

View Article Online View Journal

RSC Advances

This article can be cited before page numbers have been issued, to do this please use: B. B. F. Mirjalili and R. zare Reshquiyea, *RSC Adv.*, 2015, DOI: 10.1039/C4RA16625F.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

ARTICLE TYPE

Cite this: DOI: 10.1039/c0xx00000x

BF₃/nano-sawdust as a green, biodegradable and no expensive catalyst for synthesis of highly substituted dihydro-2-oxopyrroles

Bi Bi Fatemeh Mirjalili*^a and Reza Zare Reshquiyea^a

Received (in XXX, XXX) XthXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

BF₃/nano-sawdust was used as a readily available, inexpensive, biodegradable and environmentally benign heterogeneous solid acid catalyst for the one pot cascade synthesis of highly functionalized dihydro-2-oxypyrroles. Four-component reactions (4CRs) of the dialkylacetylenedicarboxylates, primary amines and aldehydes were used for synthesis of these compounds under thermal conditions.

10

Published on 06 January 2015. Downloaded by University of California - San Diego on 10/01/2015 17:51:05

Introduction

Dihydro-oxopyrrole(DPO) derivatives are important structures exhibit biological activities such as herbicidal,¹ antitumor,² pesticidal,³ anti-HIV,⁴ antibiotics,⁵ antimalarial⁶and its ¹⁵ derivatives are crucial core structures used to create many natural products like bilirubins,⁷ oteromycin,⁸ypaoamide⁹andpyrrocidine A¹⁰(Scheme 1).

Scheme1. The structure of some natural compounds with dihydro-2-20 oxopyrrole motif.

Due to the wide range application of dihydro-oxopyrrole derivatives in pharmaceuticals, agrochemicals, and natural products, their synthesis remains an area of intense current interest to the chemical synthesis. A number of synthetic routes 25 have been developed for the synthesis of dihydro-oxopyrrole, including ruthenium-catalyzed reaction of α . β -unsaturated imines with carbon monoxide and ethylene,¹¹ reaction of isocyanides, dialkylacetylenedicarboxylates, and benzoyl chlorides.12 carboamination/oxidative cyclization of C-acylimines with ³⁰ alkenes, ¹³ transannulation of 1-sulfonyl-1,2,3-triazole with ketene silvlacetal,¹⁴ reaction of acetylene with imines, and CO₂,¹⁵ Pdcatalyzed cyclization of ethyl glyoxalate and amines¹⁶ and reaction of α-cyanomethyl-β-ketoesters and alcohols.¹⁷ Among these versatile synthetic methods, multicomponent reactions 35 (MCRs) have attracted particular attention;¹⁸ A few methods have

35 (MCRs) have attracted particular attention;¹⁰ A few methods have

been reported for the synthesis of dihydro-2-oxopyrroles using MCRs such as four component reaction of dialkylacetylenedicarboxylate, aldehyde, and amines. Previously, this protocol has been catalyzed by TiO₂-nanopowder,¹⁹ I₂,²⁰ *p*-40 toluenesulfonic acid,²¹ Cu(OAc)₂·H₂O/salicylic acid,²² AcOH,²³ 1-methyl-2-oxopyrrolidinium hydrogen sulfate ([Hpyro][HSO₄]),²⁴ InCl₃²⁵ and [n-Bu₄N][HSO₄].²⁶

Some of these catalysts have many limitations such as inefficient separation of the catalyst from homogeneous reaction mixtures,²⁰⁻

⁴⁵ ²³ unrecyclable and environmentally limitations.²⁰⁻²⁵ Hence, development of new solid acids with numerous advantages such as cost-effectiveness, environmentally benign, easy workup and good stability for one-pot multicomponent synthesis of highly substituted dihydro-oxopyrrole scaffolds is still in demand. In this ⁵⁰ regard, our aim is developing cheap and biomaterials solid acid

catalysts for this transformation.

