View Article Online

ChemComm

Chemical Communications

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Z. Gao, J. Qian, H. Yang, X. Hang, J. Zhang and G. Jiang, *Chem. Commun.*, 2020, DOI: 10.1039/D0CC02380A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

Journal Name

Accepted Manuscri

Chiral Brønsted Acid-Catalyzed Dynamic Kinetic Resolution of Atropisomeric ortho-Formyl Naphthamides

Received 00th January 20xx, Accepted 00th January 20xx Zeng Gao,^{ab} Jinlong Qian,^a Huameng Yang,^a Xiao-Chun Hang,^{*c} Jinlong Zhang,^{*a} and Gaoxi Jiang^{*a}

DOI: 10.1039/x0xx00000x

www.rsc.org/

Despite the widespread use of naphthamide atropisomers in the biologically active compounds and asymmetric catalysis, few catalytic methods have succeeded in the enantioselective synthesis of these compounds. Herein, a chiral Brønsted acid (CBA) catalysis strategy was developed for readily scalable dynamic kinetic resolution of challenging ortho-formyl naphthamides with pyrrolylanilines. The atropisomeric amide's chiral axis and a stereogenic center were simultaneously established for a new family of potential biologically active pyrrolopyrazine compounds with high enantio- and diastereoselectivities (up to >20:1 d.r. and 98:2 e.r.). Epimerization experiments of its derivatives reveal that the N-substitution of nearby stereogenic center could affect the configurational stability of axially chiral aromatic amides. These results might be useful for the construction of other kinds of novel axially chiral molecules with a low rotational barrier.

Axially chiral aromatic amide is one of the most important scaffold in numerous in biologically active skeletons and asymmetric catalysis (Scheme 1, a).^{1,2} Nevertheless, in a sharp contrast with the blossoming of axially chiral biaryls,^{3,4} the catalytic enantioselective construction of these compounds is more challenging due to the lower barrier to amide atropisomerization and difficult structural modification. Compared with the elegant asymmetric cycloaddition to construct aromatic rings although that always suffers from unavoidable multistep synthetic dilemmas of starting materials,⁵ directly and efficiently catalytic dynamic kinetic resolution (DKR) of atropisomeric amides might represent the cutting-edge technologies from the point of atom/step

^{b.}University of Chinese Academy of Sciences, Beijing 100049, P. R. China

economy since a pair of racemic compounds could be converted into a single enantiomer in quantitative yield theoretically, although success in the case of direct DKR are very sparse (Scheme 1, b). In 2002, Walsh realized the first kinetic resolution of atropisomeric 2-vinyl-1-aryl amides in moderate results by Sharpless asymmetric dihydroxylation.⁶ After that, Sakamoto reported a conglomerate crystallization process for DKR of (2methoxynaphthalen-1-yl)(piperidin-1-yl)methanone by asymmetric photocycloaddition with 9-cyanoanthracene (9-CNAN).⁷ Breakthrough came from Miller's group in 2013. They exploited an interesting peptide-based catalysis for effective

up to 99% yield high stereoselectivity • high yield • amide's chiral axis chiral amine • gram-scale up to > 201 d.r.; 96% ee Scheme 1. Representative axially chiral amides and the dynamic kinetic resolution synthesis.

^a-State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Su-zhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lan-zhou 730000, P. R. China. E-mail: zhangjl@licp.cas.cn, gxjiang@licp.cas.cn

^cKey Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, P. R. China. E-mail: iamxchhang@njtech.edu.cn

