Green Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: L. Wang, J. Shen, S. Yang, W. Liu, Q. Chen and M. He, *Green Chem.*, 2018, DOI: 10.1039/C8GC00012C.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/green-chem

Published on 07 February 2018. Downloaded by University of Windsor on 12/02/2018 06:55:48.

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

C-H arylation reactions through aniline activation catalysed by PANI-g-C₃N₄-TiO₂ composite under visible light in aqueous medium

Liang Wang,^{a*} Jun Shen,^a Sen Yang,^a Wenjie Liu,^a Qun Chen^a and Mingyang He^{a*}

PANI (polyaniline)-g-C₃N₄-TiO₂ composite was prepared and found to be efficient for the radical C-H arylation reactions. The arylation process involved the coupling of in situ generated aryl diazonium salts from aniline with heteroarenes, enol acetates or benzoquinones under visible light in aqueous medium or pure water. A broad scope of substrates survived the reaction conditions to provide the desired products in moderate to good yields. Scale-up (10 mmol) synthesis was also achieved. This semiconductor photocatalyst showed good photocatalytic performance and stability. Recycle studies showed that this composite could be readily recovered and slight decrease in the catalytic activity was observed after ten consecutive runs.

Introduction

Arylated heteroarenes, enol acetates and benzoquinones are ubiquitous structures that have found wide applications in materials science and pharmaceutical chemistry.¹ The most efficient and economical approach for constructing these structures is direct C-H arylation process, in which no preactivation of the substrates is required. Thereby, a series of C-H arylation reactions employing aryl halides, arylboronic acids, diazonium salts as well as other arylating reagents have been developed.²⁻⁴ However, these reported methodologies usually involved the use of transition metal catalysts, unfriendly reagents/solvents, or harsh conditions.

Recently, photoredox reactions under visible light has emerged as an powerful and green synthetic technology for a wide range of reactions.⁵ These catalytic systems are environmentally friendly since visible light is abundant and nontoxic, thereby no extra waste is generated. In this context, considerable progress has been made in photocatalyzed C-H arylation reactions.⁶ Particularly, diazonium salts, as an ideal source of aryl radicals, have shown widespread applications in photocatalyzed C-H arylations due to their high reactivity and reduction potentials.⁷ However, there are still some issues to be addressed from green point of view. Firstly, the high reactivity and hazardous profile of diazonium salts made them unsuitable for safe handling. Despite the two-step, one-pot chlorides in HCI solution followed by addition of the substrates could be an alternative approach, the strongly acidic solution and the excess of bases still limited its practical application, especially on a large scale. Secondly, most of the photocatalyzed C-H arylations were conducted in organic solvents. Such reaction in aqueous medium or even in pure water was rare.^{7h} Finally, the photocatalysts used in previously reported procedures were either expensive or could not be recovered and reused. Hence, the development of a facile and green approach for photocatalyzed C-H arylation reactions is still highly desirable.

procedure involving the in situ preparation of diazonium

Semiconductor composites have become a rapidly growing class of photocatalysts in recent years. The low-cost, stability and recyclability of such heterogeneous photocatalysts make them more advantageous than the homogeneous ones. Among them, titanium dioxide (TiO₂)-based composites are the most popular since TiO_2 is cheap, stable, and nontoxic.^{7k,8} Up to date, many modifications of TiO₂ have been made to overcome its inherent drawbacks including the wide band gap (3.2 eV, anatase) and the high recombination rate of electron-hole pairs.9-16 However, it should be pointed out that most of these semiconductor composites are used for photodegradations, their applications in synthetic chemistry have been less reported yet. Recently, we focused on the heterogeneous photocatalysis,¹⁷ and a ternary PANI-g-C₃N₄-TiO₂ composite exhibited good photocatalytic activity, stability as well as reusability for radical addition reaction between aryl diazonium salts and aryl alkynes.^{17c}

To address the above mentioned issues and in continuation of our interest in photocatalysis and green chemistry, herein, we reported a PANI-g-C₃N₄-TiO₂ composite-catalyzed C-H arylation reactions through in situ aniline activation under visible light in aqueous medium or pure water (Scheme 1).

