamines bearing an α,β -unsaturated ester moiety. Insertion of an *ortho*-chloro substituent was visualized via $\sigma-\pi-\sigma$ rearrangement involving a dearomatization process followed by a rearomatization/chlorination sequence. This simple high atom-economical cascade approach allowed the construction of two heterocycle rings including seven- and five-membered rings and three new bonds (1 C-C, 1 C-O, and 1 C-Cl bonds) under mild conditions in a single operation.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.9b01482.

Experimental details, characterization data of compounds, NMR, and X-ray crystallographic data (PDF)

Organic Letters

Accession Codes

CCDC 1911784 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

*E-mail: vesridharan@gmail.com or sridharan.che@cujammu. ac.in.

ORCID

Subbiah Nagarajan: 0000-0003-2233-4872 Vittorio Pace: 0000-0003-3037-5930 Subrata Banik: 0000-0001-5155-3957 Vellaisamy Sridharan: 0000-0002-3099-4734

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the Department of Science and Technology–Science and Engineering Research Board, DST-SERB (No. EMR/2016/001619), is gratefully acknowledged. We thank Dr. Kazuhiro Takenaka, ISIR, Osaka University, for fruitful discussion on the mechanism. We also thank Dr. Alexander Roller, University of Vienna, for single-crystal X-ray analysis.

REFERENCES

(1) For reviews on medium-ring benzo-fused nitrogen heterocycles, see: (a) Evans, P. A.; Holmes, A. B. *Tetrahedron* **1991**, *47*, 9131–9166. (b) Ramig, K. *Tetrahedron* **2013**, *69*, 10783–10795.

(2) (a) Ladd, D. L.; Weinstock, J.; Wise, M.; Gessner, G. W.; Sawyer, J. L.; Flaim, K. E. J. Med. Chem. 1986, 29, 1904–1912.
(b) Ryan, J. H.; Hyland, C.; Meyer, A. G.; Smith, J. A.; Yin, J.-X. Prog. Heterocycl. Chem. 2012, 24, 493–536.

(3) For a review on benzazepine alkaloids and related compounds, see:
(a) Kametani, T.; Fukumoto, K. *Heterocycles* 1975, 3, 931–1004.
(4) (a) Corbel, J. C.; Uriac, P.; Huet, J.; Martin, C. A. E.; Advenier,

C. Eur. J. Med. Chem. 1995, 30, 3-13. (b) Seto, M.; Arawaki, Y.;
Okawa, T.; Miyamoto, N.; Aikawa, K.; Kanzaki, N.; Niwa, S.-I.;
Iizawa, Y.; Baba, M.; Shiraishi, M. Chem. Pharm. Bull. 2004, 52, 577S90. (c) Hoyt, S. B.; London, C.; Gorin, D.; Wyvratt, M. J.; Fisher, M.
H.; Abbadie, C.; Felix, J. P.; Garcia, M. L.; Li, X.; Lyons, K. A.;
McGowan, E.; MacIntyre, D. E.; Martin, W. J.; Priest, B. T.; Ritter, A.;
Smith, M. M.; Warren, V. A.; Williams, B. S.; Kaczorowski, G. J.;
Parsons, W. H. Bioorg. Med. Chem. Lett. 2007, 17, 4630-4634.

(5) Wong, G. T.; Manfra, D.; Poulet, F. M.; Josien, H.; Zhang, Q.; Bara, T.; Engstrom, L.; Pinzon-Ortiz, M.; Fine, J. S.; Lee, H.-J. J.; Zhang, L.; Higgins, G. A.; Parker, E. M. *J. Biol. Chem.* **2004**, *279*, 12876–12882.

(6) (a) Pettersson, I.; Liljefors, T.; Boegesoe, K. J. Med. Chem. **1990**, 33, 2197–2204. (b) Post IV, J. B.; Frishman, W. H. J. Clin. Pharmacol. **1998**, 38, 2–13.