⁺ Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx00000x

COMMUNICATION

atropisomer-selective tribromination of simple atropisomeric benzamides although the substrates have strong dependence of meta-phenolic hydroxyl group.8a Recently, Smith9 and Li10 groups developed independently an asymmetric DKR of amide naphthols by bulky biscinchona alkaloid-based catalysts via atroposelective O-benzylation and allylation. For the former reaction, the substituent at peri-position of the substrate was very essential.9 Despite these impressive advances, the DKR of simple atropisomeric ortho-formyl naphthamides is still challenging due to its finite reaction modes and lower rotational barrier.¹¹ Compared with other naphthamide counterparts, its intrinsic trigonal CHO group might be unfavourable for barrier to rotation about the Aryl-CO bond.^{11a} The interaction of the transient pyramidalised nitrogen's lone pair with $\pi^*(C=O)$ could decrease the barrier energy via a five-membered ring transition state.^{11a} Two decades ago, Clayden and Lai achieved the first DKR of atropisomeric ortho-formyl naphthamides by using stoichiometric amount of four-step proline-based diamine (Scheme 1, c-(i)).^{12a-b} The pioneering work on catalytic DKR of amide aldehyde with acetone was reported by Walsh group in the presence of L-proline, giving products ranged from 77% to 95% with the diastereoselectivities from 1.6:1 to 8.0:1 (Scheme 1, c-(ii)).^{12c} Herein, we reported an efficient CBA strategy for its catalytic DKR with pyrrolylanilines in high enantio- and diastereoselectivities (up to >20:1 d.r. and 98:2 e.r.), which established a new reaction model to assemble potentially biological active molecules bearing chiral axis, stereogenic center and heterocycle (Scheme 1, c-(iii)).

Nitrogen-containing heterocycles like pyrrole and indole are ubiquitous and privileged motifs in myriad of natural products and pharmaceuticals.13 By considering the formation of new potential bioactive molecules containing axially chiral aromatic amide and another microstructure of centers and heterocyclic rings, the catalytic DKR of naphthamides with a reactive heterocycle should be an efficient and practical methodology through only one step. As contrasted with indole, the nucleophilicity of inert N-substituted pyrrole is much weaker leading to its immanent low reactivity and the huge difficulties to control the stereoselectivity. In our recent efforts, (1H-pyrrol-1-yl)anilines have been proved efficient and successful for asymmetric cascade cyclization reaction by CBA catalysis.14 Such compounds possess two reaction sites, similar to the (S)-N-(pyrrolidin-2-ylmethyl)aniline,¹² but it is more rigid. We anticipate that the kind of substrates should be more favourable control of enantio- and diastereoselectivities for catalytic DKR of challenging ortho-formyl naphthamides.

After careful optimization of the reaction conditions (for details, see ESI), the reaction between amide naphthaldehyde 1a (0.1 mmol) and 2-(1H-pyrrol-1-yl)aniline 2a (0.15 mmol) with a 5.0 mol % of CBA catalyst A5 at room temperature in n-hexane provided the desired product 3aa in 98% yield with >20:1 d.r. and 93:7 e.r. Upon the result, we first amplified the reaction up to gram-scale to evaluate the practicability of the catalytic DKR process. Gratifyingly, 1.50 g of **3aa** was smoothly isolated in 96% yield with >20:1 diastereoselectivity and 90:10 e.r. (Scheme 2). The enantioselectivity could be increased up to >99.5:0.5 after once recrystallization. The structure of 3aa was determined by X-ray crystal analysis. And according to the X-ray single crystal structure of **3aj**, its absolute configuration was assigned as *aS*,*S*.

Page 2 of 5

Unless indicated otherwise, the reaction was carried out on 0.1 mmol under the reaction conditions of entry 16 in Table 1. ^a Amide naphthaldehyde 1a (0.1 mmol), 2-(1H-pyrrol-1-yl)aniline 2 (0.15 mmol, 1.5 equiv.) and chiral acid catalyst A5 (5.0 mol %) were stirred in nhexane (1.0 mL, 0.1 M) at room temperature under N₂ for 36 h. ^b Yield of isolated product. ^cd.r. value was determined by ¹H NMR spectroscopy. ^d ee value was determined by chiral HPLC analysis.

The investigation of 2-(1H-pyrrol-1-yl)aniline scope reveals that the approach proceeded readily to deliver the corresponding compounds **3ab-an** in good outcomes no matter with electron-deficient or electron-rich groups on the aromatic rings (Scheme 2). Substituents at the 2-position of the aryl rings near with the pyrrole were well compatible with current reaction conditions to furnish the desired products 3ab-3af in high enantioselectivities and diastereoselectivities ranging from 6:1 to >20:1 d.r. Substrates with a substituent at the 3-position were also tolerated to produce adducts 3ag-ak with excellent results in terms of both conversion and chirality control. Fortunately, the e.r. value of the methoxyl substituted 2-(1Hpyrrol-1-yl)aniline 2l could be increased to more than 99.5:0.5 via a simple recrystallization although original enantioselectivity of the product **3an** is moderate. Then, multi-substituted reactants 2m-n were employed into this reaction system and resulted in products 3am-an in good results, respectively.

