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Regioselective [2+2] cycloaddition of ynones or ynoates to

siloxy(trialkoxy)ethene (KSA) is described. A siloxy group on

the KSA directs the perfect regioselectivity, allowing rapid con-

struction of various functionalized cyclobutenedione derivatives.

Highly oxidized four-membered carbocycles are useful in

organic synthesis;1 squarates III and the derivatives, IV and

V, have been extensively used for the synthesis of complex

molecules by exploiting molecular strain, and also as a scaffold

for the hybrid assembly for biological studies.2

If flexible de novo access to such oxidized cyclobutanes

became possible, new possibilities in organic synthesis would

be opened. We report herein ready, selective access to a class

of compounds related to I in its selectively protected form II,

starting with several analogies as the background of the idea.

The [2+2] cycloaddition of two ethenes is a simple proto-

type to construct cyclobutenes. While the parent system needs

photo-activation,3 the corresponding donor/acceptor pair, VI

and VII, reacts thermally through a polar two-step mechanism

(Scheme 1).4 The observed head-to-head regiochemistry could

be expressed either by the incipient HOMO–LUMO inter-

action or the relative stability of the intermediary zwitterionic

species VIII (vs. VIII0), and the two factors are usually closely

related.

Analogy 1. We noted a close resemblance of such a stepwise

[2+2] cycloaddition to the reaction of a-alkoxybenzyne A

with ketene silyl acetal (KSA) B on two counts.5,6 (1) The

inductive electron-withdrawal of the a-alkoxy group in A

makes the LUMO coefficient larger at the distal site to accept

the incoming KSA B. We are even tempted to regard the

reaction as a s-conjugate addition. (2) At the following cycliza-

tion stage, the more stabilized, and thus more contributing

zwitterion C is responsible, leading to the head-to-head

cycloadduct D.

Analogy 2. Of further interest was the finding that, in spite

of pseudo-symmetry, fully oxygenated KSA E reacts with A in

a completely regioselective manner (Scheme 2).7 Thus, a

question arose whether or not such a selectivity also applies

to the triple bond in electrophilic alkyne G that resembles A in

polarity.

This paper describes an affirmative answer to this question:

tetraoxyethene E indeed undergoes fully regioselective [2+2]

cycloaddition to alkynone (or alkynoate)G, providing efficient

access to highly functionalized cyclobutenedione derivativesH

with considerable synthetic potentials.

Table 1 illustrates the initial model experiments. Upon

heating ynone 1 and KSA 2 (1.3 equiv.) in toluene at 90 1C

for 12 h, the [2+2] cycloaddition smoothly proceeded to give

cycloadduct 3 in 54% yield (entry 1).8 Importantly, the reaction

was completely regioselective, giving 3 as a single regioisomer.9

1,3-Diene 4 was obtained in 26% yield as a side product,

arising from the ring opening of the four-membered ring

followed by silyl group migration.11 As diene 4 was highly

prone to hydrolysis by silica-gel chromatography, the yields of

3 and 4 were assessed by 1H NMR analysis. Formation of

diene 4 was almost completely suppressed by performing the

reaction at lower temperature (entry 2).12 Moreover, the

reaction was even more efficient under solvent-free condi-

tions, giving cycloadduct 3 in almost quantitative yield.

Scheme 1 Polar [2+2] cycloaddition.
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Isolation by silica-gel chromatography afforded 93% yield of 3

(entry 3).

As shown in Table 2, the regioselectivity persisted in the

reactions of various other ynones (and a ynoate). Upon

heating of ynone 5a with KSA 2, the [2+2] cycloaddition

cleanly proceeded to give cycloadduct 6a in excellent yield

(entry 1).

