Synthesis of a Prenylated and Immunosuppressive Marine Galactosphingolipid with Cyclopropane-Containing Alkyl Chains: $\left(2 S, 3 R, 11 S, 12 R, 2^{\prime \prime}{ }^{\prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} S, 12^{\prime \prime \prime} R\right)$-Plakoside A and Its $\left(2 S, 3 R, 11 R, 12 S, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} R, 12^{\prime \prime \prime} S\right)$ Isomer ${ }^{[\# 1}$

Masanori Seki ${ }^{[\text {a] }}$ and Kenji Mori* ${ }^{[a]}$

Keywords: Natural products / Cerebrosides / Immunochemistry / Asymmetric synthesis / Total synthesis

Plakoside A (1) $\left\{\left(2 S, 3 R, 11 R^{*}, 12 S^{*}\right)-2-\left[\left(2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} R^{*}\right.\right.\right.$, $\left.12^{\prime \prime \prime} S^{*}\right)$-2'"'-hydroxy-11'"',12'"'-methylene-5"' -docosen-amido]-1-O-[2'-O-($3^{\prime \prime}$-methyl- $2^{\prime \prime}$-butenyl)- β-D-galacto-pyranosyl]-11,12-methylene-1,3-docosanediol\} is a prenylated galactosphingolipid isolated as an immunosuppressant from the marine sponge Plakortis simplex.
($2 S, 3 R, 11 S, 12 R, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} S, 12^{\prime \prime \prime} R$)-Plakoside A (1) has been synthesized by combining the sphingosine part 16, the α-hydroxy acid part 28, and the prenylated sugar part 33. ($2 S, 3 R, 11 R, 12 S, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} R, 12^{\prime \prime \prime} S$)-Plakoside A ($\mathbf{1}^{\prime}$) has also been synthesized.

Introduction

In 1997, Fattorusso and co-workers isolated plakosides A (1, Figure 1) and B as metabolites of the Caribbean sponge Plakortis simplex. ${ }^{[1]}$ They are structurally unique as glycosphingolipids with a prenylated D-galactose moiety and cyclopropane-containing alkyl chains, and show strong immunosuppressive activity without cytotoxicity. Later, in 2000, plakosides C and D, two similar prenylated glycosphingolipids, were isolated from the marine sponge Ectyoplasia ferox. ${ }^{[2]}$

The unique structure of plakoside A (1), together with the fact that only 5 mg of $\mathbf{1}$ could be secured from 57 g (dry weight) of the sponge, ${ }^{[1]}$ encouraged us to explore a synthetic route to this compound. Since the absolute configuration at the stereogenic centers of the two cyclopropane moieties is unknown, except that they are cis-disubstituted cyclopropanes, we decided to synthesize two diastereoisomers of plakoside A, ($2 S, 3 R, 11 S, 12 R, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} S, 12^{\prime \prime \prime} R$)-1 and $\left(2 S, 3 R, 11 R, 12 S, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} R, 12^{\prime \prime \prime} S\right)-1^{\prime}$, anticipating that one of them would be the natural product. We assumed that the two cyclopropane-containing side chains in a given molecule have the same absolute configuration due to the enantioselective biocyclopropanation process. Herein, we describe in detail our syntheses of $\mathbf{1}$ and $\mathbf{1}^{\prime}$, the synthesis of the former having been reported as a preliminary communication. ${ }^{[3]}$ While our work was in progress,

[^0]
Plakoside $A(1) R=H$
Plakoside C R $=$

Figure 1. Structures of plakosides A-D

Nicolaou et al. published the synthesis of $\left(2 S, 3 R, 11 R, 12 S, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} R, 12^{\prime \prime \prime} S\right)$-plakoside A (1') and $\left(2 S, 3 R, 7 Z, 13 R, 14 S, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} R, 12^{\prime \prime \prime} S\right)$-plakoside B. ${ }^{[4]}$

Results and Discussion

Synthetic Plan

Plakoside A (1) can clearly be synthesized by connecting three building blocks, i.e. the sugar part \mathbf{A}, the sphingosine part B, and the hydroxy acid part C, as shown in Scheme 1.

Scheme 1. Retrosynthetic analysis of ($2 S, 3 R, 11 S, 12 R, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} S, 12^{\prime \prime \prime} R$)-plakoside A (1)

Our synthesis is based on these disconnections and employs an enzymatic method for the preparation of the key chiral building block, $(1 S, 2 R)$-1-acetoxymethyl-2-hydroxymethylcyclopropane (H). ${ }^{[5-7]}$ In the Nicolaou synthesis of $\mathbf{1}^{\prime}$, the cyclopropane moieties were constructed by employing the Charette reaction. In our synthetic plan, the sugar part A is to be attached at a later stage to the ceramide prepared from \mathbf{B} and $\mathbf{C} ; \beta$-D-galactopyranose serves as the starting material for \mathbf{A}. The sphingosine part \mathbf{B} can be constructed by coupling the Garner aldehyde \mathbf{D} with the alkyne E containing a cyclopropane moiety. The chiral starting material \mathbf{H} can be converted into \mathbf{E}. The synthesis of the olefinic hydroxy acid part \mathbf{C} requires coupling of the aldehyde \mathbf{F} and the Wittig reagent derived from \mathbf{G}. The aldehyde F can be derived from D-glutamic acid, while the cyclopro-pane-containing phosphonium salt \mathbf{G} can again be prepared by employing \mathbf{H}.

Synthesis of the Sphingosine Part

Scheme 2 summarizes the synthesis of the $(11 S, 12 R)$ sphingosine part 16. Enzymatic acetylation of meso-diol $2^{[5-7]}$ with vinyl acetate in the presence of lipase AK (Amano) gave monoacetate $(1 S, 2 R)-\mathbf{3}(=\mathbf{H})$, the enantiomeric purity of which was determined as being $>99.9 \%$ ee by HPLC analysis (Chiralcel ${ }^{\circledR}$ OD-H). Tosylation of 3 afforded 4, which was treated with nonylmagnesium bromide under Schlosser conditions ${ }^{[8]}$ to furnish alcohol 5. Swern oxidation of $\mathbf{5}$ to give aldehyde $\mathbf{6}$ was followed by a Wittig
reaction with (tert-butyldiphenylsilyloxytetramethylene)triphenylphosphorane to yield olefin 7. Removal of the tertbutyldiphenylsilyl (TBDPS) protective group of 7 using tetrabutylammonium fluoride (TBAF) in THF afforded olefinic alcohol 8, diimide reduction of which provided alcohol 9 leaving the cyclopropane ring intact. Iodide $\mathbf{1 1}$ was obtained from 9 via the corresponding tosylate $\mathbf{1 0}$. Treatment of $\mathbf{1 1}$ with lithium acetylide-ethylenediamine complex in DMSO afforded alkyne $\mathbf{1 2}$ (= E). Coupling of $\mathbf{1 2}$ with Garner aldehyde $13(=\mathbf{D})$ derived from (S)-serine ${ }^{[9]}$ was executed under the standard conditions ${ }^{[10]}$ to give $\mathbf{1 4}$ as the sole product after chromatographic purification. Diimide reduction of $\mathbf{1 4}$ afforded $\mathbf{1 5}$. Treatment of $\mathbf{1 5}$ with dilute hydrochloric acid yielded sphingosine $\mathbf{1 6}$ as its hydrochloride, the hydroxy groups of which were protected as tert-butyldimethylsilyl (TBS) ethers by treatment with tertbutyldimethylsilyl triflate (TBSOTf) to furnish 17 (= B), one of the three building blocks required to construct $\mathbf{1}$.

The synthesis of the $(11 R, 12 S)$-sphingosine part $\mathbf{1 6}^{\prime}$ is illustrated in Scheme 3. The tosylate 4 was chain-elongated by treatment with 4-(tetrahydropyranyloxy)butylmagnesium bromide under Schlosser conditions, ${ }^{[8]}$ to give $\mathbf{1 8}$ after removal of the acetyl group. The alcohol $\mathbf{1 8}$ was oxidized under Swern conditions to furnish aldehyde 19. Treatment of 19 with the Wittig reagent prepared from nonyltriphenylphosphonium bromide gave olefin 20. Removal of the tetrahydropyranyl (THP) protective group of $\mathbf{2 0}$ was followed by diimide reduction to saturate the double bond, giving alcohol $\mathbf{9}^{\prime}$. Further steps leading to $(11 R, 12 S)-\mathbf{1 7}^{\prime}$ were ex-

$1 \longleftarrow 16 R=H$
$\square 17 R=\operatorname{TBS}(=B)$
Scheme 2. Synthesis of $(11 S, 12 R)$-sphingosine part 17 ($=\mathbf{B}$); reagents: (a) vinyl acetate, lipase AK (Amano), THF (86\%); (b) TsCl, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{MgBr}, \mathrm{Li}_{2} \mathrm{CuCl}_{4}$, THF $(85 \%$, 2 steps); (d) $(\mathrm{COCl})_{2}, \quad$ DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (e) TBDPSO $\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{3} \mathrm{Br}, n \mathrm{BuLi}$, THF (98%, 2 steps); (f) TBAF, THF (98%); (g) $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}(94 \%$ for 9; 89% for 15); (h) NaI, DMF (90%, 2 steps); (i) $\mathrm{LiC} \equiv \mathrm{CH} \cdot \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$, DMSO (88%); (j) $n \mathrm{BuLi}, \mathrm{THF}, 13$ (80%); (k) dil. aq. HCl , MeOH (quant.); (l) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(91 \%)$
ecuted in the same manner as described for the preparation of $(11 S, 12 R)-17$.

Synthesis of the Protected Ceramides

The synthesis of the α-hydroxy acid part $\mathbf{2 8}(=\mathbf{C})$ or $\mathbf{2 8}^{\prime}$ and its coupling with the sphingosine part $\mathbf{1 7}(=\mathbf{B})$ or $\mathbf{1 7}^{\prime}$ to give the protected ceramide $\mathbf{3 0}$ or $\mathbf{3 0}^{\prime}$ are summarized in Scheme 4. Alcohol 9 was converted to phosphonium salt 22 via the bromide 21. The Wittig reagent generated from 22 by treatment with sodium hexamethyldisilazide (NaHMDS) reacted with aldehyde 23 (prepared from D-glutamic acid in four steps ${ }^{[11,12]}$ to give (Z)-alkene 24 as the sole product on the basis of its ${ }^{13} \mathrm{C}$ NMR spectroscopic data. Removal of the acetonide protective group of $\mathbf{2 4}$ was followed by silylation of the resulting diol 25 to give the bis(TBS) ether 26. Treatment of $\mathbf{2 6}$ with trifluoroacetic acid afforded a mixture of 25-27, from which the mono(TBS) ether 27 could be separated by silica gel chromatography. Two-step oxidation

Scheme 3. Synthesis of ($11 R, 12 S$)-sphingosine part $\mathbf{1 7}^{\prime}$; reagents: (a) $\mathrm{THPO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{MgBr}, \mathrm{Li}_{2} \mathrm{CuCl}_{4}, \mathrm{THF}$; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}(85 \%$, 2 steps); (c) $(\mathrm{COCl})_{2}, \quad \mathrm{DMSO}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(88 \%)$; (d) $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{PPh}_{3} \mathrm{Br}, n \mathrm{BuLi}, \mathrm{THF}(98 \%)$; (e) $\mathrm{TsOH}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (97%); (f) $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}(98 \%)$; (g) TsCl, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (h) NaI, DMF ($81 \%, 2$ steps); (i) $\mathrm{LiC} \equiv \mathrm{CH} \cdot \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$, DMSO (88%); (j) $n \mathrm{BuLi}$, THF, 13 (85\%); (k) $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}$, EtOH, $\mathrm{H}_{2} \mathrm{O}$ (85\%); (l) dil. aq. $\mathrm{HCl}, \mathrm{MeOH}$ (85%); (m) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (91\%)
of $\mathbf{2 7}$ with Dess-Martin periodinane and sodium chlorite yielded the acid $\mathbf{2 8}(=\mathbf{C})$. Acylation of the sphingosine part 17 with $\mathbf{2 8}$ was executed in the presence of N, N^{\prime}-dicyclohexylcarbodiimide (DCC) and 1-hydroxybenzotriazole (HOBt) to furnish the tris(TBS)-protected ceramide 29. Cleavage of the TBS protective group at $\mathrm{C}-1$ of $\mathbf{2 9}$ under acidic conditions afforded 30, the protected ceramide part. Its $\left(11 R, 12 S, 11^{\prime \prime \prime} R, 12^{\prime \prime \prime} S\right.$) diastereomer $\mathbf{3 0}^{\prime}$ was synthesized in the same manner as described for $\mathbf{3 0}$ by starting from $(6 R, 7 S)-\mathbf{9}^{\prime}$. The hydroxy acid part $\mathbf{2 8}^{\prime}$ was coupled with $\mathbf{1 7}^{\prime}$ to give $\mathbf{3 0}^{\prime}$ after desilylation at $\mathrm{C}-1$.

Synthesis of the Two Diastereomers of Plakoside A

Scheme 5 summarizes the completion of the syntheses of $\left(2 S, 3 R, 11 S, 12 R, 2^{\prime \prime \prime} R, 11^{\prime \prime \prime} S, 12^{\prime \prime \prime} R\right)$-plakoside A (1) and its $\left(2 S, 3 R, 11 R, 12 S, 2^{\prime \prime \prime} R, 11^{\prime \prime \prime} R, 12^{\prime \prime \prime} S\right)$ isomer (1^{\prime}). Pentaace-

Scheme 4. Synthesis of the protected ceramides $\mathbf{3 0}$ and $\mathbf{3 0}^{\prime}$; reagents: (a) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (quant.); (b) $\mathrm{PPh}_{3}, \mathrm{MeCN}$, $\mathrm{NaHCO}_{3}(97 \%)$; (c) NaHMDS, THF, 23 (80%); (d) dil. aq. HCl , THF (quant.); (e) TBSCl, imidazole, DMF (95\%); (f) 10% TFA, THF (39% for $\mathbf{2 7}$ with 25% of $\mathbf{2 5}$ and 30% recovery of $\mathbf{2 6} ; \mathbf{4 9 \%}$ for 30 and 37% recovery of 29); (g) i) Dess-Martin periodinane; ii) $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}, 2$-methyl-2-butene, $t \mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}$ (quant. 2 steps); (h) 17, DCC, HOBt, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (94%)
tyl β-D-galactopyranose was converted into the known C2^{\prime} monochloroacetyl-protected bromide 31. ${ }^{[13,14]}$ Glycosidation of ceramide $\mathbf{3 0}$ with $\mathbf{3 1}$ under conventional Königs - Knorr conditions was followed by selective removal of the chloroacetyl group at C-2' of 32 with hydrazine acetate ${ }^{[15]}$ to give 33. Prenylation of 33 with 1 -(2,2,2-trichloro-1-iminoethoxy)-3-methyl-2-butene in the presence of boron trifluoride-diethyl ether ${ }^{[16]}$ gave the bis(TBS)- and triacetyl-protected compound 34. Twostep removal of the protective groups of $\mathbf{3 4}$ under conventional conditions gave 1. The synthetic $\left(2 S, 3 R, 11 S, 12 R, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} S, 12^{\prime \prime \prime} R\right)$-plakoside A (1), $[\alpha]_{\mathrm{D}}^{22}=+8.9(c=0.065, \mathrm{MeOH})\left\{\mathrm{ref} . \mathrm{:}^{[1]}[\alpha]_{\mathrm{D}}^{25}=+7(c=\right.$

$\square 32 \mathrm{R}=\mathrm{ClA}$
$\longrightarrow 33 \mathrm{R}=\mathrm{H}$

, $3 R, 11 R, 12 S, 2$ "'R, 5 "'Z,11"'R,12"'S)-1'

Scheme 5. Synthesis of ($2 S, 3 R, 11 S, 12 R, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} S, 12^{\prime \prime \prime} R$)plakoside A (1) and its ($2 S, 3 R, 11 R, 12 S, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} R, 12^{\prime \prime \prime} S$) isomer (1'); reagents: (a) 31, $\mathrm{Hg}(\mathrm{CN})_{2}, \mathrm{MeNO}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}(78 \%)$; (b) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{AcOH}, \mathrm{AcOEt}, \mathrm{MeOH}(73 \%) ;$ (c) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{OC}(=$ $\mathrm{NH}) \mathrm{CCl}_{3}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (44\%); (d) TBAF, THF; (e) NaOMe, MeOH (60%, 2 steps)
$0.5, \mathrm{MeOH})\}$, showed ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic properties in agreement with those reported for the natural product. ${ }^{[1]}$ The overall yield of $\mathbf{1}$ was $3.7 \% \quad(\mathbf{2} \rightarrow \mathbf{1 7} \rightarrow \mathbf{1}$; 20 steps) or $4.6 \%(\mathbf{2} \rightarrow \mathbf{9} \rightarrow \mathbf{2 8} \rightarrow \mathbf{1} ; 21$ steps) based on 2. Similarly, $\mathbf{3 1}$ and $\mathbf{3 0}^{\prime}$ afforded $\left(2 S, 3 R, 11 R, 12 S, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} R, 12^{\prime \prime \prime} S\right)$-plakoside A (1'), $[\alpha]_{\mathrm{D}}^{22}=+10.5(c=0.07, \mathrm{MeOH})\left\{\right.$ ref.: ${ }^{[4]}[\alpha]_{\mathrm{D}}^{25}=+10.4(c=$ $1.6, \mathrm{MeOH})\}$, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of which are indistinguishable from those of $\mathbf{1}$ and identical to those reported by Nicolaou et al. ${ }^{[4]}$

Conclusion

We have accomplished the synthesis of the two diastereomers ($\mathbf{1}$ and $\mathbf{1}^{\prime}$) of plakoside A. Because $\mathbf{1}$ and $\mathbf{1}^{\prime}$ are indistinguishable by normal spectroscopic methods, and because they have similar chiroptical properties, the absolute config-
uration of the cyclopropane moiety of the naturally occurring plakoside A remains undetermined.

There have been a number of reported examples where two diastereomers with separated stereogenic centers show indistinguishable spectroscopic data, such as in the cases of penazetidine $\mathrm{A},{ }^{[17,18]}$ penaresidin $\mathrm{A},{ }^{[18,19]}$ and sphingofungin $\mathrm{D}^{[20]}$ (Figure 2). In these cases, derivatization or degradation of the natural products was necessary to completely resolve the stereochemical assignments. ${ }^{[19,20]}$ We shall attempt to resolve the matter of the stereochemistry after reisolation of the plakosides by Professor Fattorusso.