We then investigated the scope of amide naphthaldehydes 1 with 2-(1H-pyrrol-1-yl)anilines 2a and 2i-j. As demonstrated in Scheme 3, axially chiral products 3ba and 3bi were easily synthesized with high enantiomeric excess and excellent diastereoselectivities from 4-Me substituted naphthaldehyde 1b. High yields and acceptable e.r. values were detected for 3ca and 3ci from naphthamide 1c having a fluorine atom at the4position, respectively. Delightedly, dihydroacenaphthylene (1d) and pyrene aldehydes (1e) were also amenable to the reaction conditions, providing 3da, 3di, 3ei and 3ej in 94-98% yields with good enantio- and diastereoselectivities. Finally, the dicyclohexylamide 1f was subject to the reaction. The desired product 3fa and 3fi were generated readily with high yields and diastereoselectivities.

To highlight the synthetic potential of this asymmetric catalytic DKR strategy, further transformations of the axially

Journal Name

^{*a*} Amide naphthaldehyde **1** (0.1 mmol), 2-(1H-pyrrol-1-yl)aniline **2** (0.15 mmol, 1.5 equiv.) and chiral phosphoric acid catalyst **A5** (5.0 mol %) were stirred in n-hexane (1.0 mL, 0.1 M) at room temperature under N₂ for 36 h. ^{*b*} Yield of isolated product. ^{*c*} d.r. value was determined by ¹H NMR spectroscopy. ^{*d*} ee value was determined by chiral HPLC analysis.

chiral product were performed. As shown in Scheme 4, **3aa** was oxidized into the derivative **4** by KMnO₄ at 0 °C in acetone for 2 h with a slightly decreased e.r. value of 91.5:8.5. By acylation with 4-(trifluoromethyl)benzoyl chloride at the presence of Nethyl-N-isopropylpropan-2-amine (DIPEA) at room temperature, adduct **5** was isolated in almost quantitative yield without any loss of chirality. In order to investigate the rotational stability of these novel compounds, racemization experiments by Eyring equation¹⁵ were carried out. To the free rotation around the Ar-CO axially chiral bond, the higher shield effect of stereogenic tetrahedral Csp³ amine

in **3aa** than that of the planar Csp² imine in **4** was affirmed by an energy gap of about 6.5 kJ/mol, and the half-time dropped from 3.57 days to 6.34 hours. As expected, the configurational stability could be improved by increase the steric hindrance through installing a bulky substituent group at the nitrogen site. As a result, compound **5** has a longer half-time of 8 days than that of **3aa**. The free rotation of an axis would be prevented by a chiral center with large steric hindrance, which should be a

COMMUNICATION

useful principle to the asymmetric synthesis of weyel axially chiral molecules with feeble rotational barriers1039/D0CC02380A

reports, 14, 16 Based on the previous above DKR transformation should undergo the imine formation with a sequential nucleophilic addition to the pyrrole unit in the presence of CBA. By using the imine intermediate as the starting material under the standard reaction conditions, 3aa was obtained in 26.4:73.6 e.r., lower than that of one-pot reaction. The preliminary results imply that CPA catalyst might have chiral recognition for each step in the cascade reaction and the synergistic effect would benefit the final enantioselectivity (for the detail, please see the ESI). We postulated the catalytic transition state to reasonably explain the stereoselectivity (Scheme 5). Theoretically, the TS-A should be more favourable than the TS-B in which the larger steric impulsion is existed between the N-isopropyl groups and the catalyst skeleton. On the other hand, the addition of the pyrrole to the intermediate imine would take place from the anti-face of the isopropyl groups with lower steric hindrance, leading to the desired product **3aj** with the absolute configuration as *aS,S*.

