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Chiral N-heterocyclic carbene (NHC)-catalyzed intramolecular [3 + 
2] annulation of enals with unactivated imine moiety of 
quinazolinone via formal homoenolate cycloaddition has been 
demonstrated. It is an excellent approach for stereoselective 
syntheses of deoxy-cruciferane alkaloids comprising biologically 
important pyrroloindoline scaffold. Notably, this is the first report 
on the NHC-catalyzed asymmetric intramolecular homoenolate 
annulation with cyclic N-acyl amidine.

Over the past decade, astonishing developments in the area of 
N-heterocyclic carbene (NHC)-catalyzed transformations 
revealed its important synthetic utilities in organic chemistry.1 
NHCs are being employed as organocatalysts and ligands for p-
block elements and transition-metal catalysts.1,2 Furthermore, 
organocatalysis by N-heterocyclic carbene provides a platform 
for the synthesis of pharmaceutically important compounds 
and natural products.3 NHCs have the ability to alter the 
polarity of aldehyde or enal functionality to access numerous 
valuable synthetic processes via NHC-linked intermediates, 
such as Breslow intermediates, enolates, acylazoliums, 
homoenolates, and α,β-unsaturated acylazoliums, etc. 
Particularly, NHC-catalyzed reactions of homoenolate anion 
intermediates and its intervention with different electrophilic 
partners such as imines, ketones, and aldehydes through 
cycloaddition reaction provide access to an array of novel 
carbo- and heterocyclic compounds via carbon−carbon or 
carbon−heteroatom bond formation.1,2  

NHC-catalyzed annulation of enals with imines via 
homoenolate equivalent is a unique strategy for the synthesis 
of substituted γ-lactams. Bode group reported NHC-catalyzed 
addition of enals to N-4-methoxybenzenesulfonyl imines as 
well as saccharin-derived ketimines (Scheme 1, eq 1).4a,b In 
2010, Scheidt and co-worker developed highly diastereo- and 
enantioselective [3+2] cycloaddition reaction of α,β-
unsaturated aldehydes with hydrazones using co-operative

 

Scheme 1 NHC-Catalyzed Annulation of Enal with Various Imines and This Work.

catalysis of NHC and Lewis acid (Scheme 1, eq 2).4c Rovis and 
co-workers reported NHC and Brønsted acid co-operative 
catalysis for enantioselective synthesis of trans-γ-lactams 
(Scheme 1, eq 3).4d Furthermore, Chi group demonstrated the 
enantioselective construction of spirocyclic oxindole-γ-lactams 
via NHC-catalyzed annulation of isatin N-Boc ketimines and 
unsaturated aldehydes (Scheme 1, eq 4).4e Overall, our survey 
revealed that the NHC-catalyzed intermolecular annulation of 
enals with imines is well documented in the literature (Scheme 
1, eq 1-4).4 Interestingly, until now NHC-catalyzed 
intramolecular annulation of homoenolate with 
alkenes/aldehydes/ketones is known,5 however such 
intramolecular cycloaddition is not reported with imine, 
probably because of a difficulty in the preparation of 
substrates containing imine and aldehyde functionality in the 
same molecule. NHC−homoenolate pathway for the synthesis 
of heterocycles is always a challenging but much desired 
synthetic transformation. We envisioned that intramolecular 
homoenolate cycloaddition with imine (IHCI) would be a good 
strategy to access the privileged γ-lactam containing scaffolds 
such as pyrroloindolines.
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Fig. 1 Natural Products Containing Pyrroloindoline Skeleton.

Pyrroloindolines are an important class of compounds and 
a common structural motif for a large number of natural 
products and pharmacologically important compounds.6 This 
family of natural products is an attractive synthetic target for 
the scientific community due to excellent bioactivities, such as 
antifungal, antibacterial, antiviral, and analgesic (Figure 1).7 
The alkaloid (±)-cruciferane containing pyrroloindoline scaffold 
fused with quinazolinone was isolated in the racemic form 
from the herbaceous plant Isatis indigotica (Cruciferae 
family).8 The dried roots and leaves of this plant are commonly 
used in traditional Chinese medicine for the treatment of 
influenza, cold, fever, and infections. The alkaloid (±)-
cruciferane featuring a novel pyrroloindoloquinazolinone core 
and possessing potential hepatoprotective activity particularly 
caught our attention. The formation of the racemic 
pyrroloindoloquinazoline skeleton in low yield was observed 
by Bremner et al., much before the isolation of (±)-cruciferane, 
during photoinduced cyclization of N-(2-(1-indolylmethyl)-
phenyl)chloroacetamide.9 Until now, five total syntheses of 
cruciferane are reported in the literature.10 Most of the 
synthetic routes to cruciferane involve the use of tryptanthrin 
as the key intermediate.