(7) (a) Hou, F.; Zhang, X.; Zhang, G.; Xie, D.; Chen, P.; Zhang, W.; Jiang, J.; Liang, M.; Wang, G.; Liu, Z.; Geng, R. N. N. Engl. J. Med. 2006, 354, 131–140. (b) Decaux, G.; Soupart, A.; Vassart, G. Lancet 2008, 371, 1624–1632. (c) Robertson, G. L. Nat. Rev. Endocrinol. 2011, 7, 151–161. (d) Robles, N. R.; Hernandez-Gallego, R. Cardiovasc. Ther. 2012, 30, 193–198.

(8) (a) Smith, B. M.; Smith, J. M.; Tsai, J. H.; Schultz, J. A.; Gilson, C. A.; Estrada, S. A.; Chen, R. R.; Park, D. M.; Prieto, E. B.; Gallardo, C. S.; Sengupta, D.; Thomsen, W. J.; Saldana, H. R.; Whelan, K. T.; Menzaghi, F.; Webb, R. R.; Beeley, N. R. A. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 1467–1470. (b) Smith, B. M.; Smith, J. M.; Tsai, J. H.; Schultz, J. A.; Gilson, C. A.; Estrada, S. A.; Chen, R. R.; Park, D. M.; Prieto, E. B.; Gallardo, C. S.; Sengupta, D.; Dosa, P. I.; Covel, J. A.; Ren, A.; Webb, R. R.; Beeley, N. R. A.; Martin, M.; Morgan, M.; Espitia, S.; Saldana, H. R.; Bjenning, C.; Whelan, K. T.; Grottick, A. J.; Menzaghi, F.; Thomsen, W. J. *J. Med. Chem.* **2008**, *51*, 305–313.

(9) For recent examples of the synthesis of benzazepines, see: (a) Shen, H.-Q.; Gao, X.; Liu, C.; Hu, S.-B.; Zhou, Y.-G. Org. Lett. **2016**, 18, 5920-5923. (b) Sharif, S. A. I.; Calder, E. D. D.; Delolo, F. G.; Sutherland, A. J. Org. Chem. **2016**, 81, 6697-6706. (c) Wu, L.; Meng, Y.; Ferguson, J.; Wang, L.; Zeng, F. J. Org. Chem. **2017**, 82, 4121-4128. (d) Rahman, A.; Xie, E.; Lin, X. Org. Biomol. Chem. **2018**, 16, 1367-1374. (e) Zhao, Y.; Chen, J.-R.; Xiao, W.-J. Org. Lett. **2018**, 20, 224-227.

(10) For an account, see: Lu, X.; Han, X. Synlett 2018, 29, 2461–2480.

(11) For recent selected example of nucleopalladation-initiated cascade reactions, see: (a) Nimmagadda, S. K.; Liu, M.; Karunananda, M. K.; Gao, D.-W.; Apolinar, O.; Chen, J. S.; Liu, P.; Engle, K. M. Angew. Chem., Int. Ed. **2019**, 58, 3923–3927. (b) Wu, W.; Li, M.; Zheng, J.; Hu, W.; Li, C.; Jiang, H. Chem. Commun. **2018**, 54, 6855–6858. (c) Li, J.; Yang, S.; Wu, W.; Jiang, H. Eur. J. Org. Chem. **2018**, 2018, 1284–1306. (d) Liu, Z.; Ni, H.-Q.; Zeng, T.; Engle, K. M. J. Am. Chem. Soc. **2018**, 140, 3223–3227. (e) Wu, W.; Chen, T.; Chen, J.; Han, X. J. Org. Chem. **2018**, 83, 1033–1040. (f) Yang, Y.; Fei, C. C.; Wang, K.; Liu, B.; Jiang, D.; Yin, B. Org. Lett. **2018**, 20, 2273–2277.

