

Published on Web 02/11/2005

Ti-*Crossed*-Claisen Condensation between Carboxylic Esters and Acid Chlorides or Acids: A Highly Selective and General Method for the Preparation of Various β -Keto Esters

Tomonori Misaki, Ryohei Nagase, Kunshi Matsumoto, and Yoo Tanabe*

Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan

Received October 10, 2004; E-mail: tanabe@kwansei.ac.jp

The Claisen condensation is recognized as a fundamental and useful C–C bond-forming reaction in organic syntheses.¹ In general, strong basic reagents (NaOR, LDA, MHMDS, MH, etc.) are used to conduct this reaction. The Ti- (*or* Zr-) *self*-Claisen condensation² possesses powerful reactivity compared with that of the conventional method using strong bases; this method afforded efficient and practical syntheses for *Z*-civetone,³ 1 β -methyl-carbapenem,⁴ and an omuralide analogue.⁵ A related Ti-direct aldol reaction, originally pioneered by Evans' group,⁶ also exhibits powerful reactivity for the crossed addition between different ketones⁷ and is utilized for the efficient syntheses of an anti-Methicillin-resistant *Staphylococcus aureus* carbapenem,⁸ (*R*)-muscone,⁷ and (*R*)-mintlactone.⁹

The major problem of the Claisen condensation lies in the difficulty in directing the reaction; that is, a general crossed condensation between different esters or between esters and acid chlorides, all of which possess α -protons, has not been documented. We disclose here the first general Ti-*crossed*-Claisen condensation between a 1:1 mixture of esters and acid chlorides to provide a variety of β -keto esters (Scheme 1). These functionalized β -keto

Scheme 1

esters served as a fundamental and useful precursor for organic syntheses, especially for chiral synthons utilizing asymmetric transformations such as hydrogenations,¹⁰ metal hydride reductions,¹¹ enzymatic reductions,¹² and asymmetric alkylations at the α -position.¹³

The Ti-*self*-Claisen condensation of simple esters proceeds very rapidly, even at -45 °C, within 0.5 h. Taking this information into account, to realize the Ti-*crossed*-Claisen condensation, we chose acid chlorides as the reactive acceptor electrophile.

As depicted in Table 1, the result of an initial attempted reaction of methyl hexanoate with propanoyl chloride at -45 °C for 0.5 h, however, was disappointing (entry 1). The major product was decomposed propanoic acid (ca. 80%) with undesirable *self*condensed β -keto ester (ca. 30%), and the desired *cross*-condensed β -keto esters were obtained in low yield (15%).

To solve the problem, *N*-methylimidazoles **1** were employed as the key cocatalyst, because acid chlorides condense with *N*methylimidazole to form an activated electrophilic acylammonium intermediate **2**.¹⁴ Screening of some available *N*-methylimidazoles

Table 1.	Ti-Crossed-Claisen Condensation between a 1:1 Mixture
of Esters	and Acid Chlorides

		R ⁴			
R ¹ COCI	+ R ² CO ₂ R ³	+ N NMe 1a-d			
(1.0 eq.)) (1.0 eq.)	(1.2 eq.) O		2	0
	TiCl ₄ - Bu	₃N R ^{1 [™]}	$\gamma^{CO_2R^3}$	and R ²	[_] ∕_CO₂R³
-	CH ₂ Cl ₂ , -45 °C	, 30 min c	R ² cross		R ² self
entry	R ¹ COCI	R ² CO ₂ R ³	imidazole	yield (%) ^a	cross / self ^b
1	CH ₃ CH ₂ COCI	CH ₃ (CH ₂) ₄ CO ₂ Me	non	15	35 / 65
2			1a	35	63 / 37
3			1b	67	92 / 8
4			1c	80	98 / 2
5	<u>^</u>		1d	52	83 / 17
6	COCI (CH ₂) ₈ COCI	CH ₃ (CH ₂) ₄ CO ₂ Me	1c	75	>99 / 1
7		AcHNCH ₂ CO ₂ Me	1c	79	>99 / 1
8	Ph	(CH ₃) ₂ CHCH ₂ CO ₂ M	/le 1a	71	>99 / 1
9	BnOCH ₂ COCI	AcHNCH ₂ CO ₂ Me	1c	51	>99 / 1
10	(CH ₃) ₂ CHCH ₂ COC	CH ₃ CH ₂ CO ₂ Me	1a	56	91 / 9
11			1b	73	96 / 4
12			1c	66	93 / 7
13	(CH ₃) ₃ CCH ₂ COCI	CH ₃ (CH ₂) ₄ CO ₂ Me	1a	92	>99 / 1
14			1b	80	96 / 4
15			1c	63	89 / 11
16	çoci	CH ₃ CO(CH ₂) ₂ CO ₂ E	t 1a	47 (66) ^c	>99 / 1
17	$\rightarrow \chi$	Ph(CH ₂) ₂ CO ₂ Me	1a	75	97 / 3
18	COCI	AcOEt ^d	1a	94 ^c	-
19	\bigcup	CH ₃ (CH ₂) ₄ CO ₂ Me	1a	95	>99 / 1
20		CO ₂ Me	1a	69	>99 / 1
21		PhCH ₂ CO ₂ Me	1a	70	>99 / 1
22		BnOCH ₂ CO ₂ Me	1a	77	>99 / 1
23		TsO(CH ₂) ₅ CO ₂ Et	1a	88	>99 / 1
24		AcHNCH ₂ CO ₂ Me NHAc	1a	81	>99 / 1
25	Ν		1a Ə	48	>99 / 1
26	COCI	AcOEt ^d	1a	90 ^{c, e}	-
27	LΓ	CH ₃ (CH ₂) ₄ CO ₂ Me	1a	78	>99 / 1