^{a.} School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Gehu Raod 1, Wujin, Changzhou, 213164, P. R. China. E-mail: liangwang@cczu.edu.cn; hemingyangjpu@yahoo.com

⁺Electronic Supplementary Information (ESI) available: Experimental procedures, NMR spectra. See DOI:10.1039/x0xx00000x

ARTICLE

With PANI-g-C₃N₄-TiO₂ composite in hand, we initially explored its photocatalytic activity toward the C-H arylation of heteroarene using *p*-nitroaniline (**1a**) and furan (**2a**) as the substrates (Table 1).

Table 1. Optimization of reaction conditions.^a

^aStandard reaction conditions: **1a** (0.3 mmol), **2a** (10 equiv.), *t*-BuONO (1.5 equiv.), MeSO₃H (1.0 equiv.), PANI(40%)-g-C₃N₄-TiO₂ (30 mg), acetone/H₂O (2:1) (3 mL), irradiation with a 14 W CFL at room temperature for 3 h. ^{*b*} Isolated yields. ^{*c*} No reaction. ^{*d*} Irradiation with a blue LED (3W) for 3 h. ^{*e*} Irradiation with a green LED (3W) for 3 h. ^{*f*} Irradiation with sunlight for 12 h. ^{*g*} CF₃SO₃H instead of MeSO₃H. ^{*h*} TsOH·H₂O instead of MeSO₃H.

Pleasingly, after investigating various reaction parameters, we found that the reaction could provide the desired product **3a** in 87% yield under the following reaction conditions: **1a** (1 equiv.), **2a** (10 equiv.), *t*-BuONO (1.5 equiv.), MeSO₃H (1 equiv.), PANI(40%)-g-C₃N₄-TiO₂ (30 mg) in acetone/H₂O (2:1, 3 mL) under irradiation with a 14 W CFL at room temperature for 3 h (Table 1, entry 1). Control experiments showed that reaction in DMF, DMSO and acetone afforded **3a** in moderate yields, while poor yields were obtained when conducting the reactions in methanol, acetonitrile, tetrafuran and water (entries 4~7). Addition of water to DMF, DMSO and acetone significantly promoted the reaction, and acetone/H₂O (2:1) turned out to be the optimal (entries 9~12). This result might be ascribed to the fact that the addition of water could

Green Chemistry Accepted Manuscript

DOI: 10.1039/C8GC00012C

Journal Name

 $\label{eq:scheme1} \textbf{Scheme1} PANI-g-C_3N_4-TiO_2 \text{ composite catalysed C-H arylations under visible light}$

Results and discussion

The detailed preparation of g-C₃N₄, PANI-g-C₃N₄ and PANI-g- C_3N_4 -TiO₂ composites as well as the corresponding characterizations by x-ray diffraction (XRD), ultraviolet-visible light (UV-vis), photoluminescence spectroscopy (PL) and transmission electron microscope (TEM) have been reported in our previously published paper (See ESI⁺).^{17c} Briefly. comparison of the XRD patterns clearly indicates that these diffraction peaks are assigned to the PANI, $g-C_3N_4$ and TiO_2 respectively (Figure S1, ESI⁺). Meanwhile, no crystal transfer occurs during the composition process and no obvious variation in terms of peak position is observed with different weight percentages of PANI in the PANI-g-C₃N₄-TiO₂ composite. The UV-vis spectra shows that the introduction of PANI and g-C₃N₄ in PANI-g-C₃N₄-TiO₂ composite can significantly enhance its visible-light absorption (Figure 1, a). The PL spectra shows that PANI-g-C₃N₄-TiO₂ composite has lowest intensity, indicating the photo-induced the electron-hole pairs can be effectively separated (Figure 1, b). TEM and HRTEM images of PANI-g-C₃N₄-TiO₂ composite shows that TiO₂ nanoparticles disperse well, and both TiO₂ and PANI are physically supported on g-C₃N₄ (Figure 1, c and d).

Figure 1. (a) UV–vis DRS of TiO₂, g-C₃N₄, PANI, and PANI-g-C₃N₄-TiO₂ composite; (b) PL spectra of g-C₃N₄ (black), TiO₂ (red), g-C₃N₄-TiO₂ (blue) and PANI-g-C₃N₄-TiO₂ (green); (c) TEM image of PANI-g-C₃N₄-TiO₂; (d) HRTEM image of PANI-g-C₃N₄-TiO₂.

Published on 07 February 2018. Downloaded by University of Windsor on 12/02/2018 06:55:48.