Cellulose is one of the most abundant natural carbon based biopolymers containing free OH groups with nucleophilic character. It has been used for synthesis of some compounds ⁵⁵ which used in enantioselective chromatography,²⁷ protein

- immobilization,²⁸ antibodies²⁹ and retarded drug release.³⁰ Sawdust is a biodegradable, natural, cheap, renewable and readily available source of cellulose.
- In this work, we have investigated about synthesis of sawdust based catalyst by bonding Lewis acids to OH groups of D-glucose units. Since, sawdust is containing cellulose with other substances such as pectin, tannin, proteins, minerals and lignin that caused leaching in organic mediums. Therefore, pectin, lignin, proteins and minerals ⁶⁵ must be removed. For this purpose the pine sawdust was treated respectively with NaOH, NaClO, and H₂O₂. For preparation of nano-sawdust, the sawdust has been treated with concentrated H₂SO₄ for partial hydrolysis of its cellulose. Then, the nano-sawdust was used to synthesis of BF₃/nano-sawdust as a ⁷⁰ new, biodegradable and green catalyst.

We wish to report herein its catalytic behavior for the costeffective and facile one pot cascade synthesis of highly functionalized dihydro-2-oxopyrroles via 4CRs of the dialkylacetylenedicarboxylates, amines and aldehyde under s thermal conditions.

Result and discussion

Published on 06 January 2015. Downloaded by University of California - San Diego on 10/01/2015 17:51:05

In order to investigate the structure of BF₃/nano-sawdust, we have studied the FT-IR (ATR) spectra of pine sawdust and BF₃/nano-sawdust (Figure 1). In sawdust FT-IR spectrum, two ¹⁰ strong bands at 3331 and 1020 cm-1 were observed. In BF₃/nano-sawdust, in addition to the above mentioned bands, some bands also appeared at 820, 913, 1264, 1424 and 1633 cm-1. The band in 916 cm⁻¹ verifies the C-O-B group on BF₃/nano-sawdust.

The proposed structure containing possible model for acid sites formed on the catalyst is similar to the reported structure for cellulose triphosphate gels that was prepared by phosphorylation of trihydroxy³¹ groups of D-glucose units and BF₃/ γ -Al₂O₃ (Scheme 2).³²

20 Scheme 2. Proposed structure for (a) BF₃/nano-sawdust, (b)BF₃/γ-Al₂O₃ and (c) cellulose triphosphate

Fig 1: FT-IR (ATR) spectrum of (a) pine sawdust and (b) $BF_3/nano-sawdust.$

The FESEM image of nano-sawdust and BF₃/nano-sawdust is shown in figure 2. According to the FESEM date, the particles size of catalyst is below 50 nm. Quantitative elemental information (EDS) of BF₃/nano-sawdust was measured by SEM/EDS instrument, Phenom pro X, (Figure 3). According to this data, the weight percentage of F, O and C are 46.4, 39.3 and 40 7.9, respectively.

Fig 2. The FESEM image of (a) nano-sawdust and (b) BF₃/nano-sawdust

Fig. 3: EDS analysis diagram of BF₃/nano-sawdust

The amount of boron in the catalyst was determined. For this purpose, a mixture of BF₃/nano-sawdust (0.5 g) and water (50 mL) was stirred and boiled for 1 hour. Then, the mixture was ⁵⁰ cooled and titrated with 12.5 ml of standard NaOH (0.18 N) in the presence of phenolphetalein. The boron amount in catalyst was found to be 5.5 meq.g-1. In this process, the attached boron in cellulose was reacted with water, captured OH⁻ from water and produced H⁺ that evaluated with OH⁻ (Scheme 3).

$$\underbrace{ \left(\begin{array}{c} OBF_{2} \\ F_{2}BO \\ F_{2}BO \end{array} \right)}_{F_{2}BO} OBF_{2} OBF_$$

Scheme 3

The thermal gravimetric analysis (TG-DTG) pattern of BF₃/nanosawdust was detected from 20 to 515 °C (Figure 4). The catalyst ⁶⁰ is stable until 55 °C and only 15% of its weight was reduced in 115 °C due to the removal of catalyst moisture. Heating the catalyst until 515 °C, caused 73% of its mass to be reduced. The char yield of the catalyst in 515 °C is 30%. According to the TG-DTG diagram of BF₃/nano-sawdust and our study, it was revealed

65 that this catalyst is suitable for the promotion of organic reactions below 115 °C.