^{*a*} Isolated. ^{*b*} Determined by ¹H NMR of crude products. ^{*c*} i Pr₂NEt was used instead of Bu₃N. ^{*d*} 1.6 equiv of toluene solvent. ^{*e*} 0–5 °C.

1 revealed promising result with the 2-Et analogue **1c** (80%, cross/ self = 98/2; entry 4). Thus, the reactions of several esters with linear (not branched) acid chlorides proceeded smoothly to give the desired *cross*-products in good yields with excellent selectivities (entries 6, 7, and 9).

For β -branched acid chlorides, 2-Me analogue cocatalyst **1b** matched the reaction with regard to yield and selectivity (cross/ self $\rightarrow >91/9$; entries 10–12). 2-H analogue **1a** was most favorable for β , β -disubstituted or α -branched acid chlorides (entries 13–27).¹⁵

¹ Isolated. ^b Determined by ¹H NMR of the crude product. ^c Using the 2-benzloxy propanoic acid (97% ee), we obtained the desired β -keto ester (93% ee; see ESI).

Various functionalities in both esters and acid chlorides were tolerated during the Ti-crossed-Claisen condensation.

As a notable extension, we investigated the Ti-crossed-Claisen condensation using *carboxylic acids*. We designed a novel protocol utilizing mixed anhydrides 3 generated in situ between sodium carboxylates and Cl₃CC(=O)Cl. (Table 2) (for screening of the acyl chloride co-reagents, see Supporting Information). Thus, the plausible reactive intermediate 4 successfully reacted with methyl hexanoate to give the desired *cross*-condensed β -keto esters with good to excellent yield and selectivity.

Finally, to demonstrate the utility of the present Ti-crossed-Claisen condensation, we performed the efficient short-step syntheses of two natural, representative, and useful perfumes, cisjasmone $(8)^{16}$ and (R)-muscone $(12)^{17}$ (Scheme 2). Synthesis of

^{*a*} Conditions: (a) 1c, TiCl₄-iPr₂NEt, CH₂Cl₂ (61%). (b) 5 M aq KOH, EtOH, then 1 M aq HCl (76%). (c) 1b, TiCl₄-Bu₃N, CH₂Cl₂ (76%). (d) 5 M aq NaOH, MeOH, then 6 M aq HCl (95%). (e) Grubbs catalyst second generation, ClCH₂CH₂Cl, then Pd-C, H₂, AcOEt (74%).

these compounds is a standard model for novel reactions due to their utility and interesting structures.

The Ti-crossed-Claisen condensation of ethyl levulinate (6) with readily available acid chloride **5** proceeded smoothly to give β -keto ester 7. The high chemoselectivity should be noted: the reaction site of **6** was not the α -position of the ketone but that of the ester (see also Table 1, entry 16), and the ketone function did not require the protection.¹⁸ A one-pot hydrolysis-decarboxylation and an aldol condensation afforded cis-jasmone (8) in 46% overall yield.

The Ti-crossed-Claisen condensation between both commercially available methyl 10-undecenate and (R)-citroneric acid afforded β -keto ester 10, which was converted to ketone 11 by hydrolysisdecarboxylation. Second-generation ring-closing metathesis of 11,¹⁷ followed by catalytic hydrogenation, afforded (R)-muscone (12)in 53% overall yield. These two syntheses are regarded as simplest compared with hitherto reported methods.

In conclusion, we developed the Ti-crossed-Claisen condensation between a 1:1 mixture of esters and acid chlorides or carboxylic acids. The present method is a new avenue for the synthesis of a variety of β -keto esters, which will be useful achiral and chiral synthons. As a notable application, we utilized this method for the efficient short syntheses of cis-jasmone and (R)-muscone.

Supporting Information Available: Experimental details, analytical data, and characterization for reactions in Tables 1 and 2 (PDF). This material is available free of charge via the Internet at http:// pubs.acs.org.