Figure 2. Examples of related natural products with remote stereogenic center(s) denoted by asterisks

Experimental Section

General: IR: Jasco A-102 and Perkin-Elmer 1640. $-{ }^{1} \mathrm{H}$ NMR: Jeol JNM-EX 90A (90 Hz), Jeol JNM-AL300 (300 MHz), and Jeol JNM-LA500 $(500 \mathrm{MHz})\left(\mathrm{TMS}\right.$ at $\delta=0.00$ or CHCl_{3} at $\delta=7.26$ as an internal standard). $-{ }^{13} \mathrm{C}$ NMR: Jeol JNM-LA500 (125 MHz) $\left(\mathrm{CHCl}_{3}\right.$ at $\delta=77.0$ as an internal standard). - Optical rotation: Jasco DIP-1000. - MS: Jeol JMS-SX102A. - Column chromatography: Merck Kieselgel 60 Art 1.07734. - TLC: 0.25 mm Merck silica gel plates ($60 \mathrm{~F}-254$).
(1S,2R)-1-Acetoxymethyl-2-hydroxymethylcyclopropane (3): To a solution of $\mathbf{2}(21.3 \mathrm{~g}, 208 \mathrm{mmol})$ in THF $(110 \mathrm{~mL})$ and vinyl acetate $(130 \mathrm{~mL})$ was added lipase AK (1.06 g), and the reaction mixture was stirred for 3.5 h at room temperature. This mixture was filtered through Celite and the filtrate was concentrated in vacuo. The residue was chromatographed on silica gel to give $3(25.8 \mathrm{~g}, 86 \%)$ as a colorless oil; $n_{\mathrm{D}}^{25}=1.4558 .-[\alpha]_{\mathrm{D}}^{21}=-19.9\left(c=1.65\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. - IR(film): $\tilde{v}_{\max }=3400 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{OH}), 3080(\mathrm{w}, \mathrm{CH}), 1740(\mathrm{~s}$, $\mathrm{C}=\mathrm{O}$), 1240 ($\mathrm{s}, \mathrm{C}-\mathrm{O}$), 1030 (s, C-O). - ${ }^{1} \mathrm{H}$ NMR (90 MHz , CDCl_{3}): $\delta=0.23$ (ddd, $J=5.3,5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}$), $0.73-0.97$ (m, 1 H, 3-H H_{b}, $1.16-1.47(\mathrm{~m}, 2 \mathrm{H}, 1-, 2-\mathrm{H}), 1.79$ (br. s, $\left.1 \mathrm{H}, \mathrm{OH}\right)$, $2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 3.27-3.51\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.69-3.98(\mathrm{~m}, 2 \mathrm{H}$, $\left.1^{\prime}-\mathrm{H}_{\mathrm{a}}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 4.38-4.59\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right) .-\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}$ (144.2): calcd. C 58.32 , H 8.39; found C 58.72, H 8.80 .
(2R,3S)-4-Acetoxy-2,3-methylenebutyl Tosylate (4): To a solution of $3(3.62 \mathrm{~g}, 25.1 \mathrm{mmol})$ in pyridine $(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, p toluenesulfonyl chloride $(7.18 \mathrm{~g}, 37.7 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 12 h at $4^{\circ} \mathrm{C}$. It was then poured into water and extracted with CHCl_{3}. The combined extracts were washed with dil. aq. HCl , water, and brine. The organic layer was dried with MgSO_{4} and concentrated in vacuo to give crude tosylate
$4(6.93 \mathrm{~g}, 93 \%)$. This was used in the next Grignard reaction without further purification. $-\operatorname{IR}($ film $): \tilde{v}_{\max }=3080 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{CH})$, 1740 (s, C=O), 1600 (m, Ar), 1500 (w, Ar), 1370 (s, SO $)_{2}$), 1240 (s, $\mathrm{C}-\mathrm{O}), 1195\left(\mathrm{~s}, \mathrm{SO}_{2}\right) .-{ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.31$ (ddd, $\left.J=5.5,5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 0.77-1.01\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right)$, $1.20-1.41(\mathrm{~m}, 2 \mathrm{H}, 2-, 3-\mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, $3.71-4.30\left(\mathrm{~m}, 4 \mathrm{H}, 1-, 4-\mathrm{H}_{2}\right), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.80$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$).
(2S,3R)-2,3-Methylene-1-tridecanol (5): A solution of nonylmagnesium bromide was prepared from 1-bromononane (14.4 mL , $75.3 \mathrm{mmol})$ and magnesium ($1.92 \mathrm{~g}, 79.1 \mathrm{mmol}$) in dry THF $(100 \mathrm{~mL})$. The resulting Grignard reagent and $\mathrm{Li}_{2} \mathrm{CuCl}_{4}(0.05 \mathrm{~m}$ solution in THF, $8 \mathrm{~mL}, 0.4 \mathrm{mmol}$) were then successively added to a solution of tosylate $4(6.93 \mathrm{~g}, 23.2 \mathrm{mmol})$ in dry THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon. The stirred mixture was allowed to warm to $4^{\circ} \mathrm{C}$ over a period of 12 h . After quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, it was extracted with diethyl ether. The combined extracts were washed with saturated aqueous NaHCO_{3} solution, water, and brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel to give 5 (4.51 g , $92 \%)$ as a colorless oil; $n_{\mathrm{D}}^{25}=1.4541 .-[\alpha]_{\mathrm{D}}^{19}=-20.7(c=1.04$, CHCl_{3}). - IR (film): $\tilde{v}_{\text {max }}=3340 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{OH}), 3070(\mathrm{w}, \mathrm{CH})$, $3005(\mathrm{~m}, \mathrm{CH}), 1040(\mathrm{~s}, \mathrm{C}-\mathrm{O}) .-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.040\left(\mathrm{ddd}, J=5.4,5.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H}_{\mathrm{a}}\right), 0.70(\mathrm{ddd}, J=$ $\left.8.3,8.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H}_{\mathrm{b}}\right), 0.85-0.94(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 0.88(\mathrm{t}, J=$ $\left.7.1 \mathrm{~Hz}, 3 \mathrm{H}, 13-\mathrm{H}_{3}\right), 1.05-1.17(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 1.18-1.62(\mathrm{~m}, 18$ H, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12- H_{2}), $3.57(\mathrm{dd}, J=11.2,8.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.65\left(\mathrm{dd}, J=11.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right) .-\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}$ (212.4): calcd. C 79.18, H 13.29; found C 78.96, H 13.22.
(2S,3R)-2,3-Methylenetridecanal (6): To a stirred solution of oxalyl chloride ($2.65 \mathrm{~mL}, 30.8 \mathrm{mmol}$) and dimethyl sulfoxide $(4.46 \mathrm{~mL}$, $61.6 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$, a solution of $\mathbf{5}(3.27 \mathrm{~g}$, $15.4 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Triethylamine ($10.6 \mathrm{~mL}, 77.0 \mathrm{mmol}$) was then added and the mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$. It was then poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with CHCl_{3}. The combined extracts were washed with water and brine, dried with MgSO_{4}, and concentrated in vacuo to give $6(3.25 \mathrm{~g}$, quant.) as a colorless oil. This was employed in the next step without further purification. - IR (film): $\tilde{v}_{\max }=3070 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{CH}), 3005(\mathrm{~m}$, $\mathrm{CH}), 2720(\mathrm{~m}, \mathrm{O}=\mathrm{C}-\mathrm{H}), 1705(\mathrm{~s}, \mathrm{C}=\mathrm{O}) .-{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.82-0.90\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}, 14-\mathrm{H}_{\mathrm{a}}\right), 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.3 \mathrm{H}, 13-\mathrm{H}_{3}\right), 1.14-1.71\left(\mathrm{~m}, 19 \mathrm{H}, 14-\mathrm{H}_{\mathrm{b}}, 4-, 5-, 6-, 7-, 8-, 9-\right.$, $\left.10-, 11-, 12-\mathrm{H}_{2}\right), 1.82-1.89(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 9.34(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHO}$).
(6S,7R)-1-(tert-Butyldiphenylsilyloxy)-6,7-methylene-4-heptadecene (7): To a stirred solution of 4-(tert-butyldiphenylsilyloxy)butyltriphenylphosphonium bromide ($13.1 \mathrm{~g}, 20.0 \mathrm{mmol}$) in dry THF $(60 \mathrm{~mL}), n \operatorname{BuLi}(2.54 \mathrm{~m}$ solution in hexane, $8.3 \mathrm{~mL}, 21.1 \mathrm{mmol})$ was added dropwise at $-78^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 30 min at room temperature. A solution of aldehyde $\mathbf{6}(3.25 \mathrm{~g}$, $15.5 \mathrm{mmol})$ in dry THF (20 mL) was then added dropwise to this ylide solution at $-78^{\circ} \mathrm{C}$. The stirred mixture was allowed to warm to room temperature over a period of 12 h . It was then poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with diethyl ether. The combined extracts were washed with water and brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel to give $7.62 \mathrm{~g}(98 \% ; 2$ steps $)$ of $7(E / Z=$ $1: 5$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis) as a colorless oil; $n_{\mathrm{D}}^{24}=1.5055$. $-[\alpha]_{\mathrm{D}}^{20}=-39.0\left(c=2.45, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(\mathrm{film}): \tilde{v}_{\max }=1645 \mathrm{~cm}^{-1}$ (w, C=C), 1590 (m, C=C), 1110 (s). - ${ }^{1} \mathrm{H}$ NMR (500 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta=0.08\left(\mathrm{dd}, J=8.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}_{\mathrm{a}}\right), 0.86-0.90(\mathrm{~m}$, $2 \mathrm{H}, 7-\mathrm{H}, 18-\mathrm{H}_{\mathrm{b}}$), $0.88\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 17-\mathrm{H}_{3}\right), 1.04(\mathrm{~s}, 9 \mathrm{H}$, CMe_{3}), $1.20-1.64$ (m, $18 \mathrm{H}, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 16-$ $\left.\mathrm{H}_{2}\right), 1.56-1.68\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}_{2}, 6-\mathrm{H}\right), 2.05-2.12\left(\mathrm{~m}, 3-\mathrm{H}_{2}\right.$ of E isomer), $2.25\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right.$ of Z isomer), $3.66(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $1-\mathrm{H}_{2}$ of E isomer), $3.70\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right.$ of Z isomer), 5.04 (dd like, $J=10.7,9.5 \mathrm{~Hz}, 5-\mathrm{H}$ of Z isomer), 5.16 (m, $5-\mathrm{H}$ of E isomer), 5.38 (dt like, $J=10.7,7.3 \mathrm{~Hz}, 4-\mathrm{H}$ of Z isomer), 5.49 (dt like, $J=$ $15.3,7.0 \mathrm{~Hz}, 4-\mathrm{H}$ of E isomer), 7.39 (m, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.67 (m, 4 H , Ar-H). $-\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{OSi}$ (504.9): calcd. C 80.89, H 10.38; found C 81.27, H 10.62.
($\mathbf{6 S}, 7 \boldsymbol{R}$)-6,7-Methylene-4-heptadecen-1-ol (8): TBAF (1.00 m solution in THF, $13.0 \mathrm{~mL}, 13.0 \mathrm{mmol}$) was added to a stirred solution of $7(5.06 \mathrm{~g}, 10.0 \mathrm{mmol})$ in dry THF $(20 \mathrm{~mL})$ at room temperature and the mixture was stirred for 2 h . It was then poured into water and extracted with ethyl acetate. The combined extracts were washed with brine. The organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was chromatographed on silica gel to give $8(2.60 \mathrm{~g}, 98 \%, E / Z=1: 5)$ as a colorless oil; $n_{\mathrm{D}}^{24}=$ 1.4729. $-[\alpha]_{D}^{21}=-65.0\left(c=1.70, \mathrm{CHCl}_{3}\right) .-\operatorname{IR}(f i l m): \tilde{v}_{\max }=$ $3340 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{OH}), 3070(\mathrm{w}, \mathrm{CH}), 1645(\mathrm{w}, \mathrm{C}=\mathrm{C}), 1060(\mathrm{~m}$, $\mathrm{C}-\mathrm{O}) .-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.08-0.15(\mathrm{~m}, 1 \mathrm{H}$, $\left.18-\mathrm{H}_{\mathrm{a}}\right), 0.79-0.96\left(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}, 18-\mathrm{H}_{\mathrm{b}}\right), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, $17-\mathrm{H}_{3}$), $1.20-1.42$ (m, $18 \mathrm{H}, 8-, 9-, 10-, 11-, 12-, 13-$, 14-, 15-, $16-$ $\left.\mathrm{H}_{2}\right), 1.54-1.72\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}_{2}, 6-\mathrm{H}\right), 2.11\left(\mathrm{~m}, 3-\mathrm{H}_{2}\right.$ of E isomer $)$, $2.25\left(\mathrm{dq}, J=7.3,1.3 \mathrm{~Hz}, 3-\mathrm{H}_{2}\right.$ of Z isomer $), 3.66(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $1-\mathrm{H}_{2}$ of E isomer), $3.69\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right.$ of Z isomer), 5.08 (dd like, $J=10.7,9.8 \mathrm{~Hz}, 5-\mathrm{H}$ of Z isomer), 5.22 (dd like, $J=15.4$, $8.8 \mathrm{~Hz}, 5-\mathrm{H}$ of E isomer), 5.42 (dt like, $J=10.7,7.3 \mathrm{~Hz}, 4-\mathrm{H}$ of Z isomer), 5.53 (dt like, $J=15.4,6.8 \mathrm{~Hz}, 4-\mathrm{H}$ of E isomer). $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}$ (266.5): calcd. C 81.13, H 12.86; found C 80.93, H 12.95.
($6 S, 7 R$)-6,7-Methylene-1-heptadecanol (9): To a stirred solution of $8(2.95 \mathrm{~g}, 11.1 \mathrm{mmol})$ in 80% aqueous hydrazine monohydrate $(8 \mathrm{~mL})$ and $\mathrm{EtOH}(20 \mathrm{~mL}), 30 \%$ aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(8 \mathrm{~mL})$ was added dropwise over a period of 3 h and the mixture was stirred for 20 h at room temperature. It was then poured into water and extracted with ethyl acetate. The combined extracts were washed with saturated aqueous FeSO_{4} solution, water, and brine. The organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was chromatographed on silica gel to give $9(2.79 \mathrm{~g}, 94 \%)$ as a colorless oil; $n_{\mathrm{D}}^{25}=1.4602 .-[\alpha]_{\mathrm{D}}^{21}=-3.10\left(c=1.03, \mathrm{CHCl}_{3}\right)$. $-\mathrm{IR}($ film $)$: $\tilde{v}_{\text {max }}=3350 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{OH}), 3070(\mathrm{w}, \mathrm{CH}), 1055(\mathrm{~m}, \mathrm{C}-\mathrm{O}) .-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{Mz}, \mathrm{CDCl}_{3}$): $\delta=-0.33$ (ddd, $J=4.8,4.5,4.5 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, 18-\mathrm{H}_{\mathrm{a}}\right), 0.51-0.62\left(\mathrm{~m}, 1 \mathrm{H}, 18-\mathrm{H}_{\mathrm{b}}\right), 0.62-0.73(\mathrm{~m}, 2 \mathrm{H}, 6-, 7-$ H), $0.88\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 17-\mathrm{H}_{3}\right), 1.09-1.50(\mathrm{~m}, 24 \mathrm{H}, 3-, 4-$, $5-, 8-, 9-, 10-, 11-, 12-, 13-, 14-$, 15-, 16-H2), 1.51-1.70 (m, $3 \mathrm{H}, 2-$ $\left.\mathrm{H}_{2}, \mathrm{OH}\right), 3.64\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR (75.5 MHz , CDCl_{3}): $\delta=10.9,14.1,15.6,15.7,22.7,25.7,28.6,28.7,29.3$, 29.64, 29.66, 29.69, 29.71, 30.0, 30.2, 31.9, 32.8, 63.0. $-\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}$ (268.5): calcd. C 80.53 , H 13.52; found C 80.49 , H 13.81.
($6 S, 7 R$)-6,7-Methyleneheptadecyl Tosylate (10): To a stirred solution of $9(0.86 \mathrm{~g}, 3.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and pyridine $(2 \mathrm{~mL}), p$-toluenesulfonyl chloride $(0.91 \mathrm{~g}, 4.80 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 12 h at $4^{\circ} \mathrm{C}$. It was then poured into water and extracted with diethyl ether. The combined extracts were washed with dil. aq. HCl , water, and brine. The organic layer was dried with MgSO_{4} and concentrated in vacuo to give $\mathbf{1 0}$ (1.35 g , quant.) as a colorless oil. This was employed in the next step without further purification. - IR (film): $\tilde{v}_{\max }=$ $3070 \mathrm{~cm}^{-1}$ (w, CH), $1600(\mathrm{~m}, \mathrm{Ar}), 1380\left(\mathrm{~m}, \mathrm{SO}_{2}\right), 1365\left(\mathrm{~m}, \mathrm{SO}_{2}\right)$, 1190 (s), 1175 (s), 815 (m, Ar). $-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.36\left(\mathrm{dt} \mathrm{like}, J=8.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}_{\mathrm{a}}\right), 0.50-0.69(\mathrm{~m}, 3$