Fig 4: Thermal gravimetric analysis (TG-DTG) pattern of BF_3 /nano-sawdust

- In this study, we have investigated the catalytic activity of BF_3 /nano-sawdust for the synthesis of dihydro-20x0pyrroles via 4CRs of the dialkylacetylenedicarboxylates, amines and aldehyde.
- ⁷⁵ The synthesis of dihydro-2-oxopyrroles is in kind an intermolecular nucleophilic addition reaction (Mannich reaction type) included several intermediates. Therefore, it is necessary the choosing of a suitable conditions such as catalyst, solvent and temperature for this reaction. As a model reaction, synthesis of

Published on 06 January 2015. Downloaded by University of California - San Diego on 10/01/2015 17:51:05

methyl-1-(4-chlorophenyl)-4-((4-chlorophenyl)amino)-5-oxo-2,5dihydro-1H-pyrrole-3 carboxylate was examined under various condition in the presence of BF₃/nano-sawdust as catalyst (Table 1). As shown in table 1, the most yield of reaction was acquired ⁵ using of 3 mmol of formaldehyde in ethanol at 70 °C and in the presence of 0.08 g BF₃/nano-sawdust after 3.5 h (Table 1, Entry 8). Effect of different solvent on the reaction was investigated and revealed that ethanol gave the best results for this transformation. It was be noted when the reaction was performed ¹⁰ in the same conditions mentioned in entry 8 without catalyst, desired product was obtained in low yield (Table 1, entry 13). Reusability of catalyst was investigated for three cycles (Table 1, entries 14–16). For this purpose after each run the reaction mixture was diluted with acetone or ethanol and filtered for is isolation of catalyst. The obtained catalyst was then washed with chloroform followed by drying in room temperature. The recovered catalyst was then used for the next run of the reactions. It was found that the reactivity of the catalyst decreases marginally for the next run (approx. 3%).

Table 1. Preparation of methyl-1(4-chlorophenyl)-4-((4-ethylphenyl)amino)-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate under various conditions.

 $1 \qquad II \qquad III \qquad IV \qquad IV$

20

Entry	Solvent	Catalyst	Reactant I: II:III	Condition	Time	Yield ^b
1	EtOH	-	2:1:1.5	R.T.	3h	-
2	EtOH	BF ₃ /nano-sawdust (0.06)	2:1:1.5	R.T.	3h	14%
3	EtOH	BF ₃ /nano-sawdust (0.08)	2:1:1.5	R.T.	3h	17%
4	EtOH	BF ₃ /nano-sawdust (0.08)	2:1:1.5	Reflux	3h	37%
5	EtOH	BF ₃ /nano-sawdust (0.08)	2:1:2	Reflux	3h	52%
6	EtOH	BF ₃ /nano-sawdust (0.08)	2:1:2.5	Reflux	3h	62%
7	EtOH	BF ₃ /nano-sawdust (0.08)	2:1:2.5	Reflux	3.5h	81%
8	EtOH	BF ₃ /nano-sawdust (0.08)	2:1:3	Reflux	3.5h	92%
9	MeOH	BF ₃ /nano-sawdust (0.08)	2:1:3	Reflux	3.5h	60%
10	EtOH/MeOH1:1	BF ₃ /nano-sawdust (0.08)	2:1:3	Reflux	3.5h	67%
11	CHCl ₃	BF ₃ /nano-sawdust (0.08)	2:1:3	Reflux	3.5h	24%
12	<i>n</i> -Hexane	BF ₃ /nano-sawdust (0.08)	2:1:3	Reflux	3.5h	38%
13	EtOH	-	2:1:3	Reflux	3.5h	20%
14	EtOH	BF ₃ /nano-sawdust (0.08), 2 nd run	2:1:3	Reflux	3.5h	90%
15	EtOH	BF ₃ /nano-sawdust (0.08), 3 nd run	2:1:3	Reflux	3.5h	87%
16	EtOH	BF3/nano-sawdust (0.08), 4nd run	2:1:3	Reflux	3.5h	84%
17	MeOH	[n-Bu ₄ N][HSO ₄] (10 mol%)	2:1:1	R.T.	4h	$86\%^{26}$
18	MeOH	InCl ₃ (20 mol%)	2:1:1.5°	R.T.	3h	79% ²⁵
19	EtOH	AcOH (2 eq)	3:1:1.5 ^d	Reflux	4h	89% ²³