References

- (1) Smith, M. B.; March, J. Advanced Organic Chemistry; Wiley: New York, 2001; p 569.
- (a) Tanabe, Y. Bull. Chem. Soc. Jpn. 1988, 62, 1917. (b) Tanabe, Y.; (2)(a) Hanasaki, R.; Funakoshi, S. Chem. Commun. 2001, 1674.
 (a) Hamasaki, R.; Funakoshi, S.; Misaki, T.; Tanabe, Y. Tetrahedron 2000,
- (3)6, 7423. (b) Tanabe, Y.; Makita, A.; Funakoshi, S.; Hamasaki, R.; Kawakusu, T. Adv. Synth. Catal. 2002, 344, 507
- (4) Tanabe, Y.; Manta, N.; Nagase, R.; Misaki, T.; Nishii, Y.; Sunagawa, M.; Sasaki, A. *Adv. Synth. Catal.* 2003, *345*, 967.
 (5) Crane, S. N.; Corey, E. J. *Org. Lett.* 2001, *3*, 1395.
 (6) (a) Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, Novack, N. J.; Sheppard, Novack, N. J.; Sheppard, Novack, N. S.; States, S. S. (2019).
- G. S. J. Am. Chem. Soc. 1990, 112, 866. (b) Evans, D. A.; Urpi, F. Somers, T. C.; Clark, J. S.; Bilodeau, M. T. J. Am. Chem. Soc. 1990, 113, 8215. (c) Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpi, F. J. Am. Chem. Soc. 1991, 112, 1047. (d) Crimmis, M. T.; King, B. W.; Tabet, Tanabe, Y.; Matsumoto N.; Higashi, T.; Misaki, T.; Itoh T.; Yamamoto,
- M.; Mitarai, K.; Nishii, Y. Tetrahedron 2002, 58, 8269.
- Humphrey, G. R.; Miller, R. A.; Pye, P. J.; Rossen, K.; Reamer, R. A. Maliakal, A.; Ceglia, S. S.; Grabowski, E. J. J.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1999, 121, 11261
- (9) Tanabe, Y.; Mitarai, K.; Higashi, T.; Misaki, T.; Nishii, Y. Chem. Commun. 2002, 2542
- (10) (a) Noyori, R.; Ikeda, T.; Ohkuma, T.; Widhalm, M.; Kitamura, M.; Takaya, H.; Akutagawa, S.; Sayo, N.; Saito, T.; Taketomi, T.; Kumobayashi, H. J. Am. Chem. Soc. 1989, 111, 9134. (b) Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem. Soc. Jpn. **1995**, 68, 36. (c) Tang, W.; Zhang, X. Chem. Rev. **2003**, 103, 3029.
- (11) Ohtsuka, Y.; Miyazaki, D.; Ikeno, T.; Yamada, T. Chem. Lett. 2002, 24. (a) Csuk, R.; Glanzer, B. Chem. Rev. 1991, 91, 49. (b) Rodriguez, S.;
- Kayser, M. M.; Stewart, J. D. J. Am. Chem. Soc. 2001, 123, 1547. (13)(a) Tomioka, K.; Ando, K.; Takemasa, Y.; Koga, K. J. Am. Chem. Soc. **1984**, *106*, 2718. (b) Tomioka, K.; Seo, W.; Ando, K.; Koga, K. *Tetrahedron Lett.* **1987**, 28, 6637. (c) Nour, M.; Tan, K.; Jankowski, R.; Cave, C. Tetrahedron: Asymmetry 2001, 12, 765. (d) Ooi, T.; Miki, T.; Taniguchi, M.; Shiraishi, M.; Takeuchi, M.; Maruoka, K. Angew. Chem., Int. Ed. 2003, 42, 3796.
- (14) (a) Saha, A. K.; Schultz, P.; Rapoport, H. J. Am. Chem. Soc. 1989, 111, (4856. (b) Gibson, F. S.; Rapoport, H. J. Org. Chem. 1995, 60, 2615. (c)
 Ulibarri, G.; Choret, N.; Bigg, D. C. H. Synthesis 1996, 1286. (d)
 Wakasugi, K.; Iida, A.; Misaki, T.; Nishii, Y.; Tanabe, Y. Adv. Synth. Catal. 2003. 345. 1209
- (15) We hypothesized that the more acid chlorides that were sterically crowded, the more unhindered and reactive imidazole 1 matched the present reaction.
- (a) Crombie, L.; Harper, S. H. J. Chem. Soc. 1952, 869. (b) Mathew, J.;
 Alink, B. J. Chem. Soc., Chem. Commun. 1990, 684.
 Louie, J.; Bielawski, C. W.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, (16)
- (17)11312
- (18)The use of Bu₃N caused an undesirable condensation between methyl ketone of 6 with 5 in $\sim 10-20\%$. See also Table 1, entry 16. Bu₃N conducts a powerful crossed aldol additions (ref 7).

JA043833O