H, 6-, 7-, $18-\mathrm{H}_{\mathrm{b}}$), $0.88\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 17-\mathrm{H}_{3}\right), 1.00-1.42(\mathrm{~m}$, $24 \mathrm{H}, 3-, 4-, 5-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 16-\mathrm{H}_{2}$), 1.49-1.71 $\left(\mathrm{m}, 2 \mathrm{H}, 2-\mathrm{H}_{2}\right), 2.45(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArMe}), 4.03(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 1-$ $\left.\mathrm{H}_{2}\right), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H).
($6 S, 7 R$)-1-Iodo-6,7-methyleneheptadecane (11): To a solution of $\mathbf{1 0}$ $(1.54 \mathrm{~g}, 3.64 \mathrm{mmol})$ in DMF (14 mL) was added $\mathrm{NaI}(0.72 \mathrm{~g}$, 4.80 mmol) and the mixture was stirred for 5 h at $60^{\circ} \mathrm{C}$. It was then poured into water and extracted with n-hexane. The combined extracts were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, water, and brine. The organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was chromatographed on silica gel to give $\mathbf{1 1}(1.23 \mathrm{~g}, 90 \% ; 2$ steps) as a colorless oil. This was employed in the next step without further purification. - IR (film): $\tilde{\mathrm{v}}_{\text {max }}=3070 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{CH}), 1465(\mathrm{~m}, \mathrm{CH}), 1380(\mathrm{w}, \mathrm{CH}), 1310(\mathrm{w})$, 1285 (w), 1025 (m), $730(\mathrm{~m}, \mathrm{CH}) .-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.32\left(\mathrm{dd}, J=8.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}_{\mathrm{a}}\right), 0.52-0.71(\mathrm{~m}, 1 \mathrm{H}$, $\left.18-\mathrm{H}_{\mathrm{b}}\right), 0.61-0.71(\mathrm{~m}, 2 \mathrm{H}, 6-, 7-\mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 17-$ H_{3}), $1.09-1.61$ (m, $24 \mathrm{H}, 3-, 4-, 5-, 8-, 9-, 10-, 11-, 12-, 13-, 14-$, $\left.15-, 16-\mathrm{H}_{2}\right), 1.78$ (quint, $\left.J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{2}\right), 3.54(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 1-\mathrm{H}_{2}\right)$.
($8 S, 9 R$)-8,9-Methylene-1-nonadecyne (12): To a solution of 11 $(710 \mathrm{mg}, \quad 1.88 \mathrm{mmol})$ in dry DMSO $(4 \mathrm{~mL})$, lithium acetylide-ethylenediamine complex ($307 \mathrm{mg}, 3.01 \mathrm{mmol}$) was added portionwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 12 h at room temperature. After quenching with dil. aq. HCl , it was extracted with n-hexane. The combined extracts were washed with water and brine. The organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was chromatographed on silica gel to give $12(457 \mathrm{mg}, 88 \%)$ as a colorless oil; $n_{\mathrm{D}}^{23}=1.4581 .-[\alpha]_{\mathrm{D}}^{21}=$ $+0.65\left(c=1.33, \mathrm{CHCl}_{3}\right)$. IR (film): $\tilde{\mathrm{v}}_{\max }=3340 \mathrm{~cm}^{-1}(\mathrm{~s}$, $\mathrm{C} \equiv \mathrm{CH}$), $3080(\mathrm{w}, \mathrm{CH}), 2150(\mathrm{w}, \mathrm{C} \equiv \mathrm{C}) .-{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=-0.33$ (ddd, $J=5.1,5.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{H}_{\mathrm{a}}$), $0.51-0.60\left(\mathrm{~m}, 1 \mathrm{H}, 20-\mathrm{H}_{\mathrm{b}}\right), 0.60-0.69(\mathrm{~m}, 2 \mathrm{H}, 8-, 9-\mathrm{H}), 0.88(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 19-\mathrm{H}_{3}$), $1.06-1.48(\mathrm{~m}, 24 \mathrm{H}, 5-, 6-7-, 10-, 11-$, 12-, 13-, 14-, 15-, 16-, 17-, $18-\mathrm{H}_{2}$), $1.49-1.57$ (m, $2 \mathrm{H}, 4-\mathrm{H}_{2}$), 1.94 (t, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 2.19\left(\mathrm{dt}, J=7.1,2.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{2}\right)$. $\mathrm{C}_{20} \mathrm{H}_{36}$ (276.5): calcd. C 86.88, H 13.12; found C 86.55, H 13.30.
tert-Butyl (4S,1'R,9'S,10'R)-4-(1'-Hydroxy-9',10'-methylene-2'-icosynyl)-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (14): To a stirred solution of $\mathbf{1 2}(136 \mathrm{mg}, 0.49 \mathrm{mmol})$ in dry THF (5 mL), n BuLi solution (1.56 m in n-hexane, $0.35 \mathrm{~mL}, 0.54 \mathrm{mmol}$) was added dropwise at $0{ }^{\circ} \mathrm{C}$ under argon. The resulting solution was stirred for 20 min at $0^{\circ} \mathrm{C}$, then cooled to $-78^{\circ} \mathrm{C}$, whereupon a solution of $13(147 \mathrm{mg}, 0.64 \mathrm{mmol})$ in THF (4 mL) was added dropwise. The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the mixture was extracted with diethyl ether. The combined extracts were washed with water and brine. The organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was chromatographed on silica gel to give $\mathbf{1 4}$ ($200 \mathrm{mg}, 80 \%$) as a colorless oil; $\eta_{\mathrm{D}}^{24}=1.4723 .-[\alpha]_{\mathrm{D}}^{26}=-34.2$ ($c=1.11, \mathrm{CHCl}_{3}$). - IR (film): $\tilde{v}_{\text {max }}=3440 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{OH}), 3060$ (w, CH) , $1705(\mathrm{~s}, \mathrm{C}=\mathrm{O}) .-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $-0.34\left(\mathrm{dd}, J=9.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 21^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 0.52-0.58\left(\mathrm{~m}, 1 \mathrm{H}, 21^{\prime}-\right.$ $\left.\mathrm{H}_{\mathrm{b}}\right), 0.58-0.71\left(\mathrm{~m}, 2 \mathrm{H}, 9^{\prime}-, 10^{\prime}-\mathrm{H}\right), 0.88\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 20^{\prime}-\right.$ H_{3}), 1.10-1.42 (m, $26 \mathrm{H}, 5^{\prime}-, 6^{\prime}-, 7^{\prime}-, 8^{\prime}-, 11^{\prime}-, 12^{\prime}-, 13^{\prime}-, 14^{\prime}-$, $15^{\prime}-, 16^{\prime}-, 17^{\prime}-, 18^{\prime}-, 19^{\prime}-\mathrm{H}_{2}$), 1.50 (s, $12 \mathrm{H}, \mathrm{CMe}_{3}$, acetonide), 1.57 (s, 3 H , acetonide), $1.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.20\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}-\right.$ $\left.\mathrm{H}_{2}\right), 3.83-3.97\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 4.00-4.34\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}, 1^{\prime}-\mathrm{H}\right)$, 4.48-4.85 (m, 1 H, 4-H). $-\mathrm{C}_{31} \mathrm{H}_{55} \mathrm{NO}_{4}$ (505.8): calcd. C 73.62, H 10.96, N 2.77 ; found C 73.24, H 10.72, N 2.71 .
tert-Butyl ($4 S, 1^{\prime} R, 9^{\prime} S, 10^{\prime} R$)-4-(1^{\prime}-Hydroxy- $9^{\prime}, 10^{\prime}$-methyleneico-syl)-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (15): To a stirred solution of $\mathbf{1 4}(361 \mathrm{mg}, 0.71 \mathrm{mmol})$ in 80% aqueous hydrazine monohydrate $(2.5 \mathrm{~mL})$ and $\mathrm{EtOH}(30 \mathrm{~mL}), 34.5 \%$ aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ $(10 \mathrm{~mL})$ was added dropwise over a period of 3 h and the resulting mixture was stirred for 12 h at room temperature. It was then poured into water and extracted with ethyl acetate. The combined extracts were washed with saturated aqueous FeSO_{4} solution, water, and brine. The organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was chromatographed on silica gel to give $15(324 \mathrm{mg}, 89 \%)$ as a colorless oil; $n_{\mathrm{D}}^{26}=1.4649$. -$[\alpha]_{\mathrm{D}}^{26}=-11.4\left(c=1.14, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}($ film $): \tilde{v}_{\max }=3435 \mathrm{~cm}^{-1}$ (m, OH), 3055 (w, CH), $1700(\mathrm{~s}, \mathrm{C}=\mathrm{O}) .-{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=-0.34\left(\mathrm{dt}, J=9.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 21^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 0.50-0.60$ $\left(\mathrm{m}, 1 \mathrm{H}, 21^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 0.60-0.72\left(\mathrm{~m}, 2 \mathrm{H}, 9^{\prime}-, 10^{\prime}-\mathrm{H}\right), 0.88(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}, 20^{\prime}-\mathrm{H}_{3}$), $1.07-1.45\left(\mathrm{~m}, 32 \mathrm{H}, 2^{\prime}-, 3^{\prime}-\right.$, $4^{\prime}-, 5^{\prime}-, 6^{\prime}$-, $7^{\prime}-, 8^{\prime}-, 11^{\prime}-, 12^{\prime}-, 13^{\prime}-, 14^{\prime}-, 15^{\prime}-, 16^{\prime}-, 17^{\prime}-, 18^{\prime}-, 19^{\prime}-\mathrm{H}_{2}$), 1.49 (s, $12 \mathrm{H}, \mathrm{CMe}_{3}$, acetonide), 1.59 (br. s, 4 H , acetonide, OH), 3.48-4.16 (m, $4 \mathrm{H}, 4-, 1^{\prime}-\mathrm{H}, 5-\mathrm{H}_{2}$). $-\mathrm{C}_{31} \mathrm{H}_{59} \mathrm{NO}_{4}$ (509.8): calcd. C 73.03, H 11.66, N 2.75 ; found C 73.17, H 11.53, N 2.74 .
(2S,3R,11S,12R)-2-Amino-11,12-methylenedocosane-1,3-diol Hydrochloride (16): To a stirred solution of $\mathbf{1 5}(229 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL}), 3 \mathrm{~N} \mathrm{HCl}(1 \mathrm{~mL})$ was added dropwise and the mixture was heated at $50{ }^{\circ} \mathrm{C}$ for 6 h . The solvent was then removed in vacuo to give 16 (180 mg , quant.) as a white solid. This was employed in the next step without further purification. $-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=-0.34$ (dd, $J=8.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 21^{\prime}-$ $\left.\mathrm{H}_{\mathrm{a}}\right), 0.55\left(\mathrm{~m}, 1 \mathrm{H}, 21^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 0.64\left(\mathrm{~m}, 2 \mathrm{H}, 9^{\prime}-, 10^{\prime}-\mathrm{H}\right), 0.88(\mathrm{t}, J=$ $\left.6.9 \mathrm{~Hz}, 3 \mathrm{H}, 20^{\prime}-\mathrm{H}_{3}\right), 1.26\left(\mathrm{~m}, 32 \mathrm{H}, 2^{\prime}-, 3^{\prime}-, 4^{\prime}-, 5^{\prime}-, 6^{\prime}-, 7^{\prime}-, 8^{\prime}-\right.$, $11^{\prime}-, 12^{\prime}-, 13^{\prime}-, 14^{\prime}-, 15^{\prime}-, 16^{\prime}-, 17^{\prime}-, 18^{\prime}-, 19^{\prime}-\mathrm{H}_{2}$), 3.21 (ddd, $J=$ $8.4,8.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.70(\mathrm{dd}, J=11.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H})$, $3.75-3.85$ (m, 2 H, 1-, 3-H).
(2S,3R,11S,12R)-2-Amino-1,3-bis(tert-butyldimethylsilyloxy)-11,12methylenedocosane (17): To a solution of $\mathbf{1 6}(181 \mathrm{mg}, 0.45 \mathrm{mmol})$ and 2,6-lutidine ($0.21 \mathrm{~mL}, 1.80 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, TBSOTf $(0.31 \mathrm{~mL}, 1.35 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 30 min at room temperature and then quenched with MeOH . It was subsequently poured into water and extracted with diethyl ether. The combined extracts were washed with water, saturated aqueous NaHCO_{3} solution, and brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel to give 17 ($252 \mathrm{mg}, 94 \%$) as a colorless oil; $n_{\mathrm{D}}^{23}=1.4597 .-[\alpha]_{\mathrm{D}}^{22}=-3.92\left(c=0.71, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}$ (film): $\tilde{v}_{\text {max }}=3400 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{NH}), 3055(\mathrm{w}, \mathrm{CH}), 1460(\mathrm{~m}, \mathrm{CH}), 1260(\mathrm{~m}$, CH), $1095(\mathrm{~m}), 840(\mathrm{~m}) .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $-0.34\left(\mathrm{dd}, J=9.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{a}}\right), 0.07$ (s, 9 H, SiMe), 0.08 (s, $3 \mathrm{H}, \mathrm{SiMe}), 0.55\left(\mathrm{~m}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{b}}\right), 0.64(\mathrm{~m}, 2 \mathrm{H}, 11-, 12-\mathrm{H}), 0.88$ $\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 22-\mathrm{H}_{3}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 0.89(\mathrm{~s}, 9 \mathrm{H}$, CMe_{3}), 1.26 (m, $30 \mathrm{H}, 5-, 6-, 7-, 8-, 9-, 10-, 13-, 14-, 15-, 16-, 17-$, 18-, 19-, 20-, $21-\mathrm{H}_{2}$), 1.58 (m, $2 \mathrm{H}, 4-\mathrm{H}_{2}$), 2.17 (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $2.98(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.51\left(\mathrm{dd}, J=10.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.71$ (dd, $\left.J=10.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.74-3.80(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$. $\mathrm{C}_{35} \mathrm{H}_{75} \mathrm{NO}_{2} \mathrm{Si}_{2}$ (598.2): calcd. C $70.28, \mathrm{H} 12.64$, N 2.34 ; found C 70.30, H 12.60, N 2.34 .
(2S,3R)-2,3-Methylene-8-tetrahydropyranyloxy-1-octanol (18): A solution of 4-(tetrahydropyranyloxy)butylmagnesium bromide was prepared from 4-(tetrahydropyranyloxy)butyl bromide (30.7 g , 129 mmol) and magnesium ($3.48 \mathrm{~g}, 143 \mathrm{mmol}$) in dry THF $(140 \mathrm{~mL})$. The resulting Grignard reagent and $\mathrm{Li}_{2} \mathrm{CuCl}_{4}(0.05 \mathrm{~m}$ solution in THF, $13 \mathrm{~mL}, 6.5 \mathrm{mmol}$) were then successively added to a solution of tosylate $\mathbf{4}(8.18 \mathrm{~g}, 27.4 \mathrm{mmol})$ in dry THF (20 mL) at $-78^{\circ} \mathrm{C}$ under argon. The stirred mixture was allowed to warm
to $4{ }^{\circ} \mathrm{C}$ over a period of 12 h . It was then poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The combined extracts were washed with saturated aqueous NaHCO_{3} solution, water, and brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was taken up in $\mathrm{MeOH}(30 \mathrm{~mL})$ and treated with solid $\mathrm{K}_{2} \mathrm{CO}_{3}(2.5 \mathrm{~g})$. The resulting mixture was stirred for 30 min at room temperature. It was then poured into water and extracted with ethyl acetate. The combined extracts were washed with water and brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel to give $18(5.62 \mathrm{~g}$, $85 \%)$ as a colorless oil; $n_{\mathrm{D}}^{26}=1.4699 .-[\alpha]_{\mathrm{D}}^{21}=-14.3(c=1.25$, CHCl_{3}). - IR (film): $\tilde{\mathrm{v}}_{\text {max }}=3425 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{OH}), 3080(\mathrm{w}, \mathrm{CH})$, $1025(\mathrm{~m}) .-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.045(\mathrm{dt}, J=$ $10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}$), 0.70 (dt like, $J=8.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}$), $0.81-0.91(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.05-1.15(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 1.21-1.88(\mathrm{~m}$, $\left.14 \mathrm{H}, 4-, 5-, 6-, 7-, 3^{\prime}-, 4^{\prime}-, 5^{\prime}-\mathrm{H}_{2}\right), 3.38(\mathrm{dt}, J=9.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.8-\mathrm{H}_{\mathrm{a}}\right), 3.42-3.53\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.56(\mathrm{dd}, J=11.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.1-\mathrm{H}_{\mathrm{a}}\right), 3.65\left(\mathrm{dd}, J=11.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.73(\mathrm{dt}$ like, $J=$ $\left.9.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}_{\mathrm{b}}\right), 3.83-3.91\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.55-4.59(\mathrm{~m}$, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right) .-\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{3}$ (242.4): calcd. C 69.38, H 10.81; found C 69.44, H 10.43.
(2S,3R)-2,3-Methylene-8-tetrahydropyranyloxyoctanal (19): To a stirred solution of oxalyl chloride ($2.66 \mathrm{~mL}, 30.9 \mathrm{mmol}$) and dimethyl sulfoxide ($4.48 \mathrm{~mL}, 61.9 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$, a solution of $\mathbf{1 8}(4.96 \mathrm{~g}, 20.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$ under argon. Stirring was continued for 1 h at $-78^{\circ} \mathrm{C}$. Triethylamine ($14.2 \mathrm{~mL}, 103 \mathrm{mmol}$) was then added to the reaction mixture and stirring was continued for 20 min at $0{ }^{\circ} \mathrm{C}$. The reaction was subsequently quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the resulting mixture was extracted with CHCl_{3}. The combined extracts were washed with water and brine, dried with MgSO_{4}, and concentrated in vacuo to give 19 $(4.36 \mathrm{~g}, 88 \%)$ as a colorless oil. This was employed in the next step without further purification. - IR (film): $\tilde{v}_{\max }=3070 \mathrm{~cm}^{-1}(\mathrm{w}$, $\mathrm{CH}), 2720(\mathrm{w}, \mathrm{O}=\mathrm{C}-\mathrm{H}), 1705(\mathrm{~s}, \mathrm{C}=\mathrm{O}) .-{ }^{1} \mathrm{H}$ NMR $(90 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.78-1.01\left(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}, 3-\mathrm{H}\right), 1.08-2.03(\mathrm{~m}, 16 \mathrm{H}$, 9-H ${ }_{\mathrm{b}}, 2-\mathrm{H}, 4-, 5-, 6-, 7-, 3^{\prime}-, 4^{\prime}-, 5^{\prime}-\mathrm{H}_{2}$), 3.23-4.01 (m, $4 \mathrm{H}, 8-, 6^{\prime}-$ H_{2}), 4.55 (br. s, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 9.36(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO})$.
($6 R, 7 S$)-1-Tetrahydropyranyloxy-6,7-methylene-8-heptadecene (20): To a stirred suspension of nonyltriphenylphosphonium bromide $(15.0 \mathrm{~g}, 32.0 \mathrm{mmol})$ in dry THF (35 mL), $n \operatorname{BuLi}(2.54 \mathrm{~m}$ solution in hexane, $13.2 \mathrm{~mL}, 33.6 \mathrm{mmol}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 40 min at room temperature. To the resulting ylide solution, a solution of $19(4.36 \mathrm{~g}$, $18.1 \mathrm{mmol})$ in dry THF (20 mL) was added dropwise at $-78^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to room temperature and stirring was continued for 12 h . After quenching by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the mixture was extracted with diethyl ether. The combined extracts were washed with water and brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel to give $\mathbf{2 0}(6.19 \mathrm{~g}$, $98 \%, E / Z=1: 4$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis) as a colorless oil; $n_{\mathrm{D}}^{24}=1.4717 .-[\alpha]_{\mathrm{D}}^{19}=-46.4\left(c=1.65, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}$ (film): $\tilde{v}_{\text {max }}=3070 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{CH}), 3000(\mathrm{~m}, \mathrm{CH}), 1645(\mathrm{w}, \mathrm{C}=\mathrm{C}), 1035$ (s). - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.06-0.13(\mathrm{~m}, 1 \mathrm{H}, 18-$ $\left.\mathrm{H}_{\mathrm{a}}\right), 0.85-0.91\left(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}, 18-\mathrm{H}_{\mathrm{b}}\right), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 17-$ H_{3}), 1.21-1.44 (m, $18 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}, 7-\mathrm{H}, 3-, 4-, 11-, 12-, 13-, 14-, 15-$, $\left.16-\mathrm{H}_{2}\right), 1.48-1.74\left(\mathrm{~m}, 8 \mathrm{H}, 2-, 3^{\prime}-, 4^{\prime}-, 5^{\prime}-\mathrm{H}_{2}\right), 1.78-1.85(\mathrm{~m}, 1 \mathrm{H}$, $\left.5-\mathrm{H}_{\mathrm{b}}\right), 1.92-2.04\left(\mathrm{~m}, 10-\mathrm{H}_{2}\right.$ of E isomer), 2.13 (q like, $J=7.3 \mathrm{~Hz}$, $10-\mathrm{H}_{2}$ of Z isomer), 3.38 (ddt, $J=9.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}$), $3.46-3.53\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.73\left(\mathrm{dt}, J=9.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right)$, $3.87\left(\mathrm{ddd}, J=10.7,7.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.57(\mathrm{dd}, J=4.3$,
$2.8 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$), 5.02 (dd like, $J=10.7,9.5 \mathrm{~Hz}, 8-\mathrm{H}$ of Z isomer), 5.16 (dd like, $J=15.3,8.6 \mathrm{~Hz}, 8-\mathrm{H}$ of E isomer), 5.40 (dt like, $J=10.7,7.3 \mathrm{~Hz}, 9-\mathrm{H}$ of Z isomer), 5.51 (dt like, $J=15.3$, $6.7 \mathrm{~Hz}, 9-\mathrm{H}$ of E isomer). $-\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{2}$ (350.6): calcd. C $78.80, \mathrm{H}$ 12.08; found C 78.58 , H 11.95.
($\mathbf{6 R}, 7 \mathrm{~F}$)-6,7-Methylene-1-heptadecanol ($\mathbf{9}^{\prime}$): To a solution of $\mathbf{2 0}$ $(110 \mathrm{mg}, 0.314 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added p-toluenesulfonic acid (2 mg) and the resulting mixture was stirred for 6.5 h at room temperature. It was then poured into water and extracted with ethyl acetate. The combined extracts were washed with water and brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel to give the deprotected alcohol $\left(81 \mathrm{mg}, 97 \%, E / Z=1: 4\right.$ as judged by ${ }^{1} \mathrm{H}$ NMR analysis) as a colorless oil. To a stirred solution of this alcohol ($4.24 \mathrm{~g}, 15.8 \mathrm{mmol}$) in 80% aqueous hydrazine monohydrate $(10 \mathrm{~mL})$ and $\mathrm{EtOH}(40 \mathrm{~mL}), 34.5 \%$ aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(10 \mathrm{~mL})$ was added dropwise over a period of 3 h and the mixture was stirred for 12 h at room temperature. It was then poured into water and extracted with ethyl acetate. The combined extracts were washed with saturated aqueous FeSO_{4} solution, water, and brine. The organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was chromatographed on silica gel to give $9^{\prime}(4.16 \mathrm{~g}, 98 \%)$ as a colorless oil.
(6R,7S)-6,7-Methylene-8-heptadecen-1-ol: $n_{\mathrm{D}}^{24}=1.4766$. $-[\alpha]_{\mathrm{D}}^{21}=$ $-60.0\left(c=1.85, \mathrm{CHCl}_{3}\right)$. - IR (film): $\tilde{v}_{\text {max }}=3320 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{OH})$, $1055(\mathrm{~m}, \mathrm{C}-\mathrm{O}) .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.08-0.13$ $\left(\mathrm{m}, 1 \mathrm{H}, 18-\mathrm{H}_{\mathrm{a}}\right), 0.77-0.94\left(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}, 18-\mathrm{H}_{\mathrm{b}}\right), 0.88(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}, 17-\mathrm{H}_{3}$), $1.18-1.50(\mathrm{~m}, 19 \mathrm{H}, 7-\mathrm{H}, 3-, 4-$, $5-$, 11-, $12-$, 13-, 14-, 15-, 16-H2), $1.51-1.60\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}_{2}, \mathrm{OH}\right), 1.99$ (q like, $J=7.0 \mathrm{~Hz}, 10-\mathrm{H}_{2}$ of E isomer), $2.14\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 10-\mathrm{H}_{2}\right.$ of Z isomer), $3.64\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}_{2}\right), 5.02$ (dd like, $J=10.7$, $9.5 \mathrm{~Hz}, 8-\mathrm{H}$ of Z isomer), 5.16 (dd like, $J=15.0,8.6 \mathrm{~Hz}, 8-\mathrm{H}$ of E isomer), 5.40 (dt like, $J=10.7,7.3 \mathrm{~Hz}, 9-\mathrm{H}$ of Z isomer), 5.51 (dt like, $J=15.3,7.0 \mathrm{~Hz}, 9-\mathrm{H}$ of E isomer). $-\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}$ (266.5): calcd. C 81.13, H 12.86; found C 81.16, H 13.03.