The challenging structural architecture and potential 
biological activity of (±)-cruciferane prompted us to investigate 
the application of our envisioned IHCI strategy for the 
stereoselective construction of the pyrroloindoloquinazolinone 
scaffold of cruciferane. The development of such novel 
synthetic methodologies and their successful application in the 
synthesis of bioactive scaffolds and natural products starting 
from simple precursors is always an interesting task for 
synthetic organic chemists. In this context, we report herein, 
an intramolecular NHC-catalyzed [3 + 2] annulation of enal 
with the internal imine of quinazolinone (Scheme 1, eq 5), 
which stereoselectively furnish the core structure of the 
cruciferane natural product.

Scheme 2 illustrates our retrosynthetic analysis, wherein, 
we envisioned a convergent construction of cruciferane 
alkaloid 1a through benzylic oxidation of 
pyrroloindoloquinazolinone 2a. The chirality in compound 2a 
was imagined via N-heterocyclic carbene-catalyzed 
asymmetric intramolecular [3 + 2] cycloaddition of NHC-linked 
homoenolate intermediate of unsaturated aldehyde and 
internal imine present in the quinazolinone 3a. The 
construction of quinazolinone 3a was planned from 
benzoxazinone 4a and the amine 5a. The benzoxazinone 4a 
could be easily accessed from anthranilic acid. The amine 5a 
could be accessible from the commercially available o-

bromoaniline (7a) and methyl acrylate (6a) using reported 
palladium-catalyzed Heck coupling reaction.

Scheme 2 Retrosynthetic Analysis of Cruciferane.

Our investigation for the NHC-catalyzed intramolecular 
annulation reaction began with the synthesis of the key 
component quinazolinone-aldehyde 3a (Scheme 3). The 
methyl cinnamate derivative 5a was synthesized using the 
Heck coupling reaction of o-bromoaniline (7a) and methyl 
acrylate (6a) in high yield.11 The treatment of anthranilic acid 
(8a) with triethyl orthoformate in the presence of a catalytic 
amount of PTSA provided unstable benzoxazinone 4a,12 which 
was reacted further without purification with amine 5a in the 
presence of EDCI in toluene to deliver quinazolinone-ester 9a

 Scheme 3 Synthesis of quinazolinone-aldehydes 3a-h.

in very good yield. Notably, the yield was very poor in the 
absence of EDCI. The quinazolinone-ester 9a was reduced to 
alcohol 10a using DIBAL-H in THF at -50 °C. The alcohol 10a 
could not be isolated or purified; hence, the crude product was 
subjected to the oxidative condition using activated MnO2 to 
furnish the desired aldehyde 3a in good yield. The other 
quinazolinone-aldehydes 3b-h were synthesized in moderate 
to good yields following the same route as used for 3a 
(Scheme 3). The quinazolinone-aldehydes 3a-h have 
strategically positioned two reacting centres, α,β-unsaturated 
aldehyde and imine of quinazolinone, embedded in a single 
molecule as desired for our envisioned intramolecular 
cycloaddition process. 

With the key intermediate 3a in hand, we initiated 
optimization of the desired intramolecular cycloaddition 
protocol. Table 1 shows selected representative reaction 
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conditions that were used for the optimization. Our effort 
towards the [3 + 2] annulation reaction began by treating the 

Table 1 Optimization of Reaction Conditionsa

aldehyde 3a in the presence of achiral triazolium-derived pre-
NHC catalyst A and various bases in different solvents at 
varying temperatures. The expected product 
pyrroloindoloquinazolinone 2a was observed only when 3a 
was treated with 15 mol% of pre-NHC catalyst A and 30 mol% 
of K2CO3 in toluene at 65 oC (Table 1, entry 1). Encouraged by 
this result, we began the screening of chiral NHC-catalysts in 
combination with various solvents. Interestingly, the expected 
cyclized product 2a was obtained in 6% yield in the presence of 
chiral triazolium-derived pre-NHC catalyst B and 30 mol% of 
K2CO3 in 1,2-dichloroethane (DCE) at room temperature (Table 
1, entry 2). The yield did not improve even after heating the 
reaction mixture at higher temperatures. Herein, we observed 
only a single diastereoisomer formation as confirmed by the 
crude 1H-NMR spectral analysis. The racemic version of the 
pre-NHC catalyst B was prepared to determine the 
enantiomeric ratio (er) of the product by direct comparison 
using chiral HPLC. Interestingly, the product 2a was obtained in 
70:30 er (Table 1, entry 2). Further variations in solvents did 
not show much improvement in the yield (Table 1, entries 3-6). 
However, when the reaction in toluene was heated at various 

temperatures, we observed improvement in the yield, and we 
could achieve the best yield 42% and 78:22 er at 65 oC (Table 
1, entry 7). Recrystallization of this compound did not show 
any improvement in the er. The reaction in benzene furnished 
the product with little lower yield and er (Table 1, entry 8). The 
NHC-precatalysts C showed a drastic reduction in the yield 
though it has a similar backbone as the precatalyst B, except 
the absence of the bulkier mesitylene aromatic ring (Table 1, 
entry 9). The precatalyst D however furnished the product 2a 
in 13% yield and comparable er (Table 1, entry 10). Screening 
of various bases did not show improvement in the yield (Table 
1, entry 11 to 16). Further optimization of the reaction 
condition using different additives such as Lewis4c and 
Brønsted acid4d did not improve the reaction yield or er to 
much extent.