Interestingly, ynones 5b and 5c with an additional alkene

moiety, reacted smoothly at the triple bond, while the alkenyl

groups remained intact, giving dialkenyl ketones 6b and 6c,

respectively, in high yield (entries 2 and 3). Diynyl substrate 5d

also underwent rapid cycloaddition at room temperature to

give mono-cycloadduct 6d in 98% yield (entry 4). It should be

noted that the reaction occurred selectively at the terminal

alkynyl group: there was neither indication of the double

cycloaddition nor a reaction at the phenylethynyl moiety.

Moreover, phenyl propiolate (5e) was also a good substrate,

affording 6e in 94% yield (entry 5).13

Upon further attempts to examine the substrate scope, we

found that b-substituted propiolate 7a failed to react. Only the

starting material was recovered, even when the reaction was

performed at 110 1C for a prolonged reaction time (entry 1,

Table 3). We were pleased to find, however, that the cyclo-

addition could be achieved under Lewis acid promoted con-

ditions, and ynoate 7a reacted with KSA 2 in the presence of

Me3Al (CH2Cl2, �78 - �20 1C) to give the desired [2+2]

cycloadduct 8a in 41% yield (entry 2).14 In this case, however,

the 1,2-addition competed, producing 9a in 29% yield.15 We

found that this side reaction was suppressed by increasing the

sterics of the ester moiety. The 1,2-addition was partially

suppressed by replacing methyl by ethyl (entry 3) or isopropyl

(entry 4), and completely suppressed by phenyl, giving the

corresponding phenyl ester 8d in good yield (entry 5).

Table 4 shows the Me3Al-promoted [2+2] cycloaddition of

2 to various phenyl esters 10a–10e, giving the corresponding

cyclobutenes 11a–11e, respectively, in high yields.16–18

Thus, the various cycloadducts are synthetically useful

cyclobutenedione derivatives with two selectively protected

carbonyl groups on the four-membered ring. Scheme 3

exemplifies some possibilities. Careful treatment of cycloadduct

11b with BF3�Et2O and water in CH2Cl2 allowed selective

hydrolysis of the silyl acetal, giving mono-ketone 12 in 85%

yield.19 Reduction of 11b with LiAlH4 afforded alcohol 13.

Bis-acetal 13 was selectively hydrolyzed with aq. KF and

n-Bu4NCl to give mono-one 14, which was further converted

to cyclobutenedione 15 by treatment with BF3�Et2O and water

in CH2Cl2 (0 1C).

In summary, regioselective [2+2] cycloaddition of electro-

philic alkynes and fully oxygenated ketene silyl acetals

allows rapid access to synthetically attractive cyclobutene-

dione derivatives. Further studies on selective transformation

en route to polycyclic compounds are underway in our

laboratories.

Scheme 2 Possible access to functionalized cyclobutenediones.

Table 1 Model experiments

Entrya Conditions Yield of 3 (%)b Yield of 4 (%)b

1 toluene, 90 1C, 12 h 54 26
2 toluene, 60 1C, 17 h 84 3
3 neat, 60 1C, 8 h quant. (93)c —

a The molar ratio of KSA 2 to alkyne 1 is 1.3. b NMR yield (internal

standard: p-bromoanisole). c Isolated yield.

Table 2 Thermal [2+2] cycloaddition

Entrya Alkyne R Time/h
Yield of
6 (%)

1 5a Ph 2 93

2 5b 1 89

3 5c 8 75

4b 5d 0.2 98

5 5e PhO 19 94

a The molar ratio of KSA 2 to alkyne 5 is 1.3–1.4. b Performed at

room temperature.

Table 3 Effect of the alkoxy moiety in the ester

Entrya Alkyne R Time/h Yield of 8 (%) Yield of 9 (%)

1c 7a Me 40 — —
2 7a Me 69 44 29
3 7b Et 58 49 29
4 7c i-Pr 11 59 10
5 7d Ph 19 74 —

a The molar ratio of KSA 2 to alkyne 7 is 1.2–1.3. b 1.0 equiv. c The

reaction was performed in toluene at 110 1C.
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