

Synthetic Communications

An International Journal for Rapid Communication of Synthetic Organic Chemistry

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: http://www.tandfonline.com/loi/lsyc20

A Novel Base Promoted Reaction of Methyl 2-Isoxazoline-5-acetates to 5-(2-oxoethyl)-3-isoxazolidinones

Karl Eichinger, Mohammad RezaRostami & Florian Sieder

To cite this article: Karl Eichinger , Mohammad RezaRostami & Florian Sieder (1998) A Novel Base Promoted Reaction of Methyl 2-Isoxazoline-5-acetates to 5-(2-oxoethyl)-3-isoxazolidinones, Synthetic Communications, 28:13, 2457-2466, DOI: 10.1080/00397919808004297

To link to this article: http://dx.doi.org/10.1080/00397919808004297

Published online: 20 Aug 2006.	
Submit your article to this journa	l ଫ
Article views: 27	
View related articles 🗹	
Citing articles: 2 View citing article	es 🗗

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsyc20

A NOVEL BASE PROMOTED REACTION OF METHYL 2-ISOXAZOLINE-5-ACETATES TO 5-(2-OXOETHYL)-3-ISOXAZOLIDINONES

Karl Eichinger*, Mohammad Reza Rostami and Florian Sieder

Institute of Organic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria

Abstract: The 5-(2-aryl-2-oxoethyl)-3-isoxazolidinones **3a-e** were prepared from the methyl 3-aryl-2-isoxazoline-5-acetates **2a-e** and sodium hexanolate in boiling hexanol in yields from 46 to 86 %. The reaction conditions were optimized and a mechanism for this reaction is proposed and discussed.

During investigations of the reactivity of alkyl 2-isoxoazoline-5-acetates towards nucleophiles it was found, that the esters 2a-e react with bases to give the 3-isoxazolidinones 3a-e. Due to the importance of some β -oxoalkyl isoxazolidinones as pharmaceuticals and intermediates, a number of special syntheses for key substances is described 1-6. Among the known general methods for the syntheses of 3-isoxazolidinones 7-11 none is particularly suited for the introduction of β -oxoalkyl groups at C-5.

^{*}To whom correspondence should be addressed

The reaction of 2a-e with bases to 3a-e was studied in more detail, with the aim to develop a useful synthesis of 5-(2-oxoethyl)-3-isoxazolidinones.

Scheme

In order to optimize the yields of **3a-e**, the reaction conditions with **2b** as standard substrate, were systematically varied. The results are summarized in the table.

The use of strong bases with low nucleophilicity (NaH, 1,8-diazabicyclo[5.4.0]undec-4-ene, LDA) as well as weak bases with high nucleophilicity (C₆H₆SNa) lead to no or very small conversions of **2b** to **3b**. Only strong nucleophiles with high basicity (CH₃ONa, CH₃(CH₂)₅ONa) gave acceptable yields. The best yields and very short reaction times were achieved with sodium hexanolate in boiling hexanol.

Table.

Reaction of (\pm) -methyl 3-(4-methoxyphenyl)-2-isoxazoline-5-acetate (2b) to (\pm) -5-[2-(4-methoxyphenyl)-2-oxoethyl]-3-isoxazolidinone (3b). Variation of base, temperature and solvent.

Reaction conditions for 2ba, b	Yield of 3b [%]
CH ₃ ONa/CH ₃ OH, reflux, 72 hrs.	32
NaH/DMF, reflux, 2 hrs.	0
C ₆ H ₅ SNa/DMF, 50 °C, 9 hrs.	9
CH ₃ ONa/DMF, reflux, 2.5 hrs	0
CH ₃ (CH ₂) ₅ ONa/CH ₃ (CH ₂) ₅ OH, reflux, 0.5 hrs	82
1,8-Diazabicyclo[5.4.0]undec-4-ene/CH ₃ OH, 24	hrs. 0
LDA/THF, -50 °C to -30 °C, 24 hrs.	0

^aThe bases were used in 5 fold excess to 2b.

The structures of **3a-e** were unambigously confirmed by ¹H-NMR- and IR spectroscopy. Due to the dominating tautomeric carbonyl structure in **3a-e** their IR spectra show strong absorptions in the range from 1705 to 1720 cm⁻¹. This is in accordance with the IR spectroscopic data of Olive et al.⁸, ⁹ obtained with other substituted 3-isoxazolidinones.

^bAll solvents and reagents were anhydrous.

The mechanism of the reaction **2a-e** to **3a-e** deserves further comment, since the usual ring opening reactions of 2-isoxazolines with bases proceed via C-O cleavage, α -enoximes ¹², 6-substituted 2-aminopyridine-N-oxides ¹³, hydroxynitriles ¹⁴⁻¹⁶, nitriles together with α -diketones ¹⁷ or β -hydroxycarboxylic acids ¹⁸ are finally obtained.