$(6 R, 7 S)-9^{\prime}: n_{\mathrm{D}}^{25}=1.4588 .-[\alpha]_{\mathrm{D}}^{19}=+2.42\left(c=2.02, \mathrm{CHCl}_{3}\right) .-$ $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}$ (268.5): calcd. C 80.53, H 13.52; found C 80.45, H 13.25 . The IR and NMR spectra are identical to those of 9 .
($\mathbf{6 R}, \mathbf{7 S}$)-6,7-Methyleneheptadecyl Tosylate ($\mathbf{1 0}^{\prime}$): In the same manner as described above for the conversion of $\mathbf{9}$ to $\mathbf{1 0}, \mathbf{9}^{\prime}(0.97 \mathrm{~g}$, 3.61 mmol) was converted into 1.69 g (quant.) of $\mathbf{1 0}^{\prime}$. This was employed in the next step without further purification. The IR and NMR spectra are identical to those of $\mathbf{1 0}$.
($\mathbf{6 R}, \mathbf{7 S}$)-1-Iodo-6,7-methyleneheptadecane (11'): In the same manner as described above for the conversion of $\mathbf{1 0}$ to $\mathbf{1 1}, \mathbf{1 0}^{\prime}(1.69 \mathrm{~g}$, $4.00 \mathrm{mmol})$ was converted into $1.23 \mathrm{~g}(81 \% ; 2$ steps $)$ of $\mathbf{1 1}^{\prime}$. This was employed in the next step without further purification. The IR and NMR spectra are identical to those of $\mathbf{1 1}$.
($\mathbf{8 R}, \mathbf{9} \mathbf{S}$)-8,9-Methylene-1-nonadecyne ($\mathbf{1 2}^{\prime}$): In the same manner as described above for the conversion of $\mathbf{1 1}$ to $\mathbf{1 2}, \mathbf{1 1}^{\prime}(1.23 \mathrm{~g}$, $3.25 \mathrm{mmol})$ was converted into $0.79 \mathrm{~g}(88 \%)$ of $\mathbf{1 2}^{\prime} ; n_{\mathrm{D}}^{23}=1.4498$. $-[\alpha]_{\mathrm{D}}^{19}=-0.24\left(c=1.19, \mathrm{CHCl}_{3}\right) .-\mathrm{C}_{20} \mathrm{H}_{36}$ (276.5): calcd. C 86.88, H 13.12; found C 86.78, H 13.12. - The IR and NMR spectra are identical to those of $\mathbf{1 2}$.
tert-Butyl (4S, $1^{\prime} R, 9^{\prime} R, 10^{\prime} S$)-4-(1^{\prime}-Hydroxy- $9^{\prime}, 10^{\prime}$-methylene-2'-icosynyl)-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (14'): In the same manner as described above for the conversion of $\mathbf{1 2}$ to $\mathbf{1 4}$, $\mathbf{1 2}^{\prime}(0.51 \mathrm{~g}, 1.84 \mathrm{mmol})$ was converted into $0.70 \mathrm{~g}(75 \%)$ of $\mathbf{1 4}^{\prime}$; $n_{\mathrm{D}}^{25}=1.4651 .-[\alpha]_{\mathrm{D}}^{23}=-44.7\left(c=0.80, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(\mathrm{film}):$
$\tilde{v}_{\text {max }}=3450 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{OH}), 3070(\mathrm{w}, \mathrm{CH}), 2240(\mathrm{w}, \mathrm{C} \equiv \mathrm{C}), 1705$ (s, C=O), $1065(\mathrm{~m}, \mathrm{C}-\mathrm{O}) .-{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $-0.33\left(\mathrm{dt}, J=9.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 21^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 0.52-0.59\left(\mathrm{~m}, 1 \mathrm{H}, 21^{\prime}-\right.$ $\left.\mathrm{H}_{\mathrm{b}}\right), 0.61-0.67(\mathrm{~m}, 2 \mathrm{H}, 9-, 10-\mathrm{H}), 0.88\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 20^{\prime}-\right.$ H_{3}), $1.10-1.43\left(\mathrm{~m}, 26 \mathrm{H}, 5^{\prime}-, 6^{\prime}-, 7^{\prime}-, 8^{\prime}-, 11^{\prime}-\right.$, 12^{\prime}-, $13^{\prime}-$, $14^{\prime}-$, 15^{\prime}-, $16^{\prime}-, 17^{\prime}-$, $18^{\prime}-, 19^{\prime}-\mathrm{H}_{2}$), $1.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.51(\mathrm{~s}, 3 \mathrm{H}$, acetonide), 1.58 (s, 4 H , acetonide, OH), $2.20\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}_{2}\right.$), 3.90 (br. s, $1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}$), $4.02-4.18$ (m, $\left.2 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}, 1^{\prime}-\mathrm{H}\right), 4.46-4.75$ (m, $1 \mathrm{H}, 4-\mathrm{H}) .-\mathrm{C}_{31} \mathrm{H}_{55} \mathrm{NO}_{4}$ (505.8): calcd. C 73.62, H 10.96, N 2.77; found C 73.48, H 11.04, N 2.94 .
tert-Butyl (4S, $\left.1^{\prime} R, 9^{\prime} R, 10^{\prime} S\right)$-4-($1^{\prime}-{ }^{-H y d r o x y}-9^{\prime}, 10^{\prime}$-methyleneico-syl)-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (15'): In the same manner as described above for the conversion of $\mathbf{1 4}$ to $\mathbf{1 5}, \mathbf{1 4}^{\prime}$ $(550 \mathrm{mg}, 1.08 \mathrm{mmol})$ was converted into $469 \mathrm{mg}(85 \%)$ of $\mathbf{1 5}^{\prime} ; n_{\mathrm{D}}^{22}=$ 1.4648. $-[\alpha]_{\mathrm{D}}^{23}=-14.0\left(c=0.97, \mathrm{CHCl}_{3}\right) .-\operatorname{IR}(f i l m): \tilde{v}_{\max }=$ $3450 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{OH}), 3070(\mathrm{w}, \mathrm{CH}), 1700(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1070(\mathrm{~m}, \mathrm{C}-\mathrm{O})$. $-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.34$ (dt, $J=9.0,5.1 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, 21^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 0.52-0.60\left(\mathrm{~m}, 1 \mathrm{H}, 21^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 0.60-0.68(\mathrm{~m}, 2 \mathrm{H}$, $\left.9^{\prime}-, 10^{\prime}-\mathrm{H}\right), 0.88\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 20^{\prime}-\mathrm{H}_{3}\right), 1.08-1.42(\mathrm{~m}, 32 \mathrm{H}$, $2^{\prime}-, 3^{\prime}-, 4^{\prime}-, 5^{\prime}-, 6^{\prime}-, 7^{\prime}-, 8^{\prime}-, 11^{\prime}-, 12^{\prime}-, 13^{\prime}-, 14^{\prime}-, 15^{\prime}-, 16^{\prime}-, 17^{\prime}-$, $18^{\prime}-, 19^{\prime}-\mathrm{H}_{2}$), 1.49 (s, $12 \mathrm{H}, \mathrm{CMe}_{3}$, acetonide), 1.59 (br. s, 4 H , acetonide, OH), $3.44-4.12\left(\mathrm{~m}, 4 \mathrm{H}, 4-, 1^{\prime}-\mathrm{H}, 5-\mathrm{H}_{2}\right)$. $-\mathrm{C}_{31} \mathrm{H}_{59} \mathrm{NO}_{4}$ (509.8): calcd. C 73.03, H 11.66, N 2.75 ; found C 73.27, H 11.92 , N 2.85 .
($2 S, 3 R, 11 R, 12 S$)-2-Amino-11,12-methylenedocosane-1,3-diol $\quad \mathrm{Hy}$ drochloride (16'): In the same manner as described above for the conversion of $\mathbf{1 5}$ to $\mathbf{1 6}, \mathbf{1 5}^{\prime}(380 \mathrm{mg}, 0.745 \mathrm{mmol})$ was converted into $145 \mathrm{mg}(85 \%)$ of $\mathbf{1 6}^{\prime}$. This was employed in the next step without further purification. $-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=$ -0.55 to $-0.52\left(\mathrm{~m}, 1 \mathrm{H}, 21^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 0.31-0.41\left(\mathrm{~m}, 1 \mathrm{H}, 21^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 0.46$ (br. s, $\left.2 \mathrm{H}, 9^{\prime}-, 10^{\prime}-\mathrm{H}\right), 0.69\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 20^{\prime}-\mathrm{H}_{3}\right), 0.82-1.19$ (m, $32 \mathrm{H}, 2^{\prime}-, 3^{\prime}-, 4^{\prime}-, 5^{\prime}-, 6^{\prime}-, 7^{\prime}-, 8^{\prime}-, 11^{\prime}-, 12^{\prime}-, 13^{\prime}-, 14^{\prime}-, 15^{\prime}-$, $16^{\prime}-, 17^{\prime}-, 18^{\prime}-, 19^{\prime}-\mathrm{H}_{2}$), 2.95-3.05 (m, 1 H, 2-H), 3.42-3.53 (m, 1 $\mathrm{H}, 1-\mathrm{H}), 3.58-3.65(\mathrm{~m}, 2 \mathrm{H}, 1-, 3-\mathrm{H})$.
(2S,3R,11R,12S)-2-Amino-1,3-bis(tert-butyldimethylsilyloxy)-11,12methylenedocosane (17'): In the same manner as described above for the conversion of $\mathbf{1 6}$ to $\mathbf{1 7}, \mathbf{1 6}^{\prime}(297 \mathrm{mg}, 0.731 \mathrm{mmol})$ was converted into $399 \mathrm{mg}(91 \%)$ of $\mathbf{1 7}^{\prime} ; n_{\mathrm{D}}^{22}=1.4590 .-[\alpha]_{\mathrm{D}}^{22}=-2.60$ ($c=0.54, \mathrm{CHCl}_{3}$). - IR (film): $\tilde{v}_{\text {max }}=3400 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{NH}), 3060$ (w, CH), 1465 (m, CH), 1255 (m, CH), 1095 (m), $840(\mathrm{~m}) .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.34(\mathrm{dt}, J=9.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.23-\mathrm{H}_{\mathrm{a}}\right), 0.06\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{SiMe}_{2}\right), 0.53-0.58\left(\mathrm{~m}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{b}}\right), 0.64$ (br. $\mathrm{s}, 2 \mathrm{H}, 11-, 12-\mathrm{H}), 0.88\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 22-\mathrm{H}_{3}\right.$), $0.89(\mathrm{~s}, 9 \mathrm{H}$, CMe_{3}), 0.90 (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$), 1.08-1.41 (m, $30 \mathrm{H}, 5-, 6-, 7-, 8-, 9-$, $10-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21-\mathrm{H}_{2}$), 1.58 (br. s, $4 \mathrm{H}, 4-$ $\left.\mathrm{H}_{2}, \mathrm{NH}_{2}\right), 2.86-2.82(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.45(\mathrm{t}$ like, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.1-\mathrm{H}_{\mathrm{a}}\right), 3.68\left(\mathrm{dd}, J=10.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.67-3.73(\mathrm{~m}, 1 \mathrm{H}$, $3-\mathrm{H})$. $-\mathrm{C}_{35} \mathrm{H}_{75} \mathrm{NO}_{2} \mathrm{Si}_{2}$ (598.1): calcd. C 70.28, H 12.64, N 2.34; found C 70.18, H 12.83, N 2.38 .
(6S,7R)-1-Bromo-6,7-methyleneheptadecane (21): To a solution of 9 $(820 \mathrm{mg}, 3.05 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), \mathrm{PPh}_{3}(963 \mathrm{mg}$, $3.67 \mathrm{mmol})$ and $\mathrm{CBr}_{4}(1.22 \mathrm{~g}, 3.67 \mathrm{mmol})$ were added portionwise at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at room temperature. After quenching the reaction by the addition of saturated aqueous NaHCO_{3} solution, the mixture was extracted with n-hexane. The combined extracts were washed with water and brine. The organic layer was dried with MgSO_{4} and concentrated in vacuo. The residue was chromatographed on silica gel to give $21(1.01 \mathrm{~g}$, quant.) as a colorless oil; $n_{\mathrm{D}}^{24}=1.4735 .-[\alpha]_{\mathrm{D}}^{21}=-2.20\left(c=1.65, \mathrm{CHCl}_{3}\right)$. - IR (film): $\tilde{v}_{\text {max }}=3080 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{CH}), 1465(\mathrm{~m}, \mathrm{CH}), 1245(\mathrm{w})$, $1025(\mathrm{w}), 725(\mathrm{w}, \mathrm{CH}) .-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.32$
$\left(\mathrm{dt}, J=9.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}_{\mathrm{a}}\right), 0.53-0.60\left(\mathrm{~m}, 1 \mathrm{H}, 18-\mathrm{H}_{\mathrm{b}}\right)$, $0.60-0.68(\mathrm{~m}, 2 \mathrm{H}, 6-, 7-\mathrm{H}), 0.88\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 17-\mathrm{H}_{3}\right)$, $1.08-1.54$ (m, $24 \mathrm{H}, 3-, 4-, 5-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-$, $16-\mathrm{H}_{2}$), 1.87 (quint, $\left.J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{2}\right), 3.42(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2$ $\mathrm{H}, 1-\mathrm{H}_{2}$). $-\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{Br}$ (331.4): calcd. C 65.24, H 10.65; found C 65.32, H 10.68.
($\mathbf{6 R}, \mathbf{7 S}$)-1-Bromo-6,7-methyleneheptadecane (21'): In the same manner as described above, $9^{\prime}(580 \mathrm{mg}, 2.16 \mathrm{mmol})$ was converted into 720 mg (quant.) of $\mathbf{2 1}^{\prime} ; n_{\mathrm{D}}^{19}=1.4744 .-[\alpha]_{\mathrm{D}}^{23}=+1.72(c=1.44$, CHCl_{3}). $-\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{Br}$ (331.4): calcd. C $65.24, \mathrm{H} \mathrm{10.65}$; found C 65.02, H 10.67. - The IR and NMR spectra are identical to those of 21 .
(6S,7R)-(6,7-Methylene-1-heptadecyl)triphenylphosphonium Bromide (22): To a solution of $21(1.01 \mathrm{~g}, 3.05 \mathrm{mmol})$ in dry MeCN $(40 \mathrm{~mL})$ were added $\mathrm{NaHCO}_{3}(770 \mathrm{mg}, 9.15 \mathrm{mmol})$ and PPh_{3} $(1.60 \mathrm{~g}, 6.10 \mathrm{mmol})$. The mixture was stirred for 2 d under reflux. It was then concentrated in vacuo and the residue was chromatographed on silica gel to give $22(1.76 \mathrm{~g}, 97 \%)$ as a colorless oil. This was employed in the next step without further purification. - IR (film): $\tilde{v}_{\text {max }}=3070 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{CH}), 1590(\mathrm{~m}), 1485(\mathrm{~m}), 1440(\mathrm{~s})$, 1250 (m), 1115 (s), 995 (m), 755 (s, Ar). $-{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=-0.41\left(\mathrm{dt}, J=9.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}_{\mathrm{a}}\right), 0.47-0.52$ $\left(\mathrm{m}, 1 \mathrm{H}, 18-\mathrm{H}_{\mathrm{b}}\right), 0.52-0.63(\mathrm{~m}, 2 \mathrm{H}, 6-, 7-\mathrm{H}), 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}, 17-\mathrm{H}_{3}$), $0.97-1.38$ (m, $24 \mathrm{H}, 3-, 4-, 5-, 8-, 9-10-, 11-$, 12-, 13-, 14-, $\left.15-, 16-\mathrm{H}_{2}\right), 1.57-1.80\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}_{2}\right), 3.79-3.89(\mathrm{~m}, 2$ $\left.\mathrm{H}, 1-\mathrm{H}_{2}\right), 7.65-7.72(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.77-7.81(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.83-7.88 (m, 6 H, Ar-H).
($6 R, 7 S$)-(6,7-Methylene-1-heptadecyl)triphenylphosphonium Bromide (22'): In the same manner as described above, $\mathbf{2 1}^{\prime}(462 \mathrm{mg}$, $1.39 \mathrm{mmol})$ was converted into $791 \mathrm{mg}(96 \%)$ of $\mathbf{2 2}^{\prime}$. This was employed in the next step without further purification. The IR and NMR spectra are identical to those of $\mathbf{2 2}$.
($\left.4 R, 3^{\prime} Z, 9^{\prime} S, 10^{\prime} R\right)$-4-($9^{\prime}, 10^{\prime}$-Methylene-3'-icosenyl)-2,2-dimethyl-1,3-dioxolane (24): To a stirred solution of 22 ($331 \mathrm{mg}, 0.56 \mathrm{mmol}$) in dry THF (5 mL), a solution of NaHMDS (1.0 m in THF, $0.56 \mathrm{~mL}, 0.56 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. To the resulting ylide solution, a solution of $\mathbf{2 3}(238 \mathrm{mg}, 1.50 \mathrm{mmol})$ in dry THF (2 mL) was added dropwise at $-78^{\circ} \mathrm{C}$. The stirred mixture was allowed to warm to room temperature over a period of 12 h . After quenching by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with diethyl ether. The combined extracts were washed with water and brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel to give $\mathbf{2 4}$ (176 mg , 80%) as a colorless oil; $n_{\mathrm{D}}^{24}=1.4549 .-[\alpha]_{\mathrm{D}}^{23}=-8.86(c=1.44$, CHCl_{3}). - IR (film): $\tilde{\mathrm{v}}_{\text {max }}=3060 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{CH}), 1455(\mathrm{~m}, \mathrm{CH})$, $1370(\mathrm{~m}, \mathrm{CH}), 1215(\mathrm{~m}), 1155(\mathrm{~m}), 1065(\mathrm{~m}, \mathrm{C}-\mathrm{O}), 855(\mathrm{~m}) .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.33(\mathrm{dt}, J=9.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.21^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 0.52-0.59\left(\mathrm{~m}, 1 \mathrm{H}, 21^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 0.65$ (br. s, $2 \mathrm{H}, 9^{\prime}$-, $10^{\prime}-\mathrm{H}$), $0.88\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 20^{\prime}-\mathrm{H}_{3}\right), 1.12-1.46\left(\mathrm{~m}, 24 \mathrm{H}, 6^{\prime}-, 7^{\prime}-\right.$, $\left.8^{\prime}-, 11^{\prime}-, 12^{\prime}-, 13^{\prime}-, 14^{\prime}-, 15^{\prime}-, 16^{\prime}-, 17^{\prime}-, 18^{\prime}-, 19^{\prime}-\mathrm{H}_{2}\right), 1.35(\mathrm{~s}, 3 \mathrm{H}$, acetonide), $1.41\left(\mathrm{~s}, 3 \mathrm{H}\right.$, acetonide), $1.51-1.57\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$, $1.63-1.73\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 1.94-2.19\left(\mathrm{~m}, 4 \mathrm{H}, 2^{\prime}-, 5^{\prime}-\mathrm{H}_{2}\right), 3.52(\mathrm{t}$, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 4.03\left(\mathrm{dd}, J=7.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right)$, 4.05-4.12 (m, $1 \mathrm{H}, 4-\mathrm{H}), 5.32-5.43\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-, 4^{\prime}-\mathrm{H}\right)$. $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{2}$ (392.7): calcd. C 79.53, H 12.32; found C 79.47, H 12.41.
($\mathbf{4 R}, \mathbf{3 Z}, \mathbf{9}^{\prime} R, 10^{\prime} S$)-4-($\mathbf{9}^{\prime}, 10^{\prime}$-Methylene-3'-icosenyl)-2,2-dimethyl-1,3-dioxolane (24'): In the same manner as described above, 22' $(1.83 \mathrm{~g}, 3.08 \mathrm{mmol})$ was converted into $1.02 \mathrm{~g}(84 \%)$ of $\mathbf{2 4}{ }^{\prime} ; n_{\mathrm{D}}^{20}=$ 1.4661. $-[\alpha]_{\mathrm{D}}^{22}=-7.17\left(c=1.44, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}$ (film): $\tilde{v}_{\max }=$ $3055 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{CH}), 1455(\mathrm{~m}, \mathrm{CH}), 1370(\mathrm{~m}, \mathrm{CH}), 1215(\mathrm{~m}), 1155$
(m), $1065(\mathrm{~m}, \mathrm{C}-\mathrm{O}), 855(\mathrm{~m}) .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.33\left(\mathrm{dt}, J=9.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 21^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 0.53-0.58(\mathrm{~m}, 1 \mathrm{H}$, $21^{\prime}-\mathrm{H}_{\mathrm{b}}$), 0.65 (br. s, $2 \mathrm{H}, 9^{\prime}-, 10^{\prime}-\mathrm{H}$), $0.88\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 20^{\prime}-\right.$ H_{3}), 1.18-1.40 (m, $24 \mathrm{H}, 6^{\prime}-, 7^{\prime}-, 8^{\prime}-$, $11^{\prime}-, 12^{\prime}-$, $13^{\prime}-$, 14^{\prime}-, 15^{\prime}-, $16^{\prime}-$, $17^{\prime}-$ - $\left.18^{\prime}-, 19^{\prime}-\mathrm{H}_{2}\right), 1.35(\mathrm{~s}, 3 \mathrm{H}$, acetonide), $1.41(\mathrm{~s}, 3 \mathrm{H}$, acetonide), $1.50-1.58\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.66-1.74\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$, $1.98-2.18\left(\mathrm{~m}, 4 \mathrm{H}, 2^{\prime}-, 5^{\prime}-\mathrm{H}_{2}\right), 3.52\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right)$, $4.03\left(\mathrm{dd}, J=7.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right.$), 4.09 (quint, $J=7.0 \mathrm{~Hz}, 1$ $\mathrm{H}, 4-\mathrm{H}), 5.32-5.43\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-4^{\prime}-\mathrm{H}\right) .-\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{2}$ (392.7): calcd. C 79.53, H 12.32; found C 79.55, H 12.23.
(2R,5Z,11S,12R)-11,12-Methylene-5-docosene-1,2-diol (25): To a stirred solution of $24(164 \mathrm{mg}, 0.42 \mathrm{mmol})$ in THF $(5 \mathrm{~mL}), 3 \mathrm{~N} \mathrm{HCl}$ $(1 \mathrm{~mL})$ was added dropwise and the mixture was stirred for 12 h at room temperature. The solvent was then removed in vacuo. The residue was chromatographed on silica gel to give $\mathbf{2 5}(145 \mathrm{mg}$, quant.) as a colorless solid; m.p. $32-33^{\circ} \mathrm{C} .-[\alpha]_{\mathrm{D}}^{25}=-0.91(c=$ 1.66, CHCl_{3}). - IR (Nujol): $\tilde{v}_{\max }=3365 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{OH}), 3070(\mathrm{w}$, CH), 1455 (m, CH), 1320 (m, CH), 1220 (m), 1105 (m), 865 (m). $-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.33(\mathrm{dt}, J=9.5,5.2 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, 23-\mathrm{H}_{\mathrm{a}}\right), 0.52-0.59\left(\mathrm{~m}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{b}}\right), 0.65$ (br. s, $2 \mathrm{H}, 11-, 12-\mathrm{H}$), $0.88\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 22-\mathrm{H}_{3}\right), 1.10-1.41(\mathrm{~m}, 24 \mathrm{H}, 8-, 9-, 10-$, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21- H_{2}), $1.45-1.56$ (m, $2 \mathrm{H}, 3-$ H_{2}), $1.57-1.61(\mathrm{~m}, 2 \mathrm{H}, 1-, 2-\mathrm{OH}), 1.98-2.22\left(\mathrm{~m}, 4 \mathrm{H}, 4-, 7-\mathrm{H}_{2}\right)$, $3.46\left(\mathrm{dd}, J=11.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.66(\mathrm{dd}, J=11.0,3.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.71-3.77(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 5.34-5.49(\mathrm{~m}, 2 \mathrm{H}, 5-, 6-$ H). $-\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{2}$ (352.6): calcd. C 78.35, H 12.58; found C 77.96, H 12.76 .
($\mathbf{2 R}, \mathbf{5 Z}, \mathbf{1 1 R}, \mathbf{1 2 S}$)-11,12-Methylene-5-docosene-1,2-diol (25'): In the same manner as described above, $\mathbf{2 4}^{\prime}(134 \mathrm{mg}, 0.34 \mathrm{mmol})$ was converted into $113 \mathrm{mg}(94 \%)$ of $\mathbf{2 5}$; m.p. $33-34^{\circ} \mathrm{C}$. $-[\alpha]_{\mathrm{D}}^{21}=-0.34$ ($c=0.48, \mathrm{CHCl}_{3}$). -IR (Nujol): $\tilde{v}_{\text {max }}=3365 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{OH}), 3070$ (w, CH), $1455(\mathrm{~m}, \mathrm{CH}), 1320(\mathrm{~m}, \mathrm{CH}), 1220(\mathrm{~m}), 1105(\mathrm{~m}), 865(\mathrm{~m})$. $-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.33(\mathrm{dt}, J=9.5,5.2 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, 23-\mathrm{H}_{\mathrm{a}}\right), 0.52-0.60\left(\mathrm{~m}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{b}}\right), 0.65$ (br. s, $2 \mathrm{H}, 11-, 12-\mathrm{H}$), $0.88\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 22-\mathrm{H}_{3}\right), 1.14-1.41(\mathrm{~m}, 24 \mathrm{H}, 8-, 9-10-$, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21- H2), $1.47-1.55$ (m, $2 \mathrm{H}, 3-$ H_{2}), 1.96-2.44 (m, $\left.6 \mathrm{H}, 1-, 2-\mathrm{OH}, 4-, 7-\mathrm{H}_{2}\right), 3.44(\mathrm{dd}, J=11.0$, $\left.7.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.65\left(\mathrm{dd}, J=11.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right)$, $3.69-3.76(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 5.33-5.49(\mathrm{~m}, 2 \mathrm{H}, 5-, 6-\mathrm{H}) .-\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{2}$ (352.6): calcd. C 78.35, H 12.58; found C 78.32, H 12.58.