^aReactions were run with the following steps: (a) dimethylacetylendicarboxylate(1 mmol) and 4-chloroaniline (1 mmol) were added into 4 mL solvent and kept at room temperature for 15 min; (b) 4-chloroaniline (1 mmol), formaldehyde and catalyst were added to the above mixture respectively, and then stirred at rt/ 70 °C for desired time. ^bIsolated yield after recrystallization in ethanol.

²⁵ Finally, with optimized reaction conditions obtained for the synthesis of IV, from the amount of reactant, solvent, amount of catalyst and reaction temperature point of view, the scope of this transformation was explored. Accordingly, for synthesis of ³⁰ different dihydro-2-oxopyrrole derivatives were examined and

high yields were noticed in most of the cases (Table 2)

Experimental section

Materials and methods:

All chemicals and solvents were purchased from the Merck and ³⁵ Fluka Chemical Companies in high purity. Materials were used

- from the commercial reagent grade. FT-IR spectra were recorded onan attenuated total reflectance-fouriertransform infrared (ATR-FTIR) spectrophotometer (Bruker, Eqinox 55). 1H NMR and 13C NMR spectra were recorded at 400 MHz and 100 MHz,
- ⁴⁰ respectively, on a BrukerDXR-400 spectrometer using CDCl₃as solvent and tetramethylsilane as internal standard. Mass spectra (MS) were recorded on a FINNIGAN-MAT 8430 mass

spectrometer, operating at an ionization potential of 70 eV. Melting points were obtained with a Buchi melting point B-540 ⁴⁵ B.V.CHI apparatus. Quantitative elemental information (EDS) of BF₃/nano-sawdust was measured by SEM/EDS instrument, Phenom pro X.

Preparation of nano-sawdust:

Pine sawdust (4 g), was first treated with a solution of 17.5% w/v so sodium hydroxide in water bath maintained at 100 °C for 12 hours to remove tannin, pectin, proteins and minerals. The residue was alpha cellulose that is not soluble in 17.5% w/v sodium hydroxide solution. The alkali treated fibers were washed repeatedly. The stock was then bleached with 100ml of 1:1 so dilution of 5 % w/v sodium hypochlorite solution at 80 °C for 8 hrs. The resulting was then treated with 10 mlof 20 % v/v hydrogen peroxide at 50°C for 2 hours due to the removal of the insoluble lignin. The resultant was hydrolyzed by refluxing with sulfuric acid (65% H₂SO₄ with fiber to liquor ratio of 1:20) for 2

[°]Diethylacetylenedicarboxylate instead of dimethylacetylenedicarboxylate was used

^d4-Bromoaniline instead of 4-chloroaniline was used.

^aFor entry of 1-13,18 The amount of amine (mmol): dialkylacetylenedicarboxylate (mmol): formaldehyde (mmol): BF₃/nano-sawdust(g) equal to 2:1:3:0.08

for entry of 14-17 The amount of amine (mmol): dialkylacetylenedicarboxylate (mmol): aldehyde (mmol): BF_3 /nano-sawdust(g) equal to 2:1:2:0.08

^bIsolated yields after recrystallization in ethanol.

