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Transition-Metal-Free Cross-Coupling Using Tertiary Benzylic 
Organoboronates 
 Mitsutaka Takeda,[a] Kazunori Nagao,[a] and Hirohisa Ohmiya*[a][b] 

 

Abstract: The transition-metal-free cross-coupling of alkyl or aryl 
electrophiles using tertiary benzylic organoboronates is reported. 
This reaction involves the generation of tertiary alkyl anions from 
organoboronates in the presence of an alkoxide base and then their 
substitution reactions. This protocol allows the simple and efficient 
construction of quaternary carbon centers. 

The preparation of quaternary carbon centers using cross-
coupling reactions has been identified as a key challenge in 
organic synthesis. Cross-coupling reactions using a tertiary alkyl 
organometallic nucleophile are a direct and reliable approach for 
realizing highly congested quaternary carbon centers. Tertiary 
alkylboron compounds are particularly attractive organometallic 
reagents due to their high chemical stability and widespread 
availability (Figure 1A, top).[1] Recent progress in the catalytic 
preparation of tertiary alkylborons from various simple organic 
molecules has been remarkable.[2] Nevertheless, cross-coupling 
using tertiary alkylborons is still in its infancy given the limited 
progress in recent years.[3,4] In particular, C(sp3)–C(sp3) cross-
coupling between tertiary alkylborons and alkyl electrophiles is 
quite difficult. Obstacles to transition-metal catalysis are the slow 
transmetalation from sterically encumbered nucleophiles and the 
reductive elimination from the in situ-generated alkylmetal 
complex, which is prone to β-hydride elimination. 

Alkylborons serve as alkyl anion equivalents through the 
formation of borate species in the presence of an appropriate 
base. However, cross-coupling using borate species, which is 
derived from a tertiary alkylboron and a base, is underdeveloped 
(Figure 1A, bottom). For example, Aggarwal and co-workers 
demonstrated SE2’-type C(sp3)–C(sp3) cross-couplings between 
trisubstituted allylboronates and activated alkyl electrophiles 
such as tropylium cation, benzodithiolylium, and Eschenmoser’s 
salt using organolithium reagents as a base (Figure 1B).[5] 

Morken and co-workers revealed that the borate complex, which 
is derived from 1,1-diborylalkanes and alkoxide bases, could 
undergo deborylative C(sp3)–C(sp3) cross-coupling using alkyl 
halides (Figure 1C).[6a] On the other hand, the process using 
tertiary alkylborate species has not yet been applied to C(sp3)–
C(sp2) cross-coupling using aryl electrophiles. 

Here, we report tertiary alkylative cross-coupling of alkyl or 
aryl electrophiles using benzylic organoboronates (Figure 1D).[7] 

The reaction involves the generation of tertiary alkyl anions from 
organoboronates in the presence of an alkoxide base and then 
their substitution reactions under mild and transition-metal-free 
conditions. This protocol allows the simple and efficient 
construction of quaternary carbon centers. 

 

 
Figure 1. Construction of quaternary carbon centers through cross-couplings 
using tertiary alkylborons. 

 
In numerous studies in this laboratory, we found that the 

reaction of tertiary benzylboronate 1a (0.3 mmol) and 4-
chlorotetrahydro-2H-pyran (2a) (0.2 mmol) with a stoichiometric 
amount of KOtBu (0.3 mmol) occurred in dioxane (1 mL) at 
100 °C to produce the cross-coupling product 3aa in 87% 
isolated yield (Table 1, entry 1). 

The choice of bases was critical in the cross-coupling reaction 
(Table 1, entries 2–6). The use of other alkali metal-based 
tertiary butoxide bases, NaOtBu and LiOtBu, resulted in 
moderate and no product yield, respectively (entries 2 and 3). 
Highly basic and sterically demanding KHMDS was less 
effective (entry 4). A small alkoxide base, KOMe, slightly 
diminished the product yield (entry 5). The reaction efficiency 
tended to increase as the ionic radius of the metal increased 
(Li+ < Na+ < K+).[6a] PhLi showed moderate reactivity (entry 6). 
[5] 

The effect of the leaving group of the alkyl electrophile was 
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also evaluated (Table 1, entries 7–11). The reaction with 
secondary alkyl fluoride resulted in recovery of the substrate 
(entry 7). Secondary alkyl bromide and iodide gave a trace 
amount of the desired alkylation product, along with an alkene 
as the E2 elimination product (entries 8 and 9). Alkyl tosylate 
underwent the desired alkylation reaction (entry 10), but alkyl 
mesylate did not afford the product (entry 11). 
 