In the case of the reaction 2a-e to 3a-e is necessary to assume the cleavage of the 2-isoxazoline C=N-bond to explain the structures of 3a-e. Considering the results given in the table it may be concluded, that the mechanism of this reaction proceeds via addition of the base at the C=N-bond. Subsequent nucleophilic attack of the resulting N-anion at the ester group, cleavage of the C-N-bond and hydrolysis could lead to the 3-isoxazolidinones 3a-b. A further remarkable aspect of this mechanism is the ease of intramolecular nucleophilic substitution. 5-Cyanomethyl-2-isoxazolines, which are structurally closely related to 2a-e, are cleaved at the C-O-bond by catalytic amounts of base (DBU) via intramolecular elimination 13.

Experimental

The ¹H-NMR spectra were recorded with a Bruker 200 FT-NMR spectrometer. Internal standards: CHCl₃ at δ =7.26 ppm or DMSO-d₆ at δ = 2.50 ppm.

The IR spectra were obtained with a Bio-Rad FT-IR spectrometer. Melting points: Kofler instrument, uncorrected.

Syntheses of (±)-2-isoxazoline-5-acetic acids (1a-e):

1a-c are known¹⁹. 1d was obtained from 4-chloroacetophenone oxime²⁰ and 1e

from 3-bromoacetophenone oxime²¹ according to a general procedure¹⁹.

(±)-3-(4-Chlorophenyl)-2-isoxazoline-5-acetic acid (1d):

Yield: 41 %, m. p. 172-173 °C (toluene).

¹H-NMR (50 % CDCl₃ / 50 % DMSO-d₆): δ = 2.25-2.54 (m, 2H), 2.72-2.88 (m, 1H), 3.10-3.32 (m, 1H), 4.60-4.83 (m, 1H), 7.00 (d, 2H, J = 8 Hz), 7.24 (d, 2H, J = 8 Hz) ppm.

C₁₁H₁₀ClNO₃ (239.66). Calcd. %: C 55.13, H 4.21, N 5.84. Found %: C 55.12, H 4.25, N 5.83.

(±)-3-(3-Bromophenyl)-2-isoxazoline-5-acetic acid (1e):

Yield: 52 %, m. p. 151-153 °C (toluene).

¹H-NMR (CDCl₃): δ = 2.61-2.82 (m, 1H), 2.85-3.05 (m, 1H), 3.08-3.26 (m, 1H), 3.49-3.68 (m, 1H), 7.35-7.77 (m, 4H) ppm.

C₁₁H₁₀BrNO₃ (284.11). Calcd. % C 46.50, H 3.55, N 4.93. Found % C 46.72, H 3.54, N 4.88.

General procedure for the syntheses of (±)-methyl 2-isoxazoline-5-acetates (2a-e):

To a solution of a (±)-2-isoxazoline-5-acetic acid (1a-e) (6.0 mmol) in anhydrous methanol (40 ml) was added conc. H₂SO₄ (4 ml). The mixture was refluxed for 3 hours, poured on ice water and extracted with ether. The extracts were washed with saturated NaHCO₃ solution, dried with Na₂SO₄ and evaporated to dryness.

(±)-Methyl 3-phenyl-2-isoxazoline-5-acetate (2a):

Acid 1a¹, yield: 91 %, m. p. 51-53 °C (diisopropylether).

¹H-NMR (CDCl₃): δ = 2.54-2.60 (m, 1H), 2.78-2.92 (m, 1H), 3.00-3.19 (m, 1H),

3.44-3.58 (m, 1H), 3.73 (s, 3H), 5.02-5.19 (m, 1H), 7.34-7.75 (m, 3H), 7.63-7.75 (m, 2H) ppm.

C₁₂H₁₃NO₃ (219.24). Calcd. %: C 65.74, H 5.98, N 6.39. Found %: C 65.53, H 5.87, N 6.20.

(±)-Methyl 3-(4-methoxyphenyl)-2-isoxazoline-5-acetate (2b):

Acid 1b¹⁹, yield: 88 %, m. p. 102-104 °C (diisopropylether).

¹H-NMR (CDCl₃): $\delta = 2.53-2.70$ (m, 1H), 2.80-2.96 (m, 1H), 3.07-3.19 (m, 1H),

3.45-3.60 (m, 1H), 3.75 (s, 1H), 3.87 (s, 3H), 4.98-5.19 (m, 1H), 6.85-6.95 (m, 2H), 7.56-7.67 (m, 2H) ppm.

C₁₃H₁₅NO₄ (249.27). Calcd. %: C 62.64, H 6.07, N 5.62. Found %: C 62.35, H 5.87, N 5.62.