Journal Name

enhance the solubility of the in situ generated aryl diazonium salt. The evaluation of a series of PANI-g-C₃N₄-TiO₂ composites showed that the loading of PANI could affected the catalytic activity of PANI-g-C₃N₄-TiO₂ composite (entries 13^{15}). Although it remained unclear currently, the 40% loading of PANI turned out to be the best choice. The highest surface area (128 $m^2 g^{-1}$, Table S1, ESI) might be account for the highest catalytic activity among the four PANI-g-C₃N₄-TiO₂ composites. By contrast, using $g-C_3N_4$ -TiO₂, PANI(40%)-TiO₂ and g-C₃N₄ as the photocatalysts gave the product in 37%, 22%, and 30% yields, respectively (entries 17~19). No reaction occurred when TiO₂ (anatase) was employed (entry 20). These results suggested that a synergistic effect may exist in the ternary composite. Expectedly, no reaction was observed in the absence of either visible light or a photocatalyst (entry 21 and 22). The light sources were also checked and reactions irradiated with a blue LED and green LED afforded a relatively lower yields, while the reaction proceeded under sunlight led to a rather poor yield (entry 23). Moreover, the absence of MeSO₃H which was used for the formation of the corresponding diazonium salt gave a much lower yield (47%, entry 24), and 61% and 72% yields were obtained by switching the additive to CF₃SO₃H or TsOH·H₂O (entry 25). No obvious change in the yield was observed under nitrogen atmosphere or by prolonging the reaction time to 12 h (entry 26 and 27). Finally, the survey on the loadings of catalyst and 2a clearly showed that 30 mg of catalyst and 10 equiv. of 2a were sufficient (entries 28~31).

The scope of this photocatalyzed C-H arylation reaction with anilines and heteroarenes was then examined using the optimized reaction conditions (Table 2).

Table 2. Photocatalyzed α-a	rylation of heteroarenes.
-----------------------------	---------------------------

 a Standard conditions: 1 (0.3 mmol), 2 (10 equiv.), *t*-BuONO (1.5 equiv.), MeSO₃H (1.0 equiv.), PANI(40%)-g-C_3N_4-TiO_2 (30 mg), acetone/H₂O (2:1) (3 mL), irradiation with a 14 W CFL at room temperature for 3 h, isolated yields.

DOI: 10.1039/C8GC00012C

ARTICLE

Generally, anilines containing electron-withdrawing groups such as -NO₂, -CN, -CF₃, and -Ac, reacted with furan smoothly to give the desired products in good yields. Notably, the C-Cl bonds in 3e and 3k was not affected, enabling the further manipulation of the initial products. The ortho-substituted anilines also showed good compatibilities, delivering the corresponding products 3i~3I in 80~85% yields. Although the results were not shown in the table, it should be pointed out that the present reaction conditions were not compatible for the electron-rich anilines, and very low yields were obtained. This result was consistent with previous literature,^{7d} which might be attributed to the relatively lower reduction potentials of their aryl diazonium salts compared with those bearing electron-withdrawing groups.¹⁸ By contrast, the 1naphthylamine could survived the reaction conditions to give product 3m in 61% yield after 6 h. Other heteroarenes such as thiophene and pyrrole were also checked, and all the reactions proceeded smoothly to provide the corresponding products 3n~3r in good yields.

Furthermore, gram-scale synthesis of **3a** was performed. Fortunately, product **3a** was obtained in 82% yield at 10 mmol scale after 6 h (Scheme 2). This result provides a potential application of this catalytic system in practical scale-up synthesis.

Scheme 2 Gram-scale synthesis of 3a.

Time profile of photocatalytic reaction toward the synthesis of **3a** was also carried out (Scheme 3). The result showed that the reaction was totally inhibited in the absence of light and continuous irradiation of visible light is essential for this reaction.

DOI: 10.1039/C8GC00012C

Journal Name

ARTICLE

The stability and reusability of heterogeneous photocatalysts are very important for the advancement of sustainable processes. It was worth noting that the present PANI-g-C₃N₄-TiO₂ catalyst is highly stable. Under the standard reaction conditions for synthesis of **3a**, the catalyst could be recovered by centrifugation. Results showed that slight decrease in the catalytic activity was observed after ten consecutive runs (Figure 2). The recycled catalyst was also subjected to XRD and TEM analyses, and no obvious change in the structure was observed.

Figure 2 Recyclability of the PANI(40%)-g-C₃N₄-TiO₂ for the synthesis of 3a under standard reaction conditions.