Table 1. Screening of conditions for cross-coupling between 1a and 2a.[a] 

 

 
Entry Change from standard conditions Yield (%)  

of 3aab 
1 none 97 (87) 
2 NaOtBu instead of KOtBu 53 
3 LiOtBu instead of KOtBu 0 
4 KHMDS instead of KOtBu 47 
5 KOMe instead of KOtBu 60 
6 PhLi instead of KOtBu 51 
7 F as leaving group instead of Cl 0 
8 Br as leaving group instead of Cl 0 
9 I as leaving group instead of Cl 3 

10 OTs as leaving group instead of Cl 31 
11 OMs as leaving group instead of Cl 0 

[a] Reaction conditions: 1a (0.3 mmol), 2a (0.2 mmol), KOtBu (0.3 mmol), 
dioxane (1 mL), 100 °C, 3 h. [b] 1H NMR yield. Yield of the isolated product is 
in parentheses. KHMDS, potassium hexamethyldisilazide. OTs, tosylate. OMs, 
mesylate. 

With these optimized reaction conditions in hand, the scope of 
the alkylboronates was investigated (Table 2, top).[8] Methyl, 
vinyl, benzyl, and allyl groups instead of the butyl group of 1a 
were tolerated (3ba–ea). The benzyl boronates having a bulky 
substituent such as an isopropyl or cyclohexyl group participated 
in the reactions to construct the highly congested contiguous sp3 
carbon centers (3fa, 3ga). Replacement of the butyl group with a 
SiMe2Ph substituent was tolerated, although the product yield 
was low (3ha). The reaction with a non-benzyl boronate resulted 
in no product being formed (3ia). Thus, the applicability of this 
protocol seems to be limited to benzyl boronates, the results 
indicating that the reaction would proceed through the formation 
of the benzyl anion from the organoboronate (vide infra). A 
secondary benzyl boronate drastically diminished the reaction 
efficiency (3ja). Conversion of the phenyl group to other 
aromatic rings such as the 1-naphthyl group was allowed in the 
reaction (3ka). A methoxy substituent at the para-position of the 
aromatic ring of the benzyl boronate resulted in low yield (3la). 
Thiophene underwent the reaction, although the yield was 
moderate (3ma). 

The scope of alkyl chlorides was also examined in cross-
coupling using tertiary benzyl boronates (Table 2, middle). 
Acyclic alkyl chloride was a suitable substrate (3ab). This 
protocol was applied to various cyclic alkyl chlorides. Thus, 4-, 
5-, 6-, 7- and 8-membered aliphatic rings could be utilized as 
coupling partners (3ac–3af). The piperidine derivative and 
acetal-substituted cyclohexyl chloride were allowed (3ag, 3ah). 

A sugar derivative could be tertiary-alkylated with three benzyl 
ether moieties remaining untouched (3ai). When a substrate 
having a stereogenic center next to the halogenated carbon was 
subjected to the reaction conditions, trans alkylated product 3bj 
was obtained due to the steric nature. Primary alkyl chlorides 
were found to be competent coupling partners (3ak, 3al). Two 
enantioenriched secondary alkyl chlorides were examined, but 
the reactions didn’t proceed (Table 2, bottom). 
 
Table 2. Substrate scope of C(sp3)–C(sp3) cross-coupling [a] 

 
[a] Reaction conditions: 1 (0.3 mmol), 2 (0.2 mmol), KOtBu (0.3 mmol), 
dioxane (1 mL), 100 °C, 3 h. [b] The product was isolated after desilylation. 
 

To understand how the borate intermediate, which is derived 
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2). First, when enantioenriched chiral tertiary alkylboronate (R)-
1a was used as a substrate, a complete loss of chirality in the 
product was observed (Figure 2A).[9] Subsequently, the reaction 
of alkyl chloride 2a and benzyl potassium reagent, prepared by 
the treatment of cumene 1b-H and Schlosser’s base,[10] was 
examined (Figure 2B). The result was comparable to the 
reaction of 1b and 2a shown in Table 2. In addition, NMR 
spectroscopic studies support the formation of a benzyl 
carbanion through an alkoxide-mediated deborylative pathway 
(see Figures S1–S6 in Supporting Information). These 
experimental results indicated significant C–B bond cleavage 
before the reaction with 2a. [11] Although the reduction potential 
of the alkyl chloride is high, the reaction pathway involving single 
electron transfer from the tertiary alkylborate to the alkyl chloride 
followed by radical–radical coupling could also be considered.[12] 
To gain further mechanistic information, the reaction with a 
cis/trans mixture of 2m, which is used in typical radical clock 
experiments, was conducted (Figure 2C). As a result, trans 
alkylated product 3bm was obtained with recovery of the trans 
isomer of substrate 2m. This result supported the idea that the 
reaction would proceed through the SN2 type mechanism with 
the alkyl chloride. 