(2R,5Z,11S,12R)-1,2-Bis(tert-butyldimethylsilyloxy)-11,12-methyl-ene-5-docosene (26): To a solution of $25(27 \mathrm{mg}, 76.8 \mu \mathrm{~mol})$ in DMF (2 mL), imidazole ($13 \mathrm{mg}, 0.19 \mathrm{mmol}$) and $\mathrm{TBSCl}(35 \mathrm{mg}$, 0.23 mmol) were added at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 10 h at room temperature. It was then poured into water and extracted with diethyl ether. The combined extracts were washed with water and brine. The organic layer was dried with MgSO_{4} and concentrated in vacuo to give $26(41 \mathrm{mg}, 95 \%)$ as a colorless oil; $n_{\mathrm{D}}^{22}=$ 1.4589. $-[\alpha]_{D}^{22}=+10.7\left(c=0.86, \mathrm{CHCl}_{3}\right) .-\operatorname{IR}(f i l m): \tilde{v}_{\max }=$ $3070 \mathrm{~cm}^{-1}$ (w, CH), 1460 (m, CH), 1255 (m), 1110 (m), 840 (m), $780(\mathrm{~m}) .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.33(\mathrm{dt}, J=9.5$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{a}}$), $0.045(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.049(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe})$, $0.060(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.064(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.52-0.59(\mathrm{~m}, 1 \mathrm{H}, 23-$ H_{b}), 0.64 (br. s, $\left.2 \mathrm{H}, 11-, 12-\mathrm{H}\right), 0.88\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 22-\mathrm{H}_{3}\right.$), 0.89 (s, $18 \mathrm{H}, \mathrm{CMe}_{3}$), $1.11-1.46$ (m, $24 \mathrm{H}, 8-, 9-10-, 13-$, $14-$, 15-, 16-, 17-, 18-, 19-, 20-, 21- H_{2}), $1.55-1.63\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}_{2}\right)$, $1.99-2.18\left(\mathrm{~m}, 4 \mathrm{H}, 4-, 7-\mathrm{H}_{2}\right), 3.40(\mathrm{dd}, J=10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-$ H_{a}), $3.53\left(\mathrm{dd}, J=10.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.64-3.70(\mathrm{~m}, 1 \mathrm{H}, 2-$ H), $5.33-5.41(\mathrm{~m}, 2 \mathrm{H}, 5-, 6-\mathrm{H}) .-\mathrm{C}_{35} \mathrm{H}_{72} \mathrm{O}_{2} \mathrm{Si}_{2}$ (581.1): calcd. C 72.34, H 12.49; found C 72.07, H 12.69.
($2 R, 5 Z, 11 R, 12 S$)-1,2-Bis(tert-butyldimethylsilyloxy)-11,12-methyl-ene-5-docosene (26'): In the same manner as described above, $\mathbf{2 5}^{\prime}$
$(859 \mathrm{mg}, 2.44 \mathrm{mmol})$ was converted into $1.38 \mathrm{~g}(97 \%)$ of $\mathbf{2 6}^{\prime} ; n_{\mathrm{D}}^{26}=$ 1.4589. $-[\alpha]_{D}^{22}=+10.8\left(c=0.5, \mathrm{CHCl}_{3}\right)$. $-\mathrm{IR}(f i l m): \tilde{v}_{\max }=$ $3070 \mathrm{~cm}^{-1}$ (w, CH), 1460 (m, CH), 1255 (m), $1120(\mathrm{~m}), 835(\mathrm{~m})$, $775(\mathrm{~m}) .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.33(\mathrm{dt}, J=9.5$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{a}}$), 0.046 (s, $3 \mathrm{H}, \mathrm{SiMe}$), 0.049 (s, $3 \mathrm{H}, \mathrm{SiMe}$), 0.061 (s, 3 H, SiMe), 0.066 (s, 3 H, SiMe), $0.52-0.59$ (m, 1 H, 23H_{b}), 0.64 (br. s, $2 \mathrm{H}, 11-, 12-\mathrm{H}$), 0.88 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 22-\mathrm{H}_{3}$), 0.89 (s, $18 \mathrm{H}, \mathrm{CMe}_{3}$), 1.07-1.49 (m, $24 \mathrm{H}, 8-, 9-, 10-, 13-$, 14-, $15-$, 16-, 17-, 18-, 19-, 20-, $21-\mathrm{H}_{2}$), $1.55-1.63$ (m, $2 \mathrm{H}, 3-\mathrm{H}_{2}$), $1.99-2.18$ (m, $4 \mathrm{H}, 4-, 7-\mathrm{H}_{2}$), 3.41 (dd, $J=10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-$ H_{a}), $3.53\left(\mathrm{dd}, J=10.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.64-3.69(\mathrm{~m}, 1 \mathrm{H}, 2-$ H), 5.33-5.41 (m, $2 \mathrm{H}, 5-, 6-\mathrm{H}) .-\mathrm{C}_{35} \mathrm{H}_{72} \mathrm{O}_{2} \mathrm{Si}_{2}$ (581.1): calcd. C 72.34, H 12.49; found C 72.36, H 12.89 .
(2R,5Z,11S,12R)-2-tert-Butyldimethylsilyloxy-11,12-methylene-5-docosen-1-ol (27): To a stirred solution of $26(146 \mathrm{mg}, 0.25 \mathrm{mmol})$ in THF $(4 \mathrm{~mL}), 10 \%$ aq. TFA $(1 \mathrm{~mL})$ was added dropwise and the mixture was stirred for 5 h at room temperature. It was then diluted with diethyl ether, washed with saturated aqueous NaHCO_{3} solution and brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel to give $46 \mathrm{mg}(39 \%)$ of $\mathbf{2 7}, 44 \mathrm{mg}(30 \%)$ of 26, and $21 \mathrm{mg}(25 \%)$ of $\mathbf{2 5} ; n_{\mathrm{D}}^{15}=1.4705$. -$[\alpha]_{\mathrm{D}}^{22}=-3.30\left(c=0.60, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(f i l m): \tilde{v}_{\max }=3450 \mathrm{~cm}^{-1}$ (m, OH), $3070(\mathrm{w}, \mathrm{CH}), 1460(\mathrm{~m}, \mathrm{CH}), 1260(\mathrm{~m}), 1120(\mathrm{~m}), 840$ (m), $780(\mathrm{~m}) .-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.33$ (dt, $J=$ $9.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{a}}$), $0.090(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}), 0.52-0.59(\mathrm{~m}, 1 \mathrm{H}$, $23-\mathrm{H}_{\mathrm{b}}$), 0.64 (br. s, $\left.2 \mathrm{H}, 11-, 12-\mathrm{H}\right), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 22-$ H_{3}), 0.90 (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$), $1.10-1.41$ (m, $24 \mathrm{H}, 8$-, $9-$-, 10-, 13-, $14-$, 15-, 16-, 17-, 18-, 19-, 20-, 21-H2), $1.49-1.60$ (m, $3 \mathrm{H}, 3-\mathrm{H}_{2}$, $\mathrm{OH}), 1.97-2.14\left(\mathrm{~m}, 4 \mathrm{H}, 4-, 7-\mathrm{H}_{2}\right), 3.46(\mathrm{dd}, J=11.0,5.4 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.58\left(\mathrm{dd}, J=11.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.70-3.79(\mathrm{~m}, 1$ $\mathrm{H}, 2-\mathrm{H}), 5.30-5.41(\mathrm{~m}, 2 \mathrm{H}, 5-, 6-\mathrm{H}) .-\mathrm{C}_{29} \mathrm{H}_{58} \mathrm{O}_{2} \mathrm{Si}(466.9)$: calcd. C 74.61, H 12.52; found C 74.36, H 12.82 .
(2R,5Z,11R,12S)-2-tert-Butyldimethylsilyloxy-11,12-methylene-5-docosen-1-ol (27'): In the same manner as described above, 26' ($502 \mathrm{mg}, 0.86 \mathrm{mmol}$) was converted into $218 \mathrm{mg}(54 \%)$ of 27^{\prime} and $82 \mathrm{mg}(27 \%)$ of $\mathbf{2 5}^{\prime} ; n_{\mathrm{D}}^{25}=1.4648 .-[\alpha]_{\mathrm{D}}^{22}=-1.24(c=0.50$, CHCl_{3}). - IR (film): $\tilde{v}_{\text {max }}=3410 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{OH}), 3060(\mathrm{w}, \mathrm{CH})$, $1460(\mathrm{~m}, \mathrm{CH}), 1255(\mathrm{~m}), 1110(\mathrm{~m}), 835(\mathrm{~m}), 775(\mathrm{~m}) .-{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.33\left(\mathrm{dt}, J=9.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{a}}\right)$, $0.095\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}\right), 0.52-0.60\left(\mathrm{~m}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{b}}\right), 0.60-0.72(\mathrm{~m}, 2$ $\mathrm{H}, 11-, 12-\mathrm{H}), 0.88\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 22-\mathrm{H}_{3}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right)$, 1.16-1.42 (m, $24 \mathrm{H}, 8-$, 9-, 10-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, $\left.20-, 21-\mathrm{H}_{2}\right), 1.50-1.61\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}_{2}, \mathrm{OH}\right), 1.97-2.12(\mathrm{~m}, 4 \mathrm{H}$, $\left.4-, 7-\mathrm{H}_{2}\right), 3.46\left(\mathrm{dd}, J=11.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.58(\mathrm{dd}, J=$ $\left.11.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.71-3.80(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 5.30-5.41(\mathrm{~m}$, $2 \mathrm{H}, 5-, 6-\mathrm{H}) .-\mathrm{C}_{29} \mathrm{H}_{58} \mathrm{O}_{2} \mathrm{Si}$ (466.9): calcd. C 74.61, H 12.52; found C 74.75 , H 12.87 .
(2R,5Z,11S,12R)-2-tert-Butyldimethylsilyloxy-11,12-methylene-5docosenoic Acid (28): To a solution of $27(134 \mathrm{mg}, 0.29 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, Dess-Martin periodinane (158 mg , 0.37 mmol) was added portionwise at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 1 h at room temperature. After quenching the reaction by the addition of saturated aqueous NaHCO_{3} solution and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, the mixture was extracted with diethyl ether. The combined extracts were washed with water and brine. The organic layer was dried with MgSO_{4} and concentrated in vacuo to give the crude aldehyde (134 mg , quant.). This was employed in the next step without further purification. To a stirred solution of the aldehyde ($134 \mathrm{mg}, 0.37 \mathrm{mmol}$) and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(136 \mathrm{mg}, 0.87 \mathrm{mmol})$ in $t \mathrm{BuOH}(8 \mathrm{~mL}) / \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL}) / 2-$ methyl-2-butene (2 mL), sodium chlorite ($105 \mathrm{mg}, 1.16 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 2 h at room
temperature. It was then poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The combined extracts were washed with brine, dried with MgSO_{4}, and concentrated in vacuo to give crude 28 (139 mg , quant.). This was employed in the next step without further purification. - IR (film): $\tilde{v}_{\text {max }}=3370 \mathrm{~cm}^{-1}$ (br, OH), 3060 (w), 1725 (s, C=O), 1460 (m, CH), 1255 (m), 1140 (m), $840(\mathrm{~s}), 780(\mathrm{~m}) .-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.34$ to $-0.31\left(\mathrm{~m}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{a}}\right), 0.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe})$, $0.51-0.60\left(\mathrm{~m}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{b}}\right), 0.60-0.67(\mathrm{~m}, 2 \mathrm{H}, 11-, 12-\mathrm{H}), 0.88(\mathrm{t}$, $\left.J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 22-\mathrm{H}_{3}\right), 0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.08-1.69(\mathrm{~m}, 24 \mathrm{H}$, $8-, 9-, 10-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21-\mathrm{H}_{2}$), 1.71-1.89 $\left(\mathrm{m}, 2 \mathrm{H}, 3-\mathrm{H}_{2}\right), 1.96-2.20\left(\mathrm{~m}, 4 \mathrm{H}, 4-, 7-\mathrm{H}_{2}\right), 4.34(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{H}), 5.30-5.40(\mathrm{~m}, 2 \mathrm{H}, 5-, 6-\mathrm{H})$.
(2R,5Z,11R,12S)-2-tert-Butyldimethylsilyloxy-11,12-methylene-5docosenoic Acid (28'): In the same manner as described above, 27 ${ }^{\prime}$ ($75 \mathrm{mg}, 0.16 \mathrm{mmol}$) was converted into 75 mg (quant.) of $\mathbf{2 8}^{\prime}$. This was employed in the next step without further purification. - IR (film): $\tilde{v}_{\text {max }}=3370 \mathrm{~cm}^{-1}(\mathrm{br}, \mathrm{OH}), 3060(\mathrm{w}), 1725(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1465$ (m, CH), 1255 (m), 1140 (m), $835(\mathrm{~s}), 780(\mathrm{~m}) .-{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.34$ to $-0.31\left(\mathrm{~m}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{a}}\right), 0.14(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{SiMe}), 0.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.52-0.59\left(\mathrm{~m}, 1 \mathrm{H}, 23-\mathrm{H}_{\mathrm{b}}\right), 0.65$ (br. s, $2 \mathrm{H}, 11-, 12-\mathrm{H}), 0.88\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 22-\mathrm{H}_{3}\right), 0.95(\mathrm{~s}, 9$ $\mathrm{H}, \mathrm{CMe}_{3}$), 1.08-1.39 (m, $24 \mathrm{H}, 8-, 9-, 10-, 13-, 14-, 15-, 16-, 17-$, 18-, 19-, 20-, 21- H_{2}), $1.75-1.92\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}_{2}\right), 2.02-2.23(\mathrm{~m}, 4$ $\left.\mathrm{H}, 4-, 7-\mathrm{H}_{2}\right), 4.32(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.30-5.50(\mathrm{~m}, 2 \mathrm{H}$, 5-, 6-H).
(2S,3R,11S,12R, $2^{\prime} R, 5^{\prime} Z, 11^{\prime} S, 12^{\prime} R$)-1,3,2'-Tris(tert-butyldimethyl-silyloxy)-11,12-methylene-2-(11', 12^{\prime}-methylene- 5^{\prime}-docosenoylamido)docosane (29): To a stirred solution of carboxylic acid 28 $(139 \mathrm{mg}, 0.29 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, DCC $(78 \mathrm{mg}$, $0.38 \mathrm{mmol})$ and $\mathrm{HOBt}(47 \mathrm{mg}, 0.35 \mathrm{mmol})$ were added portionwise at $0{ }^{\circ} \mathrm{C}$ under argon. The resulting mixture was stirred for 10 min at $0{ }^{\circ} \mathrm{C}$ and then a solution of $17(108 \mathrm{mg}, 0.18 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise at the same temperature. The stirred mixture was allowed to warm to room temperature over a period of 4 h . It was then diluted with diethyl ether, washed with water and brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel to give 185 mg (94%) of 29; $n_{\mathrm{D}}^{20}=1.4695 .-[\alpha]_{\mathrm{D}}^{23}=+7.46\left(c=0.17, \mathrm{CHCl}_{3}\right)$. IR (film): $\tilde{v}_{\text {max }}=3430 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{NH}), 3060(\mathrm{w}, \mathrm{CH}), 1685(\mathrm{~s}, \mathrm{C}=$ O), $1505(\mathrm{~m}), 1465(\mathrm{~m}, \mathrm{CH}), 1255(\mathrm{~m}), 1110(\mathrm{~m}), 835(\mathrm{~s}), 775(\mathrm{~m})$. $-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.34(\mathrm{dt}, J=9.2,5.2 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, 23-, 23^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 0.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}\right), 0.06(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{SiMe}), 0.09$ (s, $3 \mathrm{H}, \mathrm{SiMe}$), 0.10 (s, $3 \mathrm{H}, \mathrm{SiMe}$), $0.53-0.59$ (m, $2 \mathrm{H}, 23-, 23^{\prime}-\mathrm{H}_{\mathrm{b}}$), 0.64 (br. s, $4 \mathrm{H}, 11-, 12-, 11^{\prime}-, 12^{\prime}-\mathrm{H}$), 0.88 (t, $\left.J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 22-, 22^{\prime}-\mathrm{H}_{3}\right), 0.88\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CMe}_{3}\right), 0.94(\mathrm{~s}, 9 \mathrm{H}$, CMe_{3}), 1.07-1.68 (m, $54 \mathrm{H}, 5-, 6-, 7-, 8-, 9-, 10-, 13-, 14-, 15-$, 16-, 17-, 18-, 19-, 20-, 21-, $8^{\prime}-, 9^{\prime}-, 10^{\prime}-, 13^{\prime}-, 14^{\prime}-, 15^{\prime}-, 16^{\prime}-, 17^{\prime}-$, $18^{\prime}-, 19^{\prime}-, 20^{\prime}-, 21^{\prime}-\mathrm{H}_{2}$), 1.70-1.93 (m, $4 \mathrm{H}, 4-$, $3^{\prime}-\mathrm{H}_{2}$), 2.01-2.17 $\left(\mathrm{m}, 4 \mathrm{H}, 4^{\prime}-, 7^{\prime}-\mathrm{H}_{2}\right), 3.67\left(\mathrm{dd}, J=10.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.71$ $\left(\mathrm{dd}, J=10.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.82-3.90(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $4.00-4.06(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.16\left(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.32-5.40$ (m, $\left.2 \mathrm{H}, 5^{\prime}-, 6^{\prime}-\mathrm{H}\right), 6.76$ (d, $\left.J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right)$. $\mathrm{C}_{64} \mathrm{H}_{129} \mathrm{NO}_{4} \mathrm{Si}_{3}$ (1061): calcd. C 72.45, H $12.25, \mathrm{~N} 1.32$; found C 72.16, H 12.06, N 1.60 .
(2S,3R,11R,12S,2'R,5' $Z, 11^{\prime} R, 12^{\prime} S$)-1,3,2'-Tris $($ tert-butyldimethyl-silyloxy)-11,12-methylene-2-(11', 12^{\prime}-methylene-5'-docosenoylamido)docosane (29'): In the same manner as described above, $\mathbf{1 6}^{\prime}$ $(128 \mathrm{mg}, 0.21 \mathrm{mmol})$ was converted into $198 \mathrm{mg}(89 \%)$ of $\mathbf{2 9}^{\prime} ; n_{\mathrm{D}}^{21}=$ 1.4710. $-[\alpha]_{\mathrm{D}}^{22}=+14.1\left(c=0.44, \mathrm{CHCl}_{3}\right) .-\operatorname{IR}(f i l m): \tilde{v}_{\max }=$ $3430 \mathrm{~cm}^{-1}$ (w, NH), $3060(\mathrm{w}, \mathrm{CH}), 1685(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1505(\mathrm{~m}), 1465$ (m, CH), 1255 (m), 1110 (m), 835 (s), 775 (m). $-{ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.34\left(\mathrm{dt}, J=9.5,4.9 \mathrm{~Hz}, 2 \mathrm{H}, 23-, 23^{\prime}-\right.$ H_{a}), 0.04 (s, $3 \mathrm{H}, \mathrm{SiMe}$), 0.05 (s, $6 \mathrm{H}, \mathrm{SiMe}_{2}$), 0.06 (s, $3 \mathrm{H}, \mathrm{SiMe}$), 0.09 (s, $3 \mathrm{H}, \mathrm{SiMe}$), 0.11 (s, $3 \mathrm{H}, \mathrm{SiMe}$), $0.53-0.58$ (m, $2 \mathrm{H}, 23-$, $23^{\prime}-\mathrm{H}_{\mathrm{b}}$), 0.64 (br. s, $4 \mathrm{H}, 11-, 12-, 11^{\prime}-, 12^{\prime}-\mathrm{H}$), $0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $6 \mathrm{H}, 22-, 22^{\prime}-\mathrm{H}_{3}$), 0.88 ($\mathrm{s}, 18 \mathrm{H}, \mathrm{CMe}_{3}$), 0.94 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}$), $1.09-1.60(\mathrm{~m}, 54 \mathrm{H}, 5-, 6-, 7-, 8-, 9-, 10-, 13-, 14-, 15-$, $16-, 17-, 18-, 19-, 20-, 21-, 8^{\prime}-, 9^{\prime}-, 10^{\prime}-, 13^{\prime}-, 14^{\prime}-, 15^{\prime}-, 1^{\prime}-, 17^{\prime}-$, $\left.18^{\prime}-, 19^{\prime}-, 20^{\prime}-, 21^{\prime}-\mathrm{H}_{2}\right), 1.70-1.93\left(\mathrm{~m}, 4 \mathrm{H}, 4-, 3^{\prime}-\mathrm{H}_{2}\right), 2.01-2.17$ $\left(\mathrm{m}, 4 \mathrm{H}, 4^{\prime}-, 7^{\prime}-\mathrm{H}_{2}\right), 3.68\left(\mathrm{dd}, J=10.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.71$ $\left(\mathrm{dd}, J=10.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.84-3.88(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $4.01-4.57(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.16\left(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.32-5.39$ $\left(\mathrm{m}, 2 \mathrm{H}, 5^{\prime}-, 6^{\prime}-\mathrm{H}\right), 6.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$. $\mathrm{C}_{64} \mathrm{H}_{129} \mathrm{NO}_{4} \mathrm{Si}_{3}$ (1061): calcd. C $72.45, \mathrm{H} 12.25, \mathrm{~N} 1.32$; found C 72.50, H 12.26, N 1.57.
(2S,3R,11S,12R, $\left.2^{\prime} R, 5^{\prime} Z, 11^{\prime} S, 12^{\prime} R\right)-3,2^{\prime}-\operatorname{Bis}(t e r t$-butyldimethyl-silyloxy)-11,12-methylene-2-(11', $\mathbf{1 2}^{\prime}$-methylene-5'-docosenoyl-amido)-1-docosanol (30): To a stirred solution of $\mathbf{2 9}(84 \mathrm{mg}, 79.2$ $\mu \mathrm{mol})$ in THF $(2 \mathrm{~mL}), 10 \%$ aq. TFA $(0.2 \mathrm{~mL})$ was added dropwise and the resulting mixture was stirred for 3 h at room temperature. It was then diluted with diethyl ether, washed with saturated aqueous NaHCO_{3} solution and brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel to give $37 \mathrm{mg}(49 \%)$ of $\mathbf{3 0}$ and $31 \mathrm{mg}(37 \%)$ of recovered $\mathbf{2 9} ; n_{\mathrm{D}}^{23}=1.4719$. $-[\alpha]_{\mathrm{D}}^{22}=+11.8\left(c=0.06, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}($ film $): \tilde{v}_{\text {max }}=3420 \mathrm{~cm}^{-1}$ (w, OH, NH), 3060 (w, CH), 1665 (s, C=O), 1520 (m), 1465 (m, CH), 1255 (m), 1110 (m), 835 (s), 775 (m). $-{ }^{1}{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta=-0.33\left(\mathrm{dt}, J=9.4,5.2 \mathrm{~Hz}, 2 \mathrm{H}, 23-, 23^{\prime}-\mathrm{H}\right), 0.08(\mathrm{~s}$, 3 H, SiMe), 0.10 (s, 6 H, SiMe), 0.11 (s, 3 H, SiMe), 0.12 (s, 3 H, SiMe), $0.53-0.58\left(\mathrm{~m}, 2 \mathrm{H}, 23-, 23^{\prime}-\mathrm{H}_{\mathrm{b}}\right.$), 0.64 (br. s, $4 \mathrm{H}, 11-, 12-$, $\left.11^{\prime}-, 12^{\prime}-\mathrm{H}\right), 0.88\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 22-, 22^{\prime}-\mathrm{H}_{3}\right), 0.90(\mathrm{~s}, 9 \mathrm{H}$, CMe_{3}), 0.95 (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$), $1.12-1.52$ (m, $54 \mathrm{H}, 5-, 6-, 7-, 8-, 9-$, $10-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21-, 8^{\prime}-, 9^{\prime}-, 10^{\prime}-, 13^{\prime}-$, $\left.14^{\prime}-, 15^{\prime}-, 16^{\prime}-, 17^{\prime}-, 18^{\prime}-, 19^{\prime}-, 20^{\prime}-, 21^{\prime}-\mathrm{H}_{2}\right), 1.74-1.80(\mathrm{~m}, 4 \mathrm{H}$, $\left.4-, 3^{\prime}-\mathrm{H}_{2}\right), 1.95-2.17\left(\mathrm{~m}, 4 \mathrm{H}, 4^{\prime}-, 7^{\prime}-\mathrm{H}_{2}\right), 3.53(\mathrm{dd}, J=11.7$, $\left.2.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.85-3.92(\mathrm{~m}, 2 \mathrm{H}, 2-, 3-\mathrm{H}), 3.98(\mathrm{dd}, J=$ $\left.11.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 4.20\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.34-5.40$ $\left(\mathrm{m}, 2 \mathrm{H}, 5^{\prime}-, 6^{\prime}-\mathrm{H}\right), 7.50(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$. $\mathrm{C}_{58} \mathrm{H}_{115} \mathrm{NO}_{4} \mathrm{Si}_{2}$ (946.7): calcd. C 73.58, H 12.24, N 1.48; found C 73.27, H 12.31, N 1.63.
(2S,3R,11R,12S,2'R,5'Z,11'R,12'S)-3,2'-Bis(tert-butyldimethyl-silyloxy)-11,12-methylene-2-(11', 12^{\prime}-methylene-5'-docosenoyl-amido)-1-docosanol ($\mathbf{3 0}^{\prime}$): In the same manner as described above, $\mathbf{2 9}^{\prime}$ ($131 \mathrm{mg}, 0.12 \mathrm{mmol}$) was converted into $41 \mathrm{mg}(35 \%)$ of $\mathbf{3 0}^{\prime}$ with $65 \mathrm{mg}(50 \%)$ of $\mathbf{2 9}^{\prime}$ being recovered; $n_{\mathrm{D}}^{20}=1.4728$. $-[\alpha]_{\mathrm{D}}^{25}=$ $+13.4\left(c=0.47, \mathrm{CHCl}_{3}\right)$. -IR (film): $\tilde{v}_{\max }=3420 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{OH}$, NH), 3060 (w, CH), 1665 ($\mathrm{s}, \mathrm{C}=\mathrm{O}), 1520(\mathrm{~m}), 1465(\mathrm{~m}, \mathrm{CH}), 1255$ (m), 1110 (m), 835 (s), $780(\mathrm{~m}) .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.33\left(\mathrm{dt}, J=9.4,5.2 \mathrm{~Hz}, 2 \mathrm{H}, 23-, 23^{\prime}-\mathrm{H}\right), 0.08(\mathrm{~s}, 3 \mathrm{H}$, SiMe), 0.09 (s, 6 H, SiMe), 0.11 ($\mathrm{s}, 6 \mathrm{H}$, SiMe), $0.52-0.58$ (m, 2 H, 23-, $23^{\prime}-\mathrm{H}_{\mathrm{b}}$), 0.64 (br. s, $\left.4 \mathrm{H}, 11-, 12-, 11^{\prime}-, 12^{\prime}-\mathrm{H}\right), 0.88$ (t, $J=$ 7.3 Hz, $6 \mathrm{H}, 22-, 22^{\prime}-\mathrm{H}_{3}$), $0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 0.95\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right)$, $1.12-1.52$ (m, $54 \mathrm{H}, 5-, 6-, 7-, 8-, 9-, 10-, 13-$, 14-, $15-, 16-$ - $17-$, 18-, 19-, 20-, 21-, $8^{\prime}-, 9^{\prime}-, 10^{\prime}-, 13^{\prime}-, 14^{\prime}-, 15^{\prime}-, 16^{\prime}-, 17^{\prime}-, 18^{\prime}-$, $\left.19^{\prime}-, 20^{\prime}-, 21^{\prime}-\mathrm{H}_{2}\right), 1.74-1.80\left(\mathrm{~m}, 4 \mathrm{H}, 4-, 3^{\prime}-\mathrm{H}_{2}\right), 1.95-2.17(\mathrm{~m}, 4$ $\left.\mathrm{H}, 4^{\prime}-, 7^{\prime}-\mathrm{H}_{2}\right), 3.52\left(\mathrm{dd}, J=11.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.85-3.92$ (m, $2 \mathrm{H}, 2-, 3-\mathrm{H}), 3.98\left(\mathrm{dd}, J=11.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}\right), 4.20(\mathrm{t}$, $\left.J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.34-5.40\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}-, 6^{\prime}-\mathrm{H}\right), 7.52(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$). $-\mathrm{C}_{58} \mathrm{H}_{115} \mathrm{NO}_{4} \mathrm{Si}_{2}$ (946.7): calcd. C 73.58, H 12.24, N 1.48 ; found C 73.23, H 12.60, N 1.63.