In conclusion, we developed the first readily scalable CBAcatalyzed enantioselective DKR between naphthamides and pyrrolylanilines with high enantio- and diastereoselectivities (up to >20:1 d.r. and 98:2 e.r.). This strategy can install easily and simultaneously an atropisomeric amide's chiral axis, a stereogenic center and nitrogen-containing heterocycle into a new family of valuable potential biologically active pyrrolopyrazine compounds. Importantly, obvious barrier effect of the chiral center with larger substituent was confirmed and might be benefit to prepare other new kinds of axially chiral compounds with lower rotational barrier. Examination of biological activities of this kind of molecules was ongoing in our lab.

Financial support from the National Natural Science Foundation of China (21602231), the Natural Science Foundation of Jiangsu Province (BK20191197, BK20181373) and Major Program of Natural Science Research of Jiangsu Higher Education Institutions of China (No. 18KJA150005) is gratefully acknowledged.

Journal Name

Conflicts of interest

There are no conflicts to declare.

Notes and references

- For selected reviews, see: (a) B. Zilate, A. Castrogiovanni, C. Sparr, ACS Catal. 2018, 8, 2981–2988; (b) E. Kumarasamy, R. Raghunathan, M. P. Sibi, J. Sivaguru, Chem. Rev. 2015, 115, 11239–11300; (c) S. R. LaPlante, L. D. Fader, H. R. Fandrick, D. R. Fandrick, O. Hucke, R. Kemper, S. P. F. Miller, P. J. Edwards, J. Med. Chem. 2011, 54, 7005–7022; (d) S. R. LaPlante, P. J. Edwards, L. D. Fader, A. Jakalian, O. Hucke, ChemMedChem 2011, 6, 505–513; (e) J. Clayden, W. A. Moran, P. J. Edwards, S. R. LaPlante, Angew. Chem. Int. Ed. 2009, 48, 6398–6401.
- 2 For selected examples, see: (a) X.-F. Bai, T. Song, Z. Xu, C.-G. Xia, W.-S. Huang, L.-W. Xu, Angew. Chem. Int. Ed. 2015, 54, 5255-5259; (b) H. Takahashi, S. Wakamatsu, H. Tabata, T. Oshitari, A. Harada, K. Inoue, H. Natsugari, Org. Lett. 2011, 13, 760-763; (c) J. Porter, A. Payne, I. Whitcombe, B. de Candole, D. Ford, R. Garlish, A. Hold, B. Hutchinson, G. Trevitt, J. Turner, C. Edwards, C. Watkins, J. Davis, C. Stubberfield, Bioorg. Med. Chem. Lett. 2009, 19, 1767-1772; (d) S. D. Guile, J. R. Bantick, M. E. Cooper, D. K. Donald, C. Eyssade, A. H. Ingall, R. J. Lewis, B. P. Martin, R. T. Mohammed, T. J. Potter, R. H. Reynolds, S. A. St-Gallay, A. D. Wright, J. Med. Chem. 2007, 50, 254-263; (e) J. S. Albert, C. Ohnmacht, P. R. Bernstein, W. L. Rumsey, D. Aharony, B. B. Masek, B. T. Dembofsky, G. M. Koether, W. Potts, J. L. Evenden, Tetrahedron 2004, 60, 4337-4347; (f) J. S. Albert, D. Aharony, D. Andisik, H. Barthlow, P. R. Bernstein, R. A. Bialecki, R. Dedinas, B. T. Dembofsky, D. Hill, K. Kirkland, G. M. Koether, B. J. Kosmider, C. Ohnmacht, W. Palmer, W. Potts, W. Rumsey, L. Shen, A. Shenvi, S. Sherwood, P. J. Warwick, K. J. Russell, J. Med. Chem. 2002, 45, 3972-3983; (g) J. Clayden, P. Johnson, J. H. Pink, M. Helliwell, J. Org. Chem. 2000, 65, 7033-7040; (h) J. Clayden, L. W. Lai, M. Helliwell, Tetrahedron: Asymmetry 2001, 12, 695–698.
- 3 For selected reviews, see: (a) A. J. Metrano, S. J. Miller, Acc. Chem. Res. 2019, 52, 199-215; (b) B. Zilate, A. Castrogiovanni, C. Sparr, ACS Catal. 2018, 8, 2981-2988; (c) Y.-B. Wang, B. Tan, Acc. Chem. Res. 2018, 51, 534-547; (d) W. Fu, W. Tang, ACS Catal. 2016, 6, 4814-4858; (e) T. Akiyama, K. Mori, Chem. Rev. 2015, 115, 9277-9306; (f) J. Wencel-Delord, A. Panossian, F. R. Leroux, F. Colobert, Chem. Soc. Rev. 2015, 44, 3418-3430; (g) M. P. Carroll, P. J. Guiry, Chem. Soc. Rev. 2014, 43, 819-833; (h) F. Giacalone, M. Gruttadauria, P. Agrigento, R. Noto, Chem. Soc. Rev. 2012, 41, 2406-2447; (i) G. Bringmann, T. Gulder, T. A. M. Gulder, M. Breuning, Chem. Rev. 2011, 111, 563-639. (j) Privileged Chiral Ligands and Catalysts, Q.-L. Zhou, Ed., Wiley-VCH: Weinheim, Germany, 2011; (k) M. C. Kozlowski, B. J. Morgan, E. C. Linton, Chem. Soc. Rev. 2009, 38, 3193-3207; (I) G. Bringmann, A. J. P. Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M. Breuning, Angew. Chem. Int. Ed. 2005, 44, 5384-5427; (m) Y.-B. Wang, B. Tan, Acc. Chem. Res. 2018, 51, 534-547; (n) Y.-C. Zhang, F. Jiang, F. Shi, Acc. Chem. Res. 2020, 53, 425-446.
- 4 (a) J. Luo, T. Zhang, L. Wang, G. Liao, Q.-J. Yao, Y.-J. Wu, B.-B. Zhan, Y. Lan, X.-F. Lin, B.-F. Shi, *Angew. Chem. Int. Ed.* 2019, **58**, 6708-6712; (b) C. Ma, F. Jiang, F.-T. Sheng, Y. Jiao, G.-J. Mei, F. Shi, *Angew. Chem. Int. Ed.* 2019, **58**, 3014-3020; (c) T. Baumann, R. Brgckner, *Angew. Chem. Int. Ed.* 2019, **58**, 4714-4719; (d) X. Fan, X. Zhang, C. Li, Z. Gu, *ACS Catal.* 2019, **9**, 2286-2291; (e) S. Zhang, Q.-J. Yao, G. Liao, X. Li, H. Li, H.-M. Chen, X. Hong, B.-F. Shi, *ACS*