Then, we envisioned that whether this catalytic system could be extended to other C-H arylation reactions. The α -aryl ketone motifs have also been found wide applications in pharmaceutical chemistry and synthetic chemistry. Generally, this reaction can be achieved via the reaction of diazonium salts with enolacetates under the assistance of a transition metal catalyst,¹⁹ a transition metal photocatalyst,^{7c} an organocatalyst^{2j} or stoichiometric amounts of bases.^{3a} To our literature, photocatalyzed C-H arylation of enolacetates in the presence of a heterogeneous catalyst, especially in aqueous medium, has never been disclosed. Pleasingly, the standard reaction conditions for C-H arylation of heteroarenes were also suitable for the synthesis of α -aryl methyl ketones (Table 3).

Table 3. Photocatalyzed the synthesis of α -aryl methyl ketones.

^{*a*}Reaction conditions: **1** (0.3 mmol), **4** (10 equiv.), *t*-BuONO (1.5 equiv.), MeSO₃H (1.0 equiv.), PANI(40%)-g-C₃N₄-TiO₂ (30 mg), acetone/H₂O (2:1) (3 mL), irradiation with a 14 W CFL at room temperature for 6 h, isolated yields.

Several functional groups, such as nitro, cyano, trifluoromethyl, acetyl, ester, and halogen were well tolerated, providing the corresponding products **5** in 72~85% yields. Similarly, substrates with strong electron-withdrawing groups gave excellent yields, while those with strong electron-donating groups showed poor reactivity. Notably, no obvious steric hindrance of the substrates was observed (**5h** and **5i**), and the C-Cl bond in **5k** was intact. Moreover, 1-naphthylamine showed good compatibility, delivering the desired product **5l** in 72% yield after 12 h.

We further applied the catalytic system to prepare arylated benzoquinones. Although Lamblin and co-workers^{4b} showed that the C-H arylation of benzoguinones could occur in the absence of any acid additive and catalyst in DMSO-water system, their reaction conditions did not suitable for the present protocol since relatively lower yield was obtained and meanwhile the product was not pure enough. We reasoned that the introduction of a photocatalyst could significantly promote the formation of an aryl radical. In order to develop a general C-H arylation process in a more green solvent, we tried the reaction in acetone-water. Encouragingly, the present protocol was well suitable for such reaction, and the reaction could even proceeded in pure water (Table 4). As shown from the results, this protocol tolerated diverse functional groups and good to excellent yields were obtained. Notably, anilines bearing strong electron-donating groups also survived the reaction conditions.

Table 4. Photocatalyzed C-H arylation of benzoquinone.^a

^{*a*}Reaction conditions: **1** (0.3 mmol), **6** (5 equiv.), *t*-BuONO (1.5 equiv.), MeSO₃H (1.0 equiv.), PANI(40%)-g-C₃N₄-TiO₂ (30 mg), H₂O (3 mL), irradiation with a 14 W CFL at room temperature for 12 h, isolated yields.

Based on above results as well as previous study, 7c,7d,17c a plausible catalytic mode of this semiconductor photocatalyst (PC) was proposed using C-H arylation of heteroarenes as example (Scheme 4). Initially, the composite absorbs photons and excites electron and hole pairs under visible light. Then, homolytic dediazoniation of the in situ generated diazonium salt I via SET process provides the aryl radical II. The addition of radical II to heteroarene 2 gives radical III, which is further oxidized by the photogenerated holes (H^{+}) to form carbocation intermediate IV. Finally, intermediate IV is deprotonated to deliver the desired products. As for the catalytic mode, considering the edge potentials of PANI (π^* -orbital: -2.14 eV; π -orbital: +0.62 eV)²⁰ are more negative than the VB and CB potentials of $g-C_3N_4$ (-1.13 eV and +1.57 eV, respectively)²¹ as well as those of TiO₂ (-0.29 eV and +2.91 eV, respectively), we assume that excited electrons migrate to the CB of TiO₂ while the holes are collected by the π -orbital of PANI. Thereby, the photogenerated electron-hole pairs are efficiently separated, and the recombination process is hindered. This hypothesis is probably account for its good catalytic activity. However, we still cannot determine the exact catalytic site of the photocatalyst at current stage since both g-C₃N₄-TiO₂ and PANI-TiO₂ can promote this reaction (Table 1, entry 17 and 18). The possibility that the oxidation reaction takes place at the VB of $g-C_2N_4$ and the PANI works as a conductor is still cannot be exclude out.