$\left(2 S, 3 R, 11 S, 12 R, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} S, 12^{\prime \prime \prime} R\right)-1-O-\left[3^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{Tri}-O-\right.$ acetyl- $\mathbf{2}^{\prime}-O-\left(2^{\prime \prime}\right.$-chloroacetyl)- β-D-galactopyranosyll-3, $\mathbf{2}^{\prime \prime \prime}$-bis(tert-butyldimethylsilyloxy)-11,12-methylene-2-(11 ${ }^{\prime \prime \prime}, 12^{\prime \prime \prime}{ }^{\prime}$-methylene-
$\mathbf{5}^{\prime \prime \prime}$ 'docosenoylamido)docosane (32): A solution of ceramide $\mathbf{3 0}$ ($12 \mathrm{mg}, 12.7 \mu \mathrm{~mol}$) in dry benzene (2 mL) and dry nitromethane $(2 \mathrm{~mL})$ was heated at $110^{\circ} \mathrm{C}$ to remove moisture by azeotropic codistillation with benzene. The mixture was concentrated to a volume of 1 mL and cooled under argon. It was then treated dropwise with a solution of bromo sugar $31(11.4 \mathrm{mg}, 25.4 \mu \mathrm{~mol})$ in dry nitromethane $(0.3 \mathrm{~mL})$ and portionwise with $\mathrm{Hg}(\mathrm{CN})_{2}(6.4 \mathrm{mg}$, $25.4 \mu \mathrm{~mol})$. The resulting mixture was stirred for 2 h at $90^{\circ} \mathrm{C}$. After cooling, it was diluted with ethyl acetate, washed with water, saturated aqueous NaHCO_{3} solution, and brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel to give $13 \mathrm{mg}(78 \%)$ of $\mathbf{3 2} ; n_{\mathrm{D}}^{23}=1.4729 .-[\alpha]_{\mathrm{D}}^{22}=+4.83(c=$ $\left.0.07, \mathrm{CHCl}_{3}\right)$. -IR (film): $\tilde{v}_{\max }=3425 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{NH}), 3060(\mathrm{w}$, CH), 1755 (vs, C=O), 1675 (s, C=O), 1515 (m), 1465 (m, CH), 1250 (s), 1080 (m), 911 (s), 780 (s), 735 (m). - ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta=-0.30$ to $-0.33\left(\mathrm{~m}, 2 \mathrm{H}, 23-, 23^{\prime \prime \prime}-\mathrm{H}\right), 0.05(\mathrm{~s}, 3 \mathrm{H}$, SiMe), 0.07 (s, $3 \mathrm{H}, \mathrm{SiMe}$), 0.13 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiMe}$), 0.14 (s, $3 \mathrm{H}, \mathrm{SiMe}$), $0.53-0.58\left(\mathrm{~m}, 2 \mathrm{H}, 23-, 23^{\prime \prime \prime}-\mathrm{H}\right), 0.64\left(\mathrm{~m}, 4 \mathrm{H}, 11-, 12-, 11^{\prime \prime \prime}-\right.$, $\left.12^{\prime \prime \prime}-\mathrm{H}\right), 0.88\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}, 22-, 22^{\prime \prime \prime}-\mathrm{Me}\right), 0.88(\mathrm{~s}, 9 \mathrm{H}$, CMe_{3}), 0.95 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}$), $1.11-1.60(\mathrm{~m}, 54 \mathrm{H}, 5-, 6-, 7-, 8-, 9-$, $10-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21-, 8^{\prime \prime \prime}-, 9^{\prime \prime \prime}-, 10^{\prime \prime \prime}-$, $\left.13^{\prime \prime \prime}-, 14^{\prime \prime \prime}-, 15^{\prime \prime \prime}-, 16^{\prime \prime \prime}-, 17^{\prime \prime \prime}-, 18^{\prime \prime \prime}-, 19^{\prime \prime \prime}-, 20^{\prime \prime \prime}-, 21^{\prime \prime \prime}-\mathrm{H}\right)$, $1.62-1.81\left(\mathrm{~m}, 4 \mathrm{H}, 4-, 3^{\prime \prime \prime}-\mathrm{H}_{2}\right), 1.97-2.07\left(\mathrm{~m}, 4 \mathrm{H}, 4^{\prime \prime \prime}-, 7^{\prime \prime \prime}-\mathrm{H}\right)$, 1.98 (s, 3 H , acetyl), 2.05 (s, 3 H , acetyl), 2.14 (s, 3 H , acetyl), $3.65-3.75(\mathrm{~m}, 2 \mathrm{H}, 2-, 3-\mathrm{H}), 3.85(\mathrm{dd}, J=9.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H})$, $3.91\left(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 4.09-4.22\left(\mathrm{~m}, 4 \mathrm{H}, 1-, 2^{\prime \prime \prime}-\mathrm{H}, 6^{\prime}-\right.$ H_{2}), $4.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ClCH}_{2} \mathrm{CO}\right), 4.51\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.04$ (dd, $\left.J=10.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 5.17(\mathrm{dd}, J=10.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}\right), 5.30-5.37\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime \prime \prime}-, 6^{\prime \prime \prime}-\mathrm{H}\right), 5.39(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.4^{\prime}-\mathrm{H}\right), 6.73(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$. - HR-FABMS (positive-ion mode) $\left[\mathrm{C}_{72} \mathrm{H}_{133} \mathrm{ClNO}_{13} \mathrm{Si}_{2}\right]$: calcd. 1310.9004 ; found 1310.8995 .
$\left(2 S, 3 R, 11 R, 12 S, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} R, 12^{\prime \prime \prime} S\right)-1-O-\left[3^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{Tri}-O-\right.$ acetyl-2'-O-(2' ${ }^{\prime \prime}$-chloroacetyl)- β-D-galactopyranosyll-3,2'" ${ }^{\prime}$-bis(tert-butyldimethylsilyloxy)-11,12-methylene-2-(11'"',12"' ${ }^{\prime}$-methylene$\mathbf{5}^{\prime \prime \prime}$ 'docosenoylamido)docosane ($\mathbf{3 2}^{\prime}$): In the same manner as described above, $\mathbf{3 0}^{\prime}(58 \mathrm{mg}, 61.3 \mu \mathrm{~mol})$ was converted into 80 mg (75%) of 32'; $n_{\mathrm{D}}^{23}=1.4781 .-[\alpha]_{\mathrm{D}}^{22}=-0.02\left(c=0.20, \mathrm{CHCl}_{3}\right) .-$ IR (film): $\tilde{v}_{\text {max }}=3420 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{NH}), 3060(\mathrm{w}, \mathrm{CH}), 1755$ (vs, C= O), $1680(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1515(\mathrm{~m}), 1465(\mathrm{~m}, \mathrm{CH}), 1250(\mathrm{~s}), 1080(\mathrm{~m})$, 910 (s), 840 (m), $780(\mathrm{~s}) .-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ -0.34 (dd, $\left.J=9.5,5.2 \mathrm{~Hz}, 2 \mathrm{H}, 23-, 23^{\prime \prime \prime}-\mathrm{H}\right), 0.05$ (s, $3 \mathrm{H}, \mathrm{SiMe}$), 0.07 (s, $3 \mathrm{H}, \mathrm{SiMe}$), 0.13 ($\mathrm{s}, 3 \mathrm{H}$, SiMe), 0.14 (s, $3 \mathrm{H}, \mathrm{SiMe}$), $0.53-0.58$ (m, $2 \mathrm{H}, 23-, 23^{\prime \prime \prime}-\mathrm{H}$), 0.64 (br. s, $4 \mathrm{H}, 11-, 12-, 11^{\prime \prime \prime}$-, $\left.12^{\prime \prime \prime}-\mathrm{H}\right), 0.88\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, 22-, 22^{\prime \prime \prime}-\mathrm{Me}\right), 0.88(\mathrm{~s}, 9 \mathrm{H}$, CMe_{3}), 0.94 (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$), $1.11-1.60(\mathrm{~m}, 54 \mathrm{H}, 5-, 6-, 7-, 8-, 9-$, $10-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21-, 8^{\prime \prime \prime}-, 9^{\prime \prime \prime}{ }^{\prime}, 10^{\prime \prime \prime}-$, $13^{\prime \prime \prime}-, 14^{\prime \prime \prime}-, 15^{\prime \prime \prime}-, 16^{\prime \prime \prime}-, 17^{\prime \prime \prime}-, 18^{\prime \prime \prime}-, 19^{\prime \prime \prime}-, 20^{\prime \prime \prime}-, 21^{\prime \prime \prime}{ }^{\prime \prime} \mathrm{H}_{2}$, $1.64-1.82\left(\mathrm{~m}, 4 \mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}_{2}\right), 1.97-2.07\left(\mathrm{~m}, 4 \mathrm{H}, 4^{\prime \prime \prime}-, 7^{\prime \prime \prime}-\mathrm{H}_{2}\right)$, $1.98(\mathrm{~s}, 3 \mathrm{H}$, acetyl), 2.05 (s, 3 H , acetyl), 2.14 (s, 3 H , acetyl), $3.65-3.75(\mathrm{~m}, 2 \mathrm{H}, 2-, 3-\mathrm{H}), 3.85(\mathrm{dd}, J=9.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H})$, 3.91 (t, $\left.J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 4.09-4.22\left(\mathrm{~m}, 4 \mathrm{H}, 1-, 2^{\prime \prime \prime}-\mathrm{H}, 6^{\prime}-\right.$ $\left.\mathrm{H}_{2}\right), 4.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ClCH}_{2} \mathrm{CO}\right), 4.51\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.04$ (dd, $\left.J=10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 5.17(\mathrm{dd}, J=10.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}\right), 5.30-5.37\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime \prime \prime}-, 6^{\prime \prime \prime}-\mathrm{H}\right), 5.39(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.4^{\prime}-\mathrm{H}\right), 6.75(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$. - HR-FABMS (positive-ion mode) $\left[\mathrm{C}_{72} \mathrm{H}_{133} \mathrm{ClNO}_{13} \mathrm{Si}_{2}\right]$: calcd. 1310.9004 ; found 1310.9027 .
$\left(2 S, 3 R, 11 S, 12 R, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} S, 12^{\prime \prime \prime} R\right)-1-O-\left[3^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{Tri}-O-\right.$ acetyl- β-D-galactopyranosyl|-3,2'"-bis(tert-butyldimethylsilyloxy)-11,12-methylene-2-($11^{\prime \prime \prime}, 12^{\prime \prime \prime}$-methylene-5'"'docosenoylamido)docosane (33): To a solution of $\mathbf{3 2}(19 \mathrm{mg}, 14.5 \mu \mathrm{~mol})$ in ethyl acetate $(0.3 \mathrm{~mL})$ and $\mathrm{MeOH}(0.3 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{NNH}_{2} \cdot \mathrm{AcOH}(4.0 \mathrm{mg}, 43.5$ $\mu \mathrm{mol}$) was added portionwise and the mixture was stirred for 6 h
at room temperature. It was then diluted with ethyl acetate, washed with brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel to give $13 \mathrm{mg}(73 \%)$ of $\mathbf{3 3}$; $n_{D}^{24}=1.4720 .-[\alpha]_{\mathrm{D}}^{22}=-5.11\left(c=0.20, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}$ (film): $\tilde{v}_{\text {max }}=3415 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{OH}, \mathrm{NH}), 3060(\mathrm{w}, \mathrm{CH}), 1755(\mathrm{vs}, \mathrm{C}=\mathrm{O})$, 1675 (s, C=O), 1520 (m), 1465 (m, CH), 1250 (s), 1080 (m), 840 (s), 780 (s). - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.33$ (dt, $J=$ $9.5,5.1 \mathrm{~Hz}, 2 \mathrm{H}, 23-, 23^{\prime \prime \prime}-\mathrm{H}$), 0.07 (s, $3 \mathrm{H}, \mathrm{SiMe}$), 0.09 (s, 3 H , SiMe), 0.12 (s, 3 H, SiMe), $0.53-0.58$ (m, 2 H, 23-, $23^{\prime \prime \prime}{ }^{\prime}-\mathrm{H}$), 0.65 (br. s, 4 H, 11-, 12-, $11^{\prime \prime \prime}-$-, $12^{\prime \prime \prime}$-H), 0.88 (t, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 22-$, $22^{\prime \prime \prime}$-Me), 0.89 (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$), 0.94 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}$), 1.11-1.80 (m, 59 H, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, $21-, 3^{\prime \prime \prime}-, 8^{\prime \prime \prime}-, 9^{\prime \prime \prime}-, 10^{\prime \prime \prime}-, 13^{\prime \prime \prime}-, 14^{\prime \prime \prime}-, 15^{\prime \prime \prime}-, 16^{\prime \prime \prime}-, 17^{\prime \prime \prime}-$, $18^{\prime \prime \prime}$-, $19^{\prime \prime \prime}$-, 20'"' $-21^{\prime \prime \prime}-\mathrm{H}_{2}, \mathrm{OH}$), 1.97-2.07 (m, $4 \mathrm{H}, 4^{\prime \prime \prime}-, 7^{\prime \prime \prime}$ H_{2}), 2.03 (s, 3 H , acetyl), 2.04 (s, 3 H , acetyl), 2.10 (s, 3 H , acetyl), $3.68\left(\mathrm{dd}, J=10.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.80-3.92(\mathrm{~m}, 4 \mathrm{H}, 1-, 2-$, $\left.3-, 5^{\prime}-\mathrm{H}\right), 4.08-4.28\left(\mathrm{~m}, 4 \mathrm{H}, 1-, 2^{\prime \prime \prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}_{2}\right), 4.36(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.94\left(\mathrm{dd}, J=10.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 5.28-5.41(\mathrm{~m}$, $\left.2 \mathrm{H}, 5^{\prime \prime \prime}-, 6^{\prime \prime \prime}-\mathrm{H}\right), 5.37\left(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 6.91(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$). - HR-FABMS (positive-ion mode) $\left[\mathrm{C}_{70} \mathrm{H}_{132} \mathrm{NO}_{12} \mathrm{Si}_{2}\right]$: calcd. 1234.9288; found 1234.9291.
$\left(2 S, 3 R, 11 R, 12 S, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} R, 12^{\prime \prime \prime} S\right)-1-O-\left[3^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{Tri}-O-\right.$ acetyl- β-D-galactopyranosyl]-3,2'" -bis(tert-butyldimethylsilyloxy)-11,12-methylene-2-(11'"', $12^{\prime \prime \prime}{ }^{\prime}$-methylene-5 ${ }^{\prime \prime \prime}$-docosenoylamido)docosane ($\mathbf{3 3}^{\prime}$): In the same manner as described above, $\mathbf{3 2}^{\prime}$ (60 mg , $45.8 \mu \mathrm{~mol})$ was converted into $41 \mathrm{mg}(74 \%)$ of $33^{\prime} ; n_{\mathrm{D}}^{20}=1.4770$. $-[\alpha]_{D}^{22}=-8.06\left(c=0.10, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}($ film $): \tilde{v}_{\text {max }}=3420 \mathrm{~cm}^{-1}$ (w, OH, NH), 3060 (w, CH), 1750 (vs, C=O), 1670 (s, C=O), 1520 (m), 1465 (m, CH), 1250 (s), 1080 (m), $840(\mathrm{~s}), 780(\mathrm{~s}) .-{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=-0.33$ (ddd, $J=5.5,5.5,5.2 \mathrm{~Hz}, 2 \mathrm{H}$, 23-, $23^{\prime \prime \prime}{ }^{\prime \prime}-\mathrm{H}$), 0.07 (s, $3 \mathrm{H}, \mathrm{SiMe}$), 0.09 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiMe}$), 0.12 ($\mathrm{s}, 6 \mathrm{H}$, SiMe), $0.53-0.58$ (m, 2 H, 23-, $23^{\prime \prime \prime}{ }^{\prime}-\mathrm{H}$), 0.64 (br. s, 4 H, 11-, 12-, $11^{\prime \prime \prime}$-, $12^{\prime \prime \prime}-\mathrm{H}$), 0.88 (t, $\left.J=7.7 \mathrm{~Hz}, 6 \mathrm{H}, 22-, 22^{\prime \prime \prime}-\mathrm{Me}\right), 0.89$ (s, 9 $\left.\mathrm{H}, \mathrm{CMe}_{3}\right), 0.94\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.11-1.80(\mathrm{~m}, 58 \mathrm{H}, 4-, 5-, 6-, 7-$, 8 -, $9-, 10-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21-, 3^{\prime \prime \prime}-, 8^{\prime \prime \prime}-, 9^{\prime \prime \prime}-$, $10^{\prime \prime \prime}-, 13^{\prime \prime \prime}-, 14^{\prime \prime \prime}-, 15^{\prime \prime \prime}-, 16^{\prime \prime \prime}-, 17^{\prime \prime \prime}-, 18^{\prime \prime \prime}-, 19^{\prime \prime \prime}-, 20^{\prime \prime \prime}-, 21^{\prime \prime \prime}-$ H_{2}), 1.97-2.07 (m, $4 \mathrm{H}, 4^{\prime \prime \prime}$-, $7^{\prime \prime \prime}$ - H_{2}), 2.03 (s, 3 H , acetyl), 2.05 (s, 3 H , acetyl), 2.10 (s, 3 H , acetyl), 3.68 (dd, $J=9.8,7.3 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.85-3.91\left(\mathrm{~m}, 4 \mathrm{H}, 1-, 2-, 3-, 5^{\prime}-\mathrm{H}\right), 4.09-4.22(\mathrm{~m}, 4 \mathrm{H}$, $1-, 2^{\prime \prime \prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}_{2}$), 4.36 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}$), 4.44 (br. s, 1 H , $\mathrm{OH}), 4.94\left(\mathrm{dd}, J=9.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 5.30-5.37(\mathrm{~m}, 2 \mathrm{H}$, $\left.5^{\prime \prime \prime}-, 6^{\prime \prime \prime}-\mathrm{H}\right), 5.39\left(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 6.91(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NH}$). - HR-FABMS (positive-ion mode) $\left[\mathrm{C}_{70} \mathrm{H}_{132} \mathrm{NO}_{12} \mathrm{Si}_{2}\right]$: calcd. 1234.9288; found 1234.9268 .
(2S,3R,11S,12R,2'"R,5"' $Z, 11^{\prime \prime \prime}{ }^{\prime} S, 12^{\prime \prime \prime} R$)-1-O-[3', $\mathbf{4}^{\prime}, \mathbf{6}^{\prime}-\mathrm{Tri}-O-$ acetyl-2'-O-($\mathbf{3}^{\prime \prime}$-methyl-2' ${ }^{\prime \prime}$-butenyl)- β-D-galactopyranosyl]-3,2'" bis(tert-butyldimethylsilyloxy)-11,12-methylene-2-(11'", $12^{\prime \prime \prime}$ -methylene- $5^{\prime \prime \prime}$-docosenoylamido)docosane (34): To a solution of $\mathbf{3 3}$ ($13 \mathrm{mg}, 10.5 \mu \mathrm{~mol}$) and 1-(2,2,2-trichloro-1-iminoethoxy)-3-methyl-2-butene ($17 \mathrm{mg}, 31.6 \mu \mathrm{~mol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$, a solution of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.4 \mu \mathrm{~L}, 3.2 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mL})$ was added dropwise at $-20^{\circ} \mathrm{C}$ under argon. After stirring for 1 h at -20 ${ }^{\circ} \mathrm{C}$, the solution was neutralized with saturated aqueous NaHCO_{3} solution, washed with brine, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel to give $6 \mathrm{mg}(44 \%)$ of 34 along with recovered $33(6.5 \mathrm{mg}, 50 \%) ; n_{\mathrm{D}}^{23}=$ 1.4738. $-[\alpha]_{D}^{21}=+3.64\left(c=0.05, \mathrm{CHCl}_{3}\right) .-\operatorname{IR}(f i l m): \tilde{v}_{\max }=$ $3425 \mathrm{~cm}^{-1}$ (w, NH), $3060(\mathrm{w}, \mathrm{CH}), 1755$ (vs, C=O), 1680 (s, C= O), 1515 (m), 1465 (m, CH), 1250 (s), 1080 (m), 840 (s), 780 (s). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.33(\mathrm{dt}, J=9.0,4.9 \mathrm{~Hz}, 2$ H, 23-, $23^{\prime \prime \prime}{ }^{\prime}-\mathrm{H}$), 0.05 (s, $3 \mathrm{H}, \mathrm{SiMe}$), 0.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiMe}$), 0.12 (s, $3 \mathrm{H}, \mathrm{SiMe}), 0.15$ (s, $3 \mathrm{H}, \mathrm{SiMe}), 0.55-0.62\left(\mathrm{~m}, 2 \mathrm{H}, 23-, 23^{\prime \prime \prime}-\mathrm{H}\right)$,
$0.62-0.65\left(\mathrm{~m}, 4 \mathrm{H}, 11-, 12-, 11^{\prime \prime \prime}-, 12^{\prime \prime \prime}-\mathrm{H}\right), 0.86(\mathrm{t}, J=6.3 \mathrm{~Hz}, 6$ $\left.\mathrm{H}, 22-, 22^{\prime \prime \prime}-\mathrm{Me}\right), 0.88$ (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$), 0.96 (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$), $1.05-1.62$ (m, 54 H, 5-, 6-, 7-, 8-, 9-, 10-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21-, $8^{\prime \prime \prime}-, 9^{\prime \prime \prime}-, 10^{\prime \prime \prime}-, 13^{\prime \prime \prime}-, 14^{\prime \prime \prime}-, 15^{\prime \prime \prime}-, 16^{\prime \prime \prime}-$, $17^{\prime \prime \prime}$-, $18^{\prime \prime \prime}$ '-, $19^{\prime \prime \prime}$ ', $\left.20^{\prime \prime \prime \prime}-, 21^{\prime \prime \prime}-\mathrm{H}\right), 1.64-1.80\left(\mathrm{~m}, 4 \mathrm{H}, 4-, 3^{\prime \prime \prime}-\right.$ H_{2}), 1.68 ($\mathrm{s}, 3 \mathrm{H}, 5^{\prime \prime}-\mathrm{Me}$), 1.73 ($\left.\mathrm{s}, 3 \mathrm{H}, 4^{\prime \prime}-\mathrm{Me}\right), 2.01$ (s, 3 H , acetyl), 2.02 (s, 3 H , acetyl), $2.11(\mathrm{~s}, 3 \mathrm{H}$, acetyl), 2.00-2.12 (m, 4 H , $4^{\prime \prime \prime}-, 7^{\prime \prime \prime}-\mathrm{H}_{2}$), $3.41\left(\mathrm{dd}, J=10.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.60-3.65$ $(\mathrm{m}, 1 \mathrm{H}, 1-\mathrm{H}), 3.75-3.83\left(\mathrm{~m}, 2 \mathrm{H}, 3-5^{\prime}-\mathrm{H}\right), 4.00-4.16(\mathrm{~m}, 5 \mathrm{H}$, 1-H, 1''-, $6^{\prime}-\mathrm{H}_{2}$), 4.24-4.32 (m, 2 H, 2-H, $\left.2^{\prime \prime \prime}-\mathrm{H}\right), 4.39(\mathrm{~d}, J=$ $\left.7.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.87\left(\mathrm{dd}, J=10.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, $5.30-5.38\left(\mathrm{~m}, 4 \mathrm{H}, 4^{\prime}-, 2^{\prime \prime}-, 5^{\prime \prime \prime}-, 6^{\prime \prime \prime}-\mathrm{H}\right), 6.81(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}$, NH). - HR-FABMS (positive-ion mode) [$\mathrm{C}_{75} \mathrm{H}_{140} \mathrm{NO}_{12} \mathrm{Si}_{2}$]: calcd. 1302.9914; found 1302.9928.
$\left(2 S, 3 R, 11 R, 12 S, 2^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z, 11^{\prime \prime \prime} R, 12^{\prime \prime \prime} S\right)-1-O-\left[3^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{Tri}-O-\right.$ acetyl-2'-O-($\mathbf{3}^{\prime \prime}$-methyl-2' ${ }^{\prime \prime}$-butenyl)- β-D-galactopyranosyl]-3,2"' bis(tert-butyldimethylsilyloxy)-11,12-methylene-2-(11 ${ }^{\prime \prime \prime}, 12^{\prime \prime \prime}$ -methylene-5"'-docosenoylamido)docosane (34'): In the same manner as described above, $\mathbf{3 3}^{\prime}(11 \mathrm{mg}, 8.91 \mu \mathrm{~mol})$ was converted into $5 \mathrm{mg}(43 \%)$ of 34^{\prime} with $5 \mathrm{mg}(44 \%)$ of 33^{\prime} being recovered; $n_{\mathrm{D}}^{24}=$ 1.4765. $-[\alpha]_{D}^{22}=+3.51\left(c=0.07, \mathrm{CHCl}_{3}\right) .-\operatorname{IR}(f i l m): \tilde{v}_{\max }=$ $3425 \mathrm{~cm}^{-1}$ (w, NH), 3060 (w, CH), 1755 (vs, C=O), 1680 (s, C= O), 1515 (m), 1465 (m, CH), 1250 (s), 1080 (m), 840 (s), 780 (s). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.34(\mathrm{dt}, J=9.4,5.2 \mathrm{~Hz}, 2$ H, 23-, $23^{\prime \prime \prime}$ 'H), 0.05 (s, 3 H, SiMe), 0.07 (s, 3 H, SiMe), 0.12 (s, $3 \mathrm{H}, \mathrm{SiMe}), 0.15$ (s, $3 \mathrm{H}, \mathrm{SiMe}$), $0.55-0.62$ (m, $2 \mathrm{H}, 23-23^{\prime \prime \prime}$ 'H), $0.62-0.65\left(\mathrm{~m}, 4 \mathrm{H}, 11-, 12-, 11^{\prime \prime \prime}-, 12^{\prime \prime \prime}-\mathrm{H}\right), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6$ $\left.\mathrm{H}, 22-22^{\prime \prime \prime}{ }^{\prime} \mathrm{Me}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right.$), 0.96 (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$), $1.05-1.62(\mathrm{~m}, 54 \mathrm{H}, 5-, 6-, 7-, 8-, 9-, 10-, 13-, 14-, 15-, 16-, 17-$, 18-, 19-, 20-, 21-, $8^{\prime \prime \prime}-, 9^{\prime \prime \prime}-, 10^{\prime \prime \prime}-, 13^{\prime \prime \prime}-, 14^{\prime \prime \prime}-, 15^{\prime \prime \prime}-, 16^{\prime \prime \prime}-$, $\left.17^{\prime \prime \prime}-, 18^{\prime \prime \prime}-, 19^{\prime \prime \prime}-, 20^{\prime \prime \prime}-, 21^{\prime \prime \prime}-\mathrm{H}\right), 1.68\left(\mathrm{~s}, 3 \mathrm{H}, 5^{\prime \prime}-\mathrm{Me}\right), 1.73$ (s, $\left.3 \mathrm{H}, 4^{\prime \prime}-\mathrm{Me}\right), 1.55-1.76$ (m, $\left.4 \mathrm{H}, 4-, 3^{\prime \prime \prime}-\mathrm{H}\right), 2.01$ (s, 3 H , acetyl), 2.03 (s, 3 H , acetyl), $2.11(\mathrm{~s}, 3 \mathrm{H}$, acetyl), 2.00-2.12 (m, 4 H , $4^{\prime \prime \prime}{ }^{\prime}-7^{\prime \prime \prime}{ }^{\prime}-\mathrm{H}_{2}$), $3.41\left(\mathrm{dd}, J=10.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.60-3.65$ $(\mathrm{dd}, J=9.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.75-3.83\left(\mathrm{~m}, 2 \mathrm{H}, 3-5^{\prime}-\mathrm{H}\right)$, $4.00-4.16$ (m, $5 \mathrm{H}, 1-\mathrm{H}, 1^{\prime \prime}-, 6^{\prime}-\mathrm{H}_{2}$), 4.21-4.30 (m, 2 H, 2-, $2^{\prime \prime \prime}{ }^{\prime}$ H), 4.39 (d, $\left.J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.87(\mathrm{dd}, J=10.3,3.7 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, 3^{\prime}-\mathrm{H}\right), 5.30-5.38\left(\mathrm{~m}, 4 \mathrm{H}, 4^{\prime}-, 2^{\prime \prime}-, 5^{\prime \prime \prime}-, 6^{\prime \prime \prime}-\mathrm{H}\right), 6.81(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$). - HR-FABMS (positive-ion mode) [$\mathrm{C}_{75} \mathrm{H}_{140} \mathrm{NO}_{12} \mathrm{Si}_{2}$]: calcd. 1302.9914; found 1302.9929 .