Catal. 2019, 9, 1956-1961; (f) G. Liao, B. Li, H.-M. Chen, Q. J. Yao, Y.-N. Xia, J. Luo, B.-F. Shi, Angew. Chem. Dott: Ed. 1209.83 57 C 173514 17155; (g) C. G. Newton, E. Braconi, J. Kuziola, M. D. Wodrich, N. Cramer, Angew. Chem. Int. Ed. 2018, 57, 11040-11044; (h) F. Xue, T. Hayashi, Angew. Chem. Int. Ed. 2018, 57, 10368-10372; (i) J. A. Carmona, V. Hornillos, P. Ramírez-López, A. Ros, J. Iglesias-Sigüenza, E. Gómez-Bengoa, R. Fernández, J. Lassaletta, J. Am. Chem. Soc. 2018, 140, 11067-11075; (j) Y. Liu, X. Wu, S. Li, L. Xue, C. Shan, Z. Zhao, H. Yan, Angew. Chem. Int. Ed. 2018, 57, 6491-6495; (k) J. Feng, B. Li, J. Jiang, M. Zhang, W. Ouyang, C. Li, Y. Fu, Z. Gu, Chin. J. Chem. 2018, 36, 11-14; (I) L.-W. Qi, J.-H. Mao, J. Zhang, B. Tan, Nat. Chem. 2018, 10, 58-64; (m) Z. Zuo, J. Liu, J. Nan, L. Fan, W. Sun, Y. Wang, X. Luan, Angew. Chem. Int. Ed. 2015, 54, 15385-1538; (n) F. Jiang, K.-W. Chen, P. Wu, Y.-C. Zhang, Y. Jiao, F. Shi, Angew. Chem. Int. Ed. 2019, 58, 15104-15110; (o) F.-T. Sheng, Z.-M. Li, Y.-Z. Zhang, L.-X. Sun, Y.-C. Zhang, W. Tan, F. Shi, Chin. J. Chem. 2020, 38, 583-589; (p) F.-T. Sheng, Z.-M. Li, Y.-Z. Zhang, L.-X. Sun, Y.-C. Zhang, W. Tan, F. Shi, Chin. J. Chem. 2020, 38, 583-589; (q) Y.-H. Chen, H.-H. Li, X. Zhang, S.-H. Xiang, S. Li, B. Tan, Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202004671.