View Article Online DOI: 10.1039/C8GC00012C

ARTICLE

Conclusions

In summary, a PANI-g-C₃N₄-TiO₂ composite has been prepared and found to be efficient for a series of photocatalyzed C-H arylation reactions under visible light. The C-H arylation of heteroarenes and enol acetates could be carried out in acetone/water medium, while the C-H arylation of benzoguinones could even be performed in pure water, thereby avoiding the use of a large amount of organic solvents. The in situ generated aryl diazonium salts from anilines in the presence of t-BuONO and MeSO₃H were used as the aryl radicals and a broad scope of substrates survived the reaction conditions. The starting materials are simple and costeffective, and the catalyst is readily prepared and stable. Scaleup (10 mmol) synthesis of 3a was also achieved, providing a potential application of this catalytic system in practical synthesis. Recycle studies showed that this composite could be readily recovered and only slight decrease in the catalytic activity was observed after ten consecutive runs. Control experiments showed that a radical pathway might be involved. Notably, although we still could not determine the exact catalytic site of the photocatalyst at current stage, the synergistic effect of the three components in PANI-g-C₃N₄-TiO₂ composite might be account for the enhanced photocatalytic activity as well as the reusability.

Experimental

Preparation and characterization of PANI-g-C₃N₄-TiO₂ composite

The PANI-g-C₃N₄-TiO₂ composites were prepared according to our previous report.^{17c} Briefly, g-C₃N₄ was prepared using

ARTICLE

melamine as a precursor via calcination at 580 °C for 4 h. For the preparation of the ternary composite PANI-g-C₃N₄-TiO₂, initially, 15 mL of sodium hydroxide solution (c = 1.5 mol/L) was added slowly to 3 mL of aqueous TiCl₄ solution (2.5 mol/L), which was diluted with 80 mL of deionized water. The mixture was stirred and a certain amount of PANI-g-C₃N₄ (n(g-C₃N₄): n(TiO₂) = 1:2) was added to the above mixture. The temperature was then raised slowly to 80 °C, and the mixture was crystallized for 2 h. Afterwards, aqueous sodium hydroxide solution(c = 2.5mol/L) was added dropwise to maintain the pH at 5~6. The solid was filtrated, washed with deionized water, dried under vacuum, and grinded to afford PANI-g-C₃N₄-TiO₂.

Typical procedure for synthesis of 3a

To a mixture of aniline (0.3 mmol) and MeSO₃H (0.3 mmol) in acetone/H₂O (2:1, 3 mL) at 25 °C was added *t*-BuONO (0.45 mmol). The reaction mixture was stirred for 10 minutes at 25 °C. Then, furan **2a** (10 equiv.) and PANI-g-C₃N₄-TiO₂ (30 mg) were successively added. The mixture was then irradiated with a 14 W CFL and stirred at room temperature for 3 h. The distance of the reaction vial from the light is about 5 centimeters. After reaction, the mixture was diluted with EtOAc (10 mL) and H₂O (5 mL), and the solid catalyst was recovered by centrifugation. The aqueous phase was extracted with EtOAc (5 mL × 3). The collected organic extracts were dried on Na₂SO₄, filtered and evaporated to dryness. The crude was purified by flash chromatography on silica gel to give the pure product **3a** in 87% yield.

2-(4-Nitrophenyl)furan (3a).^{7d 1}H NMR (300 MHz, CDCl₃) δ 8.26 - 8.21 (m, 2H), 7.80 - 7.75 (m, 2H), 7.57 (dd, *J* = 1.7, 0.5 Hz, 1H), 6.87 (dd, *J* = 3.5, 0.5 Hz, 1H), 6.55 (dd, *J* = 3.5, 1.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 151.83, 146.50, 144.28, 136.55, 124.43, 124.04, 112.57, 109.12; MS (ESI) *m/z* 212 [M + Na]⁺.