 R^4CHO for entry of 1-13,18was formaldehyde, entry 14,16-17 wasbenzaldehyde and entry 15 was 4-methylbenzaldehyde.

hours at 60 °C with strong agitation. Resulting mixture was cooled to room temperature and diluted by adding an excess of distilled water. Then, the suspension was repeatedly centrifuged ¹⁰ at 12000 rpm for 8 minutes using a refrigerated centrifuge (AppendorfCentrifuge 5417R). After each run, the nano-sawdust (as white powder) was washed with distillated water and centrifuged until the supernatant was become neutral.

Preparation of BF₃/nano-sawdust:

¹⁵ In a ventilated room, a 25 mL suction flask equipped with a constant-pressure dropping funnel containing BF₃.Et₂O (1 mL) and gas inlet tube for conducting HF, charged with 1 g nano-sawdust and chloroform, BF₃.Et₂O was added drop wise over a period of 3 min at room temperature. The mixture was stirred for ²⁰ one hour at room temperature. The resulted mixture was filtered. The obtained white solid was washed with chloroform and dried at room temperature.

Typical procedure for synthesis of dihydro-2-oxopyrroles:

In a round-bottom flask (50 mL) equipped with a reflux ²⁵ condenser, firstly, a mixture of substituted amine (1 mmol) and dialkylacetylenedicarboxylate (1 mmol) in absolute ethanol (4 mL) was stirred for 30 min. Then, other substituted amine (1 mmol), formaldehyde 37% (3 mmol) or substituted benzaldehyde (2mmol) and BF₃/nano-sawdust (0.08 g) in absolute ethanol (3 RSC Advances Accepted Manuscrip

mL) were added to the above mixture and stirred in 70°C. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was allowed to be cooled, filtered off and washed with EtOH (3×10 mL) to remove all unreacted $_{5}$ substrates.For separation of catalyst from solid product, it was

washed with chloroform (15 mL). The chloroform was evaporated and the crude solid product was recrystallized from ethanol to give the corresponding dihydro-2-oxopyrroles.

Conclusions

¹⁰ In summary, BF₃/nano-sawdust as a green, cheap, natural, biodegradable and readily available biopolymer solid acid catalyst introduced. We have shown that various substituted dihydro-2-oxopyrrole derivatives can be successfully synthesis by an operationally simple and high efficient one-pot four-¹⁵ component procedure using BF₃/nano-sawdust. This protocol has many advantages including high conversions, low catalyst loading, low-cost, easy workup and operational simplicity, which makes this method more attractive.

Acknowledgements

²⁰ The Research Council of Yazd University is gratefully acknowledged for financial support of this study.

Notes and references

^aDepartment of Chemistry, College of Science, Yazd University, Yazd, Iran. P.O. Box 89195-741,I.R.Iran; E-mail: fmirjalili@yazd.ac.ir

25 † Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

[‡] Footnotes should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and ³⁰ spectral data, and crystallographic data.

- 1 L. Zhang, Y. Tan, N.-X. Wang, Q.-Y. Wu, Z. Xi and G.-F. Yang, *Bioorg. Med. Chem*, 2010, **18**, 7948.
- 2 S. S. Tarnavsky, G. G. Dubinina, S. M. Golovach and S. M. Yarmoluk, *Biopolym Cell*, 2003, **19**, 548.
- 35 3 B. Bohner and M. Baumann, U.S. Patent 4220,655, 1980.
 - 4 T. Kawasuji, M. Fuji, T. Yoshinaga, A. Sato, T. Fujiwarab and R. Kiyamaa, *Bioorg. Med. Chem*, 2007, **15**, 5487.
 - 5 R. Shiraki, A. Sumino, K. Tadano and S. Ogawa, *Tetrahedron Lett*, 1995, **36**, 5551.