(±)-Methyl 3-(4-biphenylyl)-2-isoxazoline-5-acetate (2c):

Acid 1c19, yield: 91 %, m. p. 143-144 °C (diisopropylether).

¹H-NMR (CDCl₃): $\delta = 2.58-2.78$ (m, 1H), 2.80-2.99 (m, 1H), 3.51-3.70 (m, 1H),

3.75 (s, 3H), 5.05-5.22 (m, 1H), 7.30-7.82 (m, 9H) ppm.

 $C_{18}H_{17}NO_3\ (295.34).\ Calcd.\ \%:\ C\ 73.20,\ H\ 5.80,\ N\ 4.74.\ Found\ \%:\ 73.11,$

H 5.72, N 4.64.

(±)-Methyl 3-(4-chlorophenyl)-2-isoxazoline-5-acetate (2d):

Acid 1d, yield: 76 %, m. p. 81-82 °C (diisopropylether).

¹H-NMR (CDCl₃): $\delta = 2.60-2.73$ (m, 1H), 2.71-2.97 (m, 1H), 3.05-3.20 (m, 1H),

3.46-3.61 (m, 1H), 3.75 (s, 3H), 5.05-5.21 (m, 1H), 7.34.7.42 (m, 2H), 7.57-7.66 (m, 2H) ppm.

C₁₂H₁₂ClNO₃ (253.69). Calcd. %: C 56.82, H 4.77, N 5.52. Found %: C 56.77, H 4.63, N 5.49.

(±)-Methyl 3-(3-bromophenyl)-2-isoxazoline-5-acetate (2e)

Acid 1e, yield: 89 %, m. p. 48-50 °C (diisopropylether).

¹H-NMR (CDCl₃): δ =2.58-2.17 (m, 1H), 2.82-2.96 (m, 1H), 3.07-3.18 (m, 1H), 3.48-3.62 (m, 1H), 3.75 (s, 3H), 5.05-5.18 (m, 1H), 7.35-7.72 (m, 4H) ppm. C₁₂H₁₂BrNO₃ (298.14). Calcd. %: C 48.34, H 4.06, N 4.70. Found %: C 48.21, H 3.99, N 4.55.

General procedure for the syntheses of the 5-(2-oxoethyl)-3-isoxazolidinones (3a-e):

To a solution of Na (0.09 g, 4.0 mmol) in anhydrous hexanol (50 ml) was added 2a-e (0.8 mmol) and the solution was refluxed for 30 minutes. The reaction mixture was poured on ice and acidified with concentrated HCl. The resulting precipitate was extracted with CH₂Cl₂. The organic extracts were dried with Na₂SO₄ and evaporated to dryness. The residue was recrystallized from toluene.

(±)-5-(2-Phenyl-2-oxoethyl)-3-isoxazolidinone (3a):

Ester 2a, yield: 76 %, m. p. 152-153 °C (ethyl acetate).

IR (KBr): v = 3681, 3072, 2972, 1712, 1610 cm⁻¹.

¹H-NMR (CDCl₃): δ =2.40-2.58 (m, 1H), 2.60-2.77 (m,1H), 2.92-3.15 (m, 1H), 3.32-3.55 (m, 1H), 4.88-5.06 (m,1H), 7.16-7.40 (m, 3H), 7.40-7.62(m, 2H) ppm.

C₁₁H₁₁NO₃ (205.22). Calcd. %: C 64.38, H 5.40, N 6.83. Found %: C 64.24, H 5.37, N 6.80.

(±)-5-[2-(4-Methoxyphenyl)-2-oxoethyl]-3-isoxazolidinone (3b):

Ester 2b, yield: 82 %, m. p. 180-182 °C (toluene).

IR (KBr): v = 3683, 3070, 2975, 1720, 1610 cm⁻¹.

¹H-NMR (CDCl₃): $\delta = 2.27-2.43$ (m, 1H), 2.46-2.62 (m, 1H), 2.80-2.95 (m, 1H),

3.19-3.32 (m, 1H), 3.58 (s, 3H), 4.81-4.95 (m, 1H), 6.58-6.70 (m, 2H), 7.28-7.39 (m, 2H) ppm.

C₁₂H₁₃NO₄ (235.24). Calcd. %: C 61.27, H 5.57, N 5.95. Found %: C 61.01,

H 5.44, N 5.76.

(±)-5-[2-(4-Biphenylyl)-2-oxoethyl]-3-isoxazolidinone (3c):

Ester 2c, yield: 86 %, m. p. 232-234 °C (ethyl acetate).

IR (KBr): v = 3681, 3075, 2970, 1710, 1615 cm⁻¹.