Typical procedure for synthesis of 5a

To a mixture of aniline (0.3 mmol) and MeSO₃H (0.3 mmol) in acetone/H₂O (2:1, 3 mL) at 25 °C was added *t*-BuONO (0.45 mmol). The reaction mixture was stirred for 10 minutes at 25 °C. Then, enol acetate **4** (10 equiv.) and PANI-g-C₃N₄-TiO₂ (30 mg) were successively added. The mixture was then irradiated with a 14 W CFL and stirred at room temperature for 6 h. The distance of the reaction vial from the light is about 5 centimeters. After reaction, the mixture was diluted with EtOAc (10 mL) and H₂O (5 mL), and the solid catalyst was recovered by centrifugation. The aqueous phase was extracted with EtOAc (5 mL × 3). The collected organic extracts were dried on Na₂SO₄, filtered and evaporated to dryness. The crude was purified by flash chromatography on silica gel to give the pure product **5a** in 85% yield.

1-(4-Nitrophenyl)propan-2-one (5a).^{7c 1}H NMR (300 MHz, CDCl₃) δ 8.18 (d, *J* = 8.7 Hz, 2H), 7.35 (d, *J* = 8.7 Hz, 2H), 3.85 (s, 2H), 2.24 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 204.38, 147.16, 141.56, 130.59, 123.87, 50.15, 30.01; MS (ESI) *m/z* 202 [M + Na]⁺.

Typical procedure for synthesis of 7a

To a mixture of aniline (0.3 mmol) and MeSO₃H (0.3 mmol) in H_2O (3 mL) at 25 °C was added *t*-BuONO (0.45 mmol). The reaction mixture was stirred for 10 minutes at 25 °C. Then, enol acetate **6** (5 equiv.) and PANI-g-C₃N₄-TiO₂ (30 mg) were successively added. The mixture was then irradiated with a 14 W CFL and stirred at room temperature for 12 h. The distance of the reaction vial from the light is about 5 centimeters. After reaction, the mixture was diluted with EtOAc (10 mL) and H₂O (5 mL), and the solid catalyst was recovered by centrifugation. The aqueous phase was extracted with EtOAc (5 mL × 3). The collected organic extracts were dried on Na₂SO₄, filtered and evaporated to dryness. The crude was purified by flash chromatography on silica gel to give the pure product **7a** in 91% yield.

4'-Nitro-[1,1'-biphenyl]-2,5-dione (7a).^{2j 1}H NMR (300 MHz, CDCl₃) δ 8.30 (d, *J* = 8.8 Hz, 2H), 7.66 (d, *J* = 8.8 Hz, 2H), 6.97 - 6.87 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 186.98, 185.75, 148.74, 144.03, 138.88, 137.11, 136.71, 134.21, 130.43, 123.75; MS (ESI) *m/z* 252 [M + Na]⁺.

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (21302014 and 21676030), the Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, and the Advanced Catalysis and Green Manufacturing Collaborative Innovation Center of Changzhou University of Changzhou University.

Notes and references

- (a) S. Edmondson, S. J. Danishefsky, L. Sepp-Lorenzino and N. Rosen, J. Am. Chem. Soc., 1999, **121**, 2147; (b) H. Yin, G.-i. Lee, H. S. Park, G. A. Payne, J. M. Rodriguez, S. M. Sebti and A. D. Hamilton, Angew. Chem., Int. Ed., 2005, **44**, 2704; (c) A. R. Murphy and J. M. J. Fréchet, Chem. Rev., 2007, **107**, 1066; (d) B. Schmidt and D. Geißler, Eur. J. Org. Chem., 2011, 4814; (e) A. Perrier, F. Maurel and D. Jacquemin, Acc. Chem. Res., 2012, **45**, 1173.
- Selected examples for C-H arylation of heteroarenes: (a) S. 2 Yanagisawa, T. Sudo, R. Noyori and K. Itami, J. Am. Chem. Soc., 2006, 128, 11748; (b) H. Kawai, Y. Kobayashi, S. Oi and Y. Inoue, Chem. Commun., 2008, 1464; (c) B. Join, T. Yamamoto and K. Itami, Angew. Chem., Int. Ed., 2009, 48, 3644; (d) I. B. Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara, A. L. Sobel and P. S. Baran, J. Am. Chem. Soc., 2010, 132, 13194; (e) W. Han, P. Mayer and A. R. Ofial, Chem. Eur. J., 2011, 17, 6904; (f) N. Uchiyama, E. Shirakawa, R. Nishikawa and T. Hayashi, Chem. Commun., 2011, 47, 11671; (g) J. J. Dong, D. Roy, R. J. Roy, M. Ionita and H. Doucet, Synthesis, 2011, 3530; (h) M. Raduán, J. Padrosa, A. Pla-Quintana, T. Parella and A. Adv. Synth. Catal., 2011, 353, 2003; (i) A. Roglansa, Honraedt, M. Raux, E. L. Grognec, D. Jacquemin and F.-X. Felpin, Chem. Commun., 2014, 50, 5236; (j) H. Bonin, M. Sauthier and F.-X. Felpin, Adv. Synth. Catal., 2014, 356, 645; (k) S. Shaaban, A. Jolit, D. Petkova and N. Maulide, Chem.