(12) For recent intramolecular oxypalladation-initiated cascade reactions, see: (a) Zheng, M.; Huang, L.; Tong, Q.; Wu, W.; Jiang, H. *Eur. J. Org. Chem.* **2016**, 2016, 663–667. (b) Zhang, J.; Han, X.; Lu, X. J. Org. Chem. **2016**, 81, 3423–3429. (c) Tian, P.-P.; Cai, S.-H.; Liang, Q.-J.; Zhou, X.-Y.; Xu, Y.-H.; Loh, T.-P. Org. Lett. **2015**, 17, 1636–1639. (d) Li, J.; Zhu, Z.; Yang, S.; Zhang, Z.; Wu, W.; Jiang, H. J. Org. Chem. **2015**, 80, 3870–3879. (e) Vinoth, P.; Vivekanand, T.; Suryavanshi, P. A.; Menéndez, J. C.; Sasai, H.; Sridharan, V. Org. Biomol. Chem. **2015**, 13, 5175–5181. (f) Fujino, D.; Yorimitsu, H.; Osuka, A. J. Am. Chem. Soc. **2014**, 136, 6255–6258.

(13) For recent intermolecular oxypalladation-initiated cascade reactions, see: (a) Santhini, P. V.; Smrithy, A. S.; Irfana Jesin, C. P.; Varughese, S.; John, J.; Radhakrishnan, K. V. *Chem. Commun.* **2018**, *54*, 2982–2985. (b) Yamaguchi, M.; Ozawa, H.; Katsumata, H.; Akiyama, T.; Manabe, K. *Tetrahedron Lett.* **2018**, *59*, 3175–3178. (c) Shukla, R. K.; Pal, K.; Volla, C. M. R. *Chem. - Asian J.* **2018**, *13*, 2435–2439. (d) Zheng, J.; Li, Z.; Wu, W.; Jiang, H. Org. *Lett.* **2016**, *18*, 6232–6235. (e) Li, J.; Yang, W.; Yan, F.; Liu, Q.; Wang, P.; Li, Y.; Zhao, Y.; Dong, Y.; Liu, H. *Chem. Commun.* **2016**, *52*, 10644–10647. (f) Vinoth, P.; Nagarajan, S.; Maheswari, C. U.; Sudalai, A.; Pace, V.; Sridharan, V. Org. Lett. **2016**, *18*, 3442–3445.

(14) Vinoth, P.; Karuppasamy, M.; Vachan, B. S.; Muthukrishnan, I.; Maheswari, C. U.; Nagarajan, S.; Pace, V.; Roller, A.; Bhuvanesh, N.; Sridharan, V. *Org. Lett.* **2019**, *21*, 3465–3469.

(15) For a review on structure and reactivity of late transition metal η^3 -benzyl complexes, see: Trost, B. M.; Czabaniuk, L. C. Angew. Chem., Int. Ed. **2014**, 53, 2826–2851.

(16) For selected recent reports involving η^3 -benzylpalladium intermediates, see: (a) Martín-Ruiz, B.; Pérez-Ortega, I.; Albéniz, A. C. Organometallics **2018**, 37, 1665–1670. (b) Martín-Ruiz, B.; Pérez-Ortega, I.; Albéniz, A. C. Organometallics **2018**, 37, 1074–1085. (c) Huang, J.; Yan, W.; Tan, C.; Wu, W.; Jiang, H. Chem. Commun. **2018**, 54, 1770–1773. (d) Schwarz, K. J.; Yang, C.; Fyfe, J. W. B.; Snaddon, T. N. Angew. Chem., Int. Ed. **2018**, 57, 12102–12105. (e) Hikawa, H.; Izumi, K.; Ino, Y.; Kikkawa, S.; Yokoyama, Y.; Azumaya, S. Adv. Synth. Catal. **2015**, 357, 1037–1048. (f) Hikawa, H.; Toyomoto, M.; Kikkawa, S.; Azumaya, I. Org. Biomol. Chem. **2015**, 13, 11459–11465. (g) Gutman, E. S.; Arredondo, V.; Van Vranken, D. L. Org. Lett. **2014**, 16, 5498–5501.