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The Claisen condensation is recognized as a fundamental and
useful C-C bond-forming reaction in organic syntheses.1 In general,
strong basic reagents (NaOR, LDA, MHMDS, MH, etc.) are used
to conduct this reaction. The Ti- (or Zr-) self-Claisen condensation2

possesses powerful reactivity compared with that of the conventional
method using strong bases; this method afforded efficient and
practical syntheses forZ-civetone,3 1â-methyl-carbapenem,4 and
an omuralide analogue.5 A related Ti-direct aldol reaction, originally
pioneered by Evans’ group,6 also exhibits powerful reactivity for
the crossed addition between different ketones7 and is utilized for
the efficient syntheses of an anti-Methicillin-resistantStaphylococ-
cus aureuscarbapenem,8 (R)-muscone,7 and (R)-mintlactone.9

The major problem of the Claisen condensation lies in the
difficulty in directing the reaction; that is, a general crossed
condensation between different esters or between esters and acid
chlorides, all of which possessR-protons, has not been documented.
We disclose here the first general Ti-crossed-Claisen condensation
between a 1:1 mixture of esters and acid chlorides to provide a
variety of â-keto esters (Scheme 1). These functionalizedâ-keto

esters served as a fundamental and useful precursor for organic
syntheses, especially for chiral synthons utilizing asymmetric
transformations such as hydrogenations,10 metal hydride reduc-
tions,11 enzymatic reductions,12 and asymmetric alkylations at the
R-position.13

The Ti-self-Claisen condensation of simple esters proceeds very
rapidly, even at-45 °C, within 0.5 h. Taking this information into
account, to realize the Ti-crossed-Claisen condensation, we chose
acid chlorides as the reactive acceptor electrophile.

As depicted in Table 1, the result of an initial attempted reaction
of methyl hexanoate with propanoyl chloride at-45 °C for 0.5 h,
however, was disappointing (entry 1). The major product was
decomposed propanoic acid (ca. 80%) with undesirableself-
condensedâ-keto ester (ca. 30%), and the desiredcross-condensed
â-keto esters were obtained in low yield (15%).

To solve the problem,N-methylimidazoles1 were employed as
the key cocatalyst, because acid chlorides condense withN-
methylimidazole to form an activated electrophilic acylammonium
intermediate2.14 Screening of some availableN-methylimidazoles

1 revealed promising result with the 2-Et analogue1c (80%, cross/
self ) 98/2; entry 4). Thus, the reactions of several esters with
linear (not branched) acid chlorides proceeded smoothly to give
the desiredcross-products in good yields with excellent selectivities
(entries 6, 7, and 9).

For â-branched acid chlorides, 2-Me analogue cocatalyst1b
matched the reaction with regard to yield and selectivity (cross/
selff >91/9; entries 10-12). 2-H analogue1awas most favorable
for â,â-disubstituted orR-branched acid chlorides (entries 13-27).15

Scheme 1

Table 1. Ti-Crossed-Claisen Condensation between a 1:1 Mixture
of Esters and Acid Chlorides

a Isolated.b Determined by1H NMR of crude products.c iPr2NEt was
used instead of Bu3N. d 1.6 equiv of toluene solvent.e 0-5 °C.
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Various functionalities in both esters and acid chlorides were
tolerated during the Ti-crossed-Claisen condensation.

As a notable extension, we investigated the Ti-crossed-Claisen
condensation usingcarboxylic acids. We designed a novel protocol
utilizing mixed anhydrides3 generated in situ between sodium
carboxylates and Cl3CC(dO)Cl. (Table 2) (for screening of the acyl
chloride co-reagents, see Supporting Information). Thus, the
plausible reactive intermediate4 successfully reacted with methyl
hexanoate to give the desiredcross-condensedâ-keto esters with
good to excellent yield and selectivity.

Finally, to demonstrate the utility of the present Ti-crossed-
Claisen condensation, we performed the efficient short-step syn-
theses of two natural, representative, and useful perfumes,cis-
jasmone (8)16 and (R)-muscone (12)17 (Scheme 2). Synthesis of

these compounds is a standard model for novel reactions due to
their utility and interesting structures.

The Ti-crossed-Claisen condensation of ethyl levulinate (6) with
readily available acid chloride5 proceeded smoothly to giveâ-keto
ester7. The high chemoselectivity should be noted: the reaction
site of6 was not theR-position of the ketone but that of the ester
(see also Table 1, entry 16), and the ketone function did not require
the protection.18 A one-pot hydrolysis-decarboxylation and an aldol
condensation affordedcis-jasmone (8) in 46% overall yield.

The Ti-crossed-Claisen condensation between both commercially
available methyl 10-undecenate and (R)-citroneric acid afforded
â-keto ester10, which was converted to ketone11 by hydrolysis-
decarboxylation. Second-generation ring-closing metathesis of11,17

followed by catalytic hydrogenation, afforded (R)-muscone (12)
in 53% overall yield. These two syntheses are regarded as simplest
compared with hitherto reported methods.

In conclusion, we developed the Ti-crossed-Claisen condensation
between a 1:1 mixture of esters and acid chlorides or carboxylic
acids. The present method is a new avenue for the synthesis of a
variety of â-keto esters, which will be useful achiral and chiral
synthons. As a notable application, we utilized this method for the
efficient short syntheses ofcis-jasmone and (R)-muscone.

Supporting Information Available: Experimental details, analyti-
cal data, and characterization for reactions in Tables 1 and 2 (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
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Table 2. Ti-Crossed-Claisen Condensation between a 1:1 Mixture
of Methyl Hexanoate and Carboxylic Acids

a Isolated.b Determined by1H NMR of the crude product.c Using the
2-benzloxy propanoic acid (97% ee), we obtained the desiredâ-keto ester
(93% ee; see ESI).

Scheme 2. Application to the Syntheses of Natural Perfumes,
cis-Jasmone and (R)-Musconea

a Conditions: (a)1c, TiCl4-iPr2NEt, CH2Cl2 (61%). (b) 5 M aq KOH,
EtOH, then 1 M aq HCl(76%). (c)1b, TiCl4-Bu3N, CH2Cl2 (76%). (d) 5
M aq NaOH, MeOH, then 6 M aq HCl(95%). (e) Grubbs catalyst second
generation, ClCH2CH2Cl, then Pd-C, H2, AcOEt (74%).
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