- ⁴⁰ 6 S. B. Singh, M. A. Goetz, E. T. Jones, G. F. Bills, R. A. Giacobbe, L. Herranz, S. Stevens-Miles and D. L. Williams Jr, *J. Org. Chem*, 1995, **60**, 7040.
 - 7 Q. Chen, M. T. Huggins, D. A. Lightner, W. Norona and A. F. McDonagh, J. Am. Chem. Soc, 1999, 121, 9253.
- 45 8 H. Uchiro, N. Shionozaki, R. Tanaka, H. Kitano, N. Iwamura and K. Makino, *Tetrahedron Lett*, 2013, 54, 506.
 - 9 D. G. Nagle, V. J. Paul and M. A. Roberts, *Tetrahedron Lett*, 1996, 37, 6263.
- 10 R. Tanaka, K. Ohishi, N. Takanashi, T. Nagano, H. Suizu, T. Suzuki ⁵⁰ and S. Kobayashi, *Org. Lett*, 2012, **14**, 4886.
 - 11 D. Berger and W. Imhof, Tetrahedron, 2000, 56, 2015.
 - 12 I. Yavari, A. M. Sanandaj, L. Moradi and A. Mirzaei, *Tetrahedron*, 2008, 64, 5221.
- 13 L. Dang, L. Liang, C. Qian, M. Fu, T. Ma, D. Xu, H. Jiang and W. Zeng, J. Org. Chem, 2014, 79, 769.
- 14 R. Q. Ran, J. He, S. D. Xiu, K. B. Wang and C. Y. Li, Org. Lett, 2014, 16, 3704.
- 15 Y. Gao, M. Shirai and F. Sato, *Tetrahedron Lett*, 1997, **38**, 6849.
- 16 Y. Luo, X. Lu, Y. Ye, Y. Guo, H. Jiang and W. Zeng, *Org. Lett*, 2012, **14**, 5640.
- 17 A. S. Demir, M. Emrullahoglu and G. Ardahan, *Tetrahedron*, 2007, 63, 461.
- 18 J. Zhu, H. Bienayme, Multicomponent Reactions, 1st ed., Wiley-VCH, Weinheim, Germany, 2005.
- 65 19 S. Rana, M. Brown, A. Dutta, A. Bhaumik and C. Mukhopadhyay, *Tetrahedron Lett*, 2013, 54, 1371.
- 20 A. T. Khan, A. Ghosh and M. M. Khan, *Tetrahedron Lett*, 2012, 53, 2622.
- 21 J. Sun, Q. Wu, E. Y. Xia and C. G. Yan. *Eur. J. Org. Chem*, 2011, 70 **16**, 2981.
- 22 L. Lv, S. Zheng, X. Cai, Z. Chen, Q. Zhu and S. Liu, ACS Comb. Sci, 2013, 15, 183.
- 23 Q. Zhu, H. Jiang, J. Li, S. Liu, C. Xia and M. Zhang, J. Comb. Chem., 2009, 11, 685.
- 75 24 S. S. Sajadikhah, N. Hazeri, M. T. Maghsoodlou and S. M. Habibi-Khorassani., J. Chin. Chem. Soc, 2013, 60, 1003.
- 25 S. S. Sajadikhah, M. T. Maghsoodlou and N. Hazeri, *Chin ChemLett*, 2014, 25, 58.
- 26 S. S. Sajadikhah and N. Hazeri, Res ChemIntermed, 2014, 40, 737.
- 80 27 G. Felix, J. Chromatogr. 2001, 906, 171.
 - 28 A. J. Martinez, S. Manolache, V. Gonzalez, R. A. young and F. J. Denes, J. Biomater. Sci. Polym. Ed, 2000, 11, 415.
 - 29 F. Loescher, T. Ruckstuhi and S. Seeger, Adv. Mater. 1998, 10, 1005.
- 30 B. Volkert, B. Wolf, S. Fischer, N. Li and C. Lou, Macromol. Symp,
- 2009, **280**, 130.
- 31 P. Granja, L. Pouysegu, M. Petraud, B. De Jeso, C. Baquey and M. Barbosa, J. Appl. Polym. Sci, 2001, 82, 3341.
- 32 J. Yang, A. Zheng, M. Zhang, Q. Luo, Y. Yue, C. Ye, X. Lu and F. Deng, J. Phys. Chem B, 2005, 109, 13124.

90

85

BF₃/nano-sawdust as a green, biodegradable and no expensive catalyst for synthesis of highly substituted dihydro-2-oxopyrroles