- 5 (a) V. C. Fäseke, C. Sparr, Angew. Chem. Int. Ed. 2016, 55, 7261-7264; (b) T. Suda, K. Noguchi, M. Hirano, K. Tanaka, Chem.-Eur. J. 2008, 14, 6593-6596.
- 6 R. Rios, C. Jimeno, P. Carroll, P. J. Walsh, J. Am. Chem. Soc. 2002, 124, 10272-10273.
- 7 M. Sakamoto, A. Unosawa, S. Kobaru, A. Saito, T. Mino, T. Fujita, Angew. Chem. Int. Ed. 2005, **44**, 5523–5526.
- 8 (a) K. T. Barrett, S. J. Miller, J. Am. Chem. Soc. 2013, 135, 2963-2966; (b) J. L. Gustafson, D. Lim, S. J. Miller, Science 2010, 328, 1251-1255.
- 9 A. J. Fugard, A. S. K. Lahdenperä, J. S. J. Tan, A. Mekareeya, R. S. Paton, M. D. Smith, *Angew. Chem. Int. Ed.* 2019, **58**, 2795-2798.
- 10 S.-L. Li, Q. Wu, C. Yang, X. Li, J.-P. Cheng, *Org. Lett.* 2019, **21**, 5495-5499.
- 11 (a) A. Ahmed, R. A. Bragg, J. Clayden, L. W. Lal, C. McCarthy, J. H.
 Pink, N. Westlund, S. A. Yasin, *Tetrahedron* 1998, 54, 13277–13294; (b) S. Brandes, M. Bella, A. Kjaersgaard, K. A.
 Jørgensen, *Angew. Chem. Int. Ed.* 2006, 45, 1147–1151.
- 12 (a) J. Clayden, L. W. Lai, Angew. Chem. Int. Ed. 1999, 38, 2556–2558; (b) J. Clayden, L. W. Lai, M. Helliwell, Tetrahedron 2004, 60, 4399–4412; (c) V. Chan, J. G. Kim, C. Jimeno, P. J. Carroll, P. J. Walsh, Org. Lett. 2004, 6, 2051-2053.
- 13 For selected reviews, see: (a) G. Balme, Angew. Chem. Int. Ed. 2004, 43, 6238–6241; (b) P. S. Baran, J. M. Richter, D. W. Lin, Angew. Chem. Int. Ed. 2005, 44, 609–612. For selected examples: (c) J. A. Johnson, L. Ning, D. Sames, J. Am. Chem. Soc. 2002, 124, 6900–6903; (d) A. Fürstner, K. Radkowski, H. Peters, Angew. Chem. Int. Ed. 2005, 44, 2777–2781.
- 14 Z. Wei, J. Zhang, H. Yang, G. Jiang, Org. Lett. 2019, **21**, 2790–2794.
- 15 (a) Y. Iwasaki, R. Morisawa, S. Yokojima, H. Hasegawa, C. Roussel, N. Vanthuyne, E. Caytan, O. Kitagawa, *Chem. Eur. J.* 2018, 24, 4453-4458. (b) K. Kondo, T. Iida, H. Fujia, T. Suzuki, R. Wakabayashi, K. Yamaguchi, Y. Murakami, *Tetrahedron* 2001, 57, 4115-4122; (c) K. Kondo, T. Iida, H. Fujia, T. Suzuki, K. Yamaguchi, Y. Murakami, *Tetrahedron* 2000, 56, 8883-8891; (d) K. Kondo, H. Fujia, T. Suzuki, Y. Murakami, *Tetrahedron Lett.* 1999, 40, 5577-5580.
- 16 (a) J. T. M. Correia, B. List, F. Coelho, Angew. Chem. Int. Ed. 2017, 56, 7967–7970; (b) Z. Wei, J. Zhang, H. Yang, G. Jiang, Adv. Synth. Catal. 2019, 361, 3694–3697.

COMMUNICATION