Published on 07 February 2018. Downloaded by University of Windsor on 12/02/2018 06:55:48.

Journal Name

Commun., 2015, **51**, 13902; (I) S. Crespi, S. Protti and M. Fagnoni, *J. Org. Chem.*, 2016, **81**, 9612; (m) S. Shaaban and N. Maulide, *Synlett*, 2017, **28**, 2707.

- 3 Selected examples for C-H arylation of enol acetates: (a) C. Molinaro, J. Mowat, F. Gosselin, P. D. O'Shea, J. Marcoux, R. Angelaud and I. W. Davies, *J. Org. Chem.*, 2007, **72**, 1856; (b) L. Li, *Synth. Commun.*, 2007, **37**, 985.
- 4 Selected examples for C-H arylation of benzoquinones: (a) J. Wang , S. Wang , G. Wang , J. Zhang and X. Yu, Chem. Commun., 2012, 48, 11769; (b) M.Lamblin, G. Naturale, J. Dessolin, F.-X. Felpin, Synlett, 2012, 23, 1621; (c) A. Honraedt, F. L. Callonnec, E. L. Grognec, V. Fernandez and F.-X. Felpin, J. Org. Chem., 2013, 78, 4604; (d) A. Deb, S. Manna, A. Maji, U. Dutta and D. Maiti, Eur. J. Org. Chem., 2013, 5251; (e) S. E. Walker, J. A. Jordan-Hore, D. G. Johnson, S. T. Macgregor and A. Lee, Angew. Chem., Int. Ed., 2014, 53, 13876; (f) A. Ilangovan, A. Polu and G.Satish, Org. Chem. Front., 2015, 2, 1616.
- 5 (a) T. P. Yoon, M. A. Ischay and J. Du, Nat. Chem., 2010, 2, 527; (b) J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102; (c) Y. Ye and M. S. Sanford, J. Am. Chem. Soc., 2012, 134, 9034; (d) L. Shi and W. Xia, Chem. Soc. Rev., 2012, 41, 7687; (e) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322; (f) J. W. Beatty and C. R. J. Stephenson, Acc. Chem. Res., 2015, 48, 1474; (g) J. Chen, X. Hu, L. Lu and W. Xiao, Chem. Soc. Rev., 2016, 45, 2044; (h) X. Lang, J. Zhao and X. Chen, Chem. Soc. Rev., 2016, 45, 3026; (i) N. Corrigan, S. Shanmugam, J. Xu and C. Boyer, Chem. Soc. Rev., 2016, 45, 6165; (j) M. D. Levin, S. Kim and F. D. Toste, ACS Cent. Sci., 2016, 2, 293; (k) S. Kim, J. Rojas-Martin and F. D. Toste, Chem. Sci., 2016, 7, 85; (I) J. Xie, H. Jin and A. S. K. Hashmi, Chem. Soc. Rev., 2017, 46, 5193; (m) W. Liu and C.-J. Li, Synlett, 2017, 28, 2714; (n) M. Malacarne, S. Protti and M. Fagnoni, Adv. Synth. Catal., 2017, 359, 3826;
- 6 (a) I. Ghosh, L. Marzo, A. Das, R. Shaikh and B. König, Acc. Chem. Res., 2016, 49, 1566; (b) S. Kindt and M. R. Heinrich, Synthesis, 2016, 48, 1597.
- 7 (a) D. Kalyani, K. McMurtrey, S. Neufeldt and M. Sanford, J. Am. Chem. Soc., 2011, 133, 18566; (b) P. Schroll, D. P. Hari, and B. König, ChemistryOpen, 2012, 1, 130; (c) T. Hering, D. P. Hari and B. König, J. Org. Chem., 2012, 77, 10347; (d) D. P. Hari, P. Schroll and B. König, J. Am. Chem. Soc., 2012, 134, 2958; (e) D. P. Hari and B. König, Angew. Chem., Int. Ed., 2013, 52, 4734; (f) D. Hari, T. Hering and B. König, Angew. Chem., Int. Ed., 2014, 53, 725; (g) J. Zhang, J. Chen, X. Zhang and X. Lei, J. Org. Chem., 2014, 79, 10682; (h) D. Xue, Z. Jia, C. Zhao, Y. Zhang, C. Wang and J. Xiao, Chem. Eur. J., 2014, 20, 2960; (i) D. Cantillo, C. Mateos, J. A. Rincon, O. de Frutos and C. O. Kappe, Chem. Eur. J., 2015, 21, 12894; (j) X. Zuo, W. Wu and W. Su, Acta Chim. Sinica, 2015, 73, 1298; (k) J. Zoller, D. C. Fabry and M. Rueping, ACS Catal., 2015, 5, 3900; (I) L. Zhi, H. Zhang, Z. Yang, W. Liu and B. Wang, Chem. Commun., 2016, 52, 6431; (m) Y. Zhang, X. Feng, Y. Yang and B. Cao, Tetrahedron Lett., 2016, 57, 2298; (n) B. Alcaide, P. Almendros, E. Busto and A. Luna, Adv. Synth. Catal., 2016, 358, 1526; (o) F. Yang, J. Koeller and L. Ackermann, Angew. Chem., Int. Ed., 2016, 55, 4759; (p) N. Morimoto, K. Morioku, H. Suzuki, Y. Nakai and Y. Nishina, Chem. Commun., 2017, 53, 7226; (q) K. Rybicka-jasínska, B. König and D. Gryko, Eur. J. Org. Chem., 2017, 2104.
- 8 (a) Y. Shiraishi, N. Saito and T. Hirai, J. Am. Chem. Soc., 2005, 127, 12820; (b) S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro and L. Palmisano, J. Am. Chem. Soc., 2008, 130, 1568; (c) S. Yurdakal, G. Palmisano, V. Loddo, O. Alagoz, V. Augugliaro and L. Palmisano, Green Chem., 2009, 11, 510.
- 9 K. Bhattacharyya, S. Varma, A. K. Tripathi, S. R. Bharadwaj and A. K. Tyagi, J. Phys. Chem. C, 2008, **112**, 19102.