 

 
Figure 2. Mechanistic studies 

 
Encouraged by the results shown above, we turned our 

attention to C(sp3)–C(sp2) cross-coupling with aryl electrophiles. 
The high nucleophilicity of the tertiary benzylborate would be 
effective for SNAr-type cross-coupling. Indeed, our protocol was 
applicable to C(sp3)–C(sp2) cross-couplings using aryl 
electrophiles having CN,[13] OMe[14] and F[15] leaving groups. 
Specifically, the C(sp3)–C(sp2) cross-coupling between tertiary 
alkylboronate 1a (0.2 mmol) and 4-cyanopyridine (4a) (0.1 
mmol) occurred with a stoichiometric amount of KOtBu (0.2 
mmol) in dioxane (0.5 mL) at 120 °C to produce the cross-
coupling product 5aa in 96% yield.  

With the optimized reaction conditions in hand, a variety of 
aryl nitriles were subjected to this reaction (Table 3, top). 2-
Cyanopyridine was also tolerated, however, 3-cyanopyridine 

yielded no product. The boron-substituted benzonitrile was 
possible (5ad). Aryl nitriles having tBu, CF3, or OMe substituents 
participated in the reaction, although the product yields were low 
(5ae–5ag). Importantly, this reaction with the simple benzonitrile 
afforded the corresponding product in good yield (5ah). 
Replacement of the butyl with methyl, allyl, or cyclohexyl 
substituents in the tertiary alkylboronate also provided the 
products in high yield (5bi, 5ea and 5ga). 2-Cyanothiophene, 2-
cyanofurane and 2-pyrimidinecarbonitrile didn’t participate in this 
reaction (data not shown). 

The reactions with aryl electrophiles having other leaving 
groups were examined (Table 3, middle). When 1a was 
subjected to the reaction with 4- or 2-methoxypyridine, C–OMe 
bond cleavage was observed (5aa and 5ab). 4- or 2-
Cyanomethoxybenzenes reacted with the tertiary alkylboronate 
(5aj and 5ak). It was found that cyanomethoxybenzene has 
different functional groups that can be activated depending on 
the position of the substituent (see 5ag in Table 3, top). This 
selectivity depended on the conjugative effect, electrostatic 
attraction, and inductive effects. [14g]  

The protocol was applicable to fluorobenzene derivatives 
(Table 3, bottom). Simple fluorobenzene participated in this 
reaction (5ah). When substrates having cyano or phenyl groups 
were subjected to the reaction, the corresponding products were 
obtained in good yields (5aj and 5al). 
 
Table 3. Substrate scope of C(sp3)–C(sp2) cross-coupling [a] 

 
[a] Reaction conditions: 1 (0.2 mmol), 4 (0.1 mmol), KOtBu (0.2 mmol), 
dioxane (0.5 mL), 120 °C, 3 h. 
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Considering that aryl ethers or aryl fluorides are effective, the 

reaction with aryl electrophiles would proceed through an ionic 
SNAr mechanism. However, the reaction with aryl nitriles gave 
the low yield and the small amount of homo-coupled product 
which stems from tertiary benzylboronate was detected. Thus, 
the reaction pathway of aryl nitriles would be contaminated with 
a radical SNAr mechanism involving a single electron transfer 
from tertiary benzylborate.[4c, 5a, 16] 

In summary, a transition-metal-free cross-coupling reaction for 
the construction of quaternary carbon centers from tertiary 
benzylboronates has been demonstrated. The protocol enabled 
the use of alkyl or aryl electrophiles. Thus, this transformation 
has expanded the scope of tertiary alkylative cross-coupling 
using organoboronates. The reaction involves the generation of 
tertiary alkyl anions from organoboronates in the presence of an 
alkoxide base followed by their substitution reactions. Extending 
the scope of this reaction to electrophiles is in progress. 
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The tertiary alkylative cross-coupling of alkyl or aryl electrophiles using benzylic organoboronates is reported. This reaction involves 
the generation of tertiary alkyl anions from organoboronates in the presence of an alkoxide base and then their substitution reactions 
under mild and transition-metal-free conditions.  
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