Plakoside A $\left\{\left(2 S, 3 R, 11 S, 12 R, 2^{\prime \prime \prime} R, 11^{\prime \prime \prime} S, 12^{\prime \prime \prime} R, 5^{\prime \prime \prime} Z\right)-1-O-\left[2^{\prime}-O-\right.\right.$ ($3^{\prime \prime}$-Methyl-2' ${ }^{\prime \prime}$-butenyl)- β-d-galactopyranosyl|-11,12-methylene-2($11^{\prime \prime \prime}, 12^{\prime \prime \prime}$-methylene-5 ${ }^{\prime \prime \prime}$-docosenoylamido)-1,3-docosanediol\} (1): TBAF ($7.8 \mathrm{mg}, 29.9 \mu \mathrm{~mol}$) was added portionwise to a stirred solution of $34(13 \mathrm{mg}, 9.98 \mu \mathrm{~mol})$ in THF $(0.6 \mathrm{~mL})$ and the resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 10 h . The mixture was then diluted with CHCl_{3}, washed with brine, dried with MgSO_{4}, and concentrated in vacuo to give the crude alcohol $(10 \mathrm{mg})$. This was employed in the next step without further purification. NaOMe $(0.1 \mathrm{mg}, 1.9 \mu \mathrm{~mol})$ was added portionwise to a stirred solution of the alcohol $(10 \mathrm{mg})$ in $\mathrm{MeOH}(0.4 \mathrm{~mL})$ and the resulting mixture was stirred for 30 min at room temperature. The solvent was then removed in vacuo. The residue was chromatographed on silica gel to give $1(5.7 \mathrm{mg}, 60 \% ; 2$ steps $)$ as an amorphous solid; $[\alpha]_{\mathrm{D}}^{22}=$ $+8.86(c=0.065, \mathrm{MeOH}) .-{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): \delta=$ $-0.23\left(\mathrm{dt}, J=9.2,4.8 \mathrm{~Hz}, 2 \mathrm{H}, 23-23^{\prime \prime \prime}-\mathrm{H}\right), 0.62-0.68(\mathrm{~m}, 2 \mathrm{H}$, $\left.23-, 23^{\prime \prime \prime}-\mathrm{H}\right), 0.68-0.75\left(\mathrm{~m}, 4 \mathrm{H}, 11-, 12-, 11^{\prime \prime \prime}-, 12^{\prime \prime \prime}-\mathrm{H}\right), 0.86(\mathrm{t}$, $\left.J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 22-, 22^{\prime \prime \prime}-\mathrm{Me}\right), 1.15-1.50(\mathrm{~m}, 54 \mathrm{H}, 5-, 6-, 7-$, $8-, 9-, 10-, 13-$, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21-, $8^{\prime \prime \prime}{ }^{\prime \prime}$, $9^{\prime \prime \prime}{ }^{\prime \prime}$,, $10^{\prime \prime \prime}-, 13^{\prime \prime \prime}-, 14^{\prime \prime \prime}-, 15^{\prime \prime \prime}-, 16^{\prime \prime \prime}-, 17^{\prime \prime \prime}-, 18^{\prime \prime \prime}-, 19^{\prime \prime \prime}-, 20^{\prime \prime \prime}-, 21^{\prime \prime \prime}-$ H), 1.58 ($\left.\mathrm{s}, 6 \mathrm{H}, 4^{\prime \prime}{ }^{\prime}-, 5^{\prime \prime}-\mathrm{Me}\right), 1.57-1.65(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 1.85-1.97$ $\left(\mathrm{m}, 3 \mathrm{H}, 4-\mathrm{H}_{2}, 5-\mathrm{H}\right), 2.13-2.15\left(\mathrm{~m}, 3 \mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}, 7^{\prime \prime \prime}-\mathrm{H}_{2}\right)$,
2.30-2.38 (m, $\left.1 \mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}\right), 2.55-2.65\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime \prime \prime}-\mathrm{H}_{2}\right), 3.94(\mathrm{t}$, $\left.J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 4.02-4.10\left(\mathrm{~m}, 3 \mathrm{H}, 1-, 2^{\prime}-, 3^{\prime}-\mathrm{H}\right)$, 4.18-4.23 (m, 1 H, 3-H), 4.35-4.43 (m, 2 H, 6'- H_{2}), $4.48(\mathrm{~d}, J=$ $\left.3.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.58\left(\mathrm{dd}, J=11.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right)$, $4.60-4.64\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime \prime \prime}-\mathrm{H}\right), 4.70-4.76\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime \prime}-, 2-\mathrm{H}\right), 4.74(\mathrm{~d}$, $\left.J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.81(\mathrm{dd}, J=10.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H})$, $5.48-5.55\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime \prime \prime}-\mathrm{H}\right), 5.58-5.63\left(\mathrm{~m}, 1 \mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right), 5.67-5.71$ $\left(\mathrm{m}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 6.50-6.70(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{OH}), 7.80$ (br. s, 1 H , $\mathrm{OH}), 8.27(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): \delta=11.4,14.3,16.1,18.1,22.9,23.8,25.7,26.6,27.7,29.1$, $29.9-30.1,32.1,34.9,35.8,54.4,62.2,69.6,69.9,70.3,71.2,71.9$, $74.5,77.0,79.8,105.5,123.1,129.7,130.9,135.0,174.9 .-H R-$ FABMS (negative-ion mode) $\left[\mathrm{C}_{57} \mathrm{H}_{104} \mathrm{NO}_{9}\right]$: calcd. 946.7684; found 946.7692.