Deoxy-cruciferane 2a was prepared in sufficient quantities 
using the optimized reaction condition (Table 1, entry 7) and 
its benzylic oxidation to achieve the total synthesis of (–)-
cruciferane was attempted. However, when the compound 2a 
was subjected to several oxidative conditions (see SI) using 
organic and inorganic oxidizing reagents, it always ended up in 
either decomposition or recovery of the starting material. The 
development of novel selective oxidizing reagent or reaction 
conditions would be necessary for this transformation.

aReaction conditions: 3a-h (1.0 equiv, 0.18 mmol), pre-NHC catalyst 
B (15 mol %), K2CO3 (30 mol%), toluene (2 mL), 3-12 h, under argon 
atmosphere. bIsolated yields. er = enantiomeric ratio.

Scheme 4 Synthesis of Various Deoxy-Cruciferanesa,b

We planned to synthesize various deoxy-cruciferane 
analogues using the optimized cycloaddition condition to 
demonstrate the scope and generality of the protocol by 
varying different substituents. Gratifyingly, a range of 
substituents were tolerated on both the aromatic rings of the 
molecule and the desired annulated products deoxy-
cruciferanes 2a-h were obtained in good to moderate yields 
and optimal er (Scheme 4). The yield and er observed for the 
unsubstituted aldehyde 3a to obtain 2a (42%, 78:22 er) was 
maintained in the methyl, methoxy, and halo-substituted 

entry NHC base solvent temp
(oC)

yield 
(%)b

er

01 A K2CO3 toluene 65 <2 ND
02 B K2CO3 DCE rt 6 70:30
03 B K2CO3 DCM rt <2 ND
04 B K2CO3 DMSO rt/65 NR ND
05 B K2CO3 DMF rt/65 NR ND
06 B K2CO3 toluene rt NR ND
07 B K2CO3 toluene 65 42 78:22
08 B K2CO3 benzene 65 35 75:25
09 C K2CO3 toluene 65 <2 ND
10 D K2CO3 toluene 65 13 71:29
11 B Cs2CO3 toluene 65 NR ND
12 B Na2CO3 toluene 65 NR ND
13 B K3PO4 toluene rt NR ND
14 B DBU toluene rt NR ND
15 B PhCO2Na toluene 65 12 78:22
16 B PhCO2Na ACN, MS rt/60 trace ND
aReaction conditions: 3a (1.0 equiv, 0.18 mmol), pre-NHC catalyst 
B (15 mol %), K2CO3 (30 mol%), solvent (2 mL), 4 h, under argon 
atmosphere. bIsolated yields. rt = room temperature, NR = no 
reaction, ND = not determined, MS = 4 Å molecular sieves
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aldehydes 3b-f to deliver the products 2b-f, though with 
slightly less yield and er.  Interestingly, the reaction worked 
very smoothly with iodo substituted quinazolinone-aldehyde 
3g and delivered the expected product 2g in good yield (62%) 
and er (81:19). Additionally, the developed protocol worked 
well on the substrate 3h having electron-withdrawing nitro 
substituent although in diminished yield but with a slight 
improvement in the enantiomeric ratio. The absolute 
configuration of deoxy-cruciferane 2a was unambiguously 
assigned on the basis of X-ray crystallographic analysis (Figure 
2, see SI) and extrapolated to the deoxy-cruciferane analogues 
2b-h.

Fig. 2 X-ray crystallographic structure of 2a

A plausible mechanism of the developed IHCI protocol is 
depicted in figure 3. The homoenolate intermediate [I] is 
formed by the reaction of an in situ generated NHC catalyst 
with the aldehyde 3. The homoenolate anion attacks the imine 
moiety of the quinazolinone scaffold. Probably, the hydrogen 
bonding between the imine nitrogen and enol facilitates this 
reaction. Further cyclization proceeds via intermediates [II] 
and [III] to construct the second pentacyclic ring, thus 
furnishing the desired deoxy-cruciferanes 2 and regenerating 
the NHC catalyst for the next catalytic cycle. The intermediate 
[I] displaying the hydrogen bonding interaction reasonably 
explains the observed enantio- and diastereoselctivity. 
Additionally, the formation of the cis-5-5 ring system is 
favourable, which justifies the complete diastereoselection. 
Further studies on the mechanism are essential.

Fig. 3 A plausible mechanism of the IHCI protocol

Conclusions
In summary, a straightforward access to pyrroloindolo-
quinazolinone scaffold has been developed using NHC catalysis 
and applied in the synthesis of deoxy-cruciferane alkaloids. 
Novel NHC-catalyzed intramolecular stereoselective [3 + 2] 
cycloaddition of enal with quinazolinone was utilized as the 
key-step. The developed protocol provides a single 
diastereomer of cyclized products with a good enantiomeric 
ratio. The scope of the protocol was demonstrated by 
synthesizing varyingly substituted deoxy-cruciferane 
analogues. Currently, we are working on the improvement and 
application of the NHC-catalyzed intramolecular annulation 
strategy developed herein to access other bioactive molecules 
and natural products.
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