- 10 H. Tada, Q. Jin, H. Nishijima, H. Yamamoto, M. Fujishima, S. Okuoka, T. Hattori, Y. Sumida and H. Kobayashi, *Angew. Chem., Int. Ed.*, 2011, **50**, 3501.
- 11 Q. Jin, T. Ikeda, M. Fujishima and H. Tada, *Chem. Commun.*, 2011, **47**, 8814.
- 12 M. Harb, P. Sautet, P. Raybaud, J. Phys. Chem. C, 2013, 117, 8892.
- J. Tang, G. Grampp, Y. Liu, B. Wang, F. Tao, L. Wang, X. Liang, H. Xiao and Y. Shen, *J. Org. Chem.*, 2015, **80**, 2724.
- 14 A. J. Lennox, P. Bartels, M. M. Pohl, H. Junge and M. Beller, J. Catal., 2016, **340**, 177.
- 15 K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai and J. Lu, ACS Appl. Mater. Interfaces, 2015, **7**, 9023.
- 16 S. Obregón, Y. Zhang and G. Colón, Appl. Catal. B, 2016, 184, 96.
- 17 (a) L. Wang, C. Wang, W. Liu, Q. Chen and M. He, *Tetrahedron Lett.*, 2016, **57**, 1771; (b) W. Liu, C. Wang, Y. Huang, Q. Chen, L. Wang and M. He, *Synth. Commun.*, 2016, **46**, 1268; (c) W. Liu, C. Wang and L. Wang, *Ind. Eng. Chem. Res.*, 2017, **56**, 6114.
- 18 P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi, J. Pinson and J.-M. Savéant, J. Am. Chem. Soc., 1997, 119, 201.
- 19 J. Rutherford, M. Rainka and S. Buchwald, J. Am. Chem. Soc., 2002, **124**, 15168.
- 20 L. Ge, C. C. Han and J. Liu, J. Mater. Chem., 2012, 22, 11843.
- 21 L. Ge, C. C. Han and J. Liu, Appl. Catal. B, 2011, 108–109, 100.

This journal is © The Royal Society of Chemistry 20xx

Graphical Abstract

C-H arylation reactions under visible light in aqueous medium catalysed by PANI-g- C_3N_4 -TiO₂ composite has been developed.