¹H-NMR (DMSO-d₆): δ = 2.60-2.73 (m, 2H), 3.10-3.70 (m, 3H, 1H exchangeable with D₂O), 4.91-5.10 (m, 1H), 7.32-7.83 (m, 9H) ppm.

C₁₇H₁₅NO₃ (281.31). Calcd. %: C 72.58, H 5.37, N 4.98. Found %: C 72.29, H 5.17, N 4.66.

(±)-5-[2-(4-Chlorophenyl)-2-oxoethyl]-3-isoxazolidinone (3d):

Ester 2d, yield 50 %, m. p. 174-175 °C).

IR (KBr): v = 3681, 3070, 2980, 1705, 1620 cm⁻¹.

¹H-NMR (50 % CDCl₃ / 50 % DMSO-d₆): δ =2.31-2.46 (m, 1H), 2.46-2.62 (m,

1H), 2.79-2.96 (m, 1H), 3.20-3.38 (m, 1H), 2.78-2.92 (m, 1H), 7.04-7.14 (m, 2H), 7.31-7.42 (m, 2H) ppm.

C₁₁H₁₀ClNO₃ (239.66). Calcd. %: C 55.13, H 4.21, N 5.84. Found %: C 54.91, H 4.19, N 5.81.

(±)-5-[2-(3-Bromophenyl)-2-oxoethyl]-3-isoxazolidinone (3e):

Ester 2e, yield 46 %, m. p. 151-153 °C (toluene).

IR (KBr): $v = 3690, 3077, 2970, 1720, 1600 \text{ cm}^{-1}$.

¹H-NMR (CDCl₃ / 20 % DMSO-d₆): δ = 2.41-2.55 (m, 1H), 2.55-2.63 (m, 1H),

2.91-3.19 (m, 1H), 3.29-3.48 (m, 1H), 4.88-5.03 (m, 1H), 7.21-7.55 (m, 4H) ppm.

C₁₁H₁₀BrNO₃ (284.11). Calcd. %: C 46.50, H 3.55, N 4.93. Found %: C 46. 27, H 3.38, N 4.83.

References

- De Amici, M.; De Micheli, C.; Carrea, G.; Spezia, S. J. Org. Chem. 1989, 54, 2646.
- 2 De Amici, M.; De Micheli, C.; Misani, V. Tetrahedron 1990, 46, 1975.
- 3 Baldwin, J. E.; Kruse, L. I.; Cha, J.-K. J. Amer. Chem. Soc. 1981, 103, 942.
- 4 Silverman, R. B.; Holladay, M. W. J. Am. Chem. Soc. 1981, 103, 7357.
- 5 Takeda Chemical Ind.; JP 7006013; Chem. Abstr. 1970, 72, 132708h.
- 6 Upjohn Co. DE 2918878; Chem. Abstr. 1980, 93, 114498.
- 7 Olive, J.-L.; Petrus, C.; Petrus, F. Bull. Soc. Chim. Fr. 1976, 1589.
- 8 Olive, J.-L.; Petrus, C.; Petrus, F. Bull. Soc. Chim. Fr. 1973, 1138.
- 9 De Amici, M.; De Micheli, C.; Misani, V. Tetrahedron 1990, 46, 1975.

- 10 De Amici, M.; Magri, P.; De Micheli, C.; Cateni, F.; Bovara, R.; Carrea, G.; Riva, S. Casalone, G. J. Org. Chem. 1992, 57, 2826.
- 11 De Amici, M.; Froelund, B.; Hjeds, H.; Krogsgaard-Larsen, P. Eur. J. Med. ('hem. 1991, 26, 625.
- 12 Grund, H.; Jäger, V. Liebigs Ann. Chem. 1980, 80.
- 13 Chochlowski, A. W.; Uhlendorf, S. Tetrahedron Lett. 1990, 31, 1949.
- 14 Huisgen, R.; Christl, M. Angew. Chem. 1967, 79, 471.
- 15 Huisgen, R.; Christl, M. Chem. Ber. 1973, 106, 3291.
- 16 Minardi, G., Schenone, P., Settecase, S. Farmaco, Ed. Prat. 1967, 22, 437.
- 17 Bianchi, G.; Gandolfi, R.; Grünanger, P. J. Heterocycl. Chem. 1968, 5, 49.
- 18 Kozikowski, A. P.; Stein, P. D. J. Am. Chem. Soc. 1982, 104, 4023.
- 19 Eichinger, K.; Wokurek, M.; Zauner, B.; Rostami, M. R. Synth. Commun. 1997, 27, 2733.
- 20 Pearson, D. E.; Ball, F. J. Org. Chem. 1949, 14, 118.
- 21 Lamaty, G.; Natat, A.; Petitjean, A.; Roque, J. P. Rec. Trav. Chim. Pays Bas. 1976, 95, 93.

(Received in the UK 25 November 1997)