Plakoside A $\left\{\left(2 S, 3 R, 11 R, 12 S, 2^{\prime \prime \prime} R, 11^{\prime \prime \prime} R, 12^{\prime \prime \prime} S, 5^{\prime \prime \prime} Z\right)-1-O-\left[2^{\prime}-O-\right.\right.$ ($3^{\prime \prime}$-Methyl-2''-butenyl)- β-D-galactopyranosyl]-11,12-methylene-2($11^{\prime \prime \prime}, 12^{\prime \prime \prime}$-methylene-5 ${ }^{\prime \prime \prime}$-docosenoylamido)-1,3-docosanediol\} (1'): In the same manner as described above, $\mathbf{3 4}^{\prime}(16 \mathrm{mg}, 12.3 \mu \mathrm{~mol})$ was converted into $7.6 \mathrm{mg}(65 \% ; 2$ steps $)$ of $\mathbf{1}^{\prime} ;[\alpha]_{\mathrm{D}}^{23}=+10.5(c=0.07$, $\mathrm{MeOH}) .-{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): \delta=-0.23(\mathrm{dt}, J=$ $\left.9.1,5.1 \mathrm{~Hz}, 2 \mathrm{H}, 23-23^{\prime \prime \prime}-\mathrm{H}\right), 0.62-0.68\left(\mathrm{~m}, 2 \mathrm{H}, 23-, 23^{\prime \prime \prime}-\mathrm{H}\right)$, $0.68-0.75\left(\mathrm{~m}, 4 \mathrm{H}, 11-, 12-, 11^{\prime \prime \prime}-, 12^{\prime \prime \prime}-\mathrm{H}\right), 0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6$ H, 22-, $\left.22^{\prime \prime \prime}-\mathrm{Me}\right), 1.15-1.50(\mathrm{~m}, 54 \mathrm{H}, 5-$, 6-, 7-, 8-, 9-, 10-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21-, $8^{\prime}-, 9^{\prime}-, 10^{\prime}-, 13^{\prime}-, 14^{\prime}-, 15^{\prime}-$, $\left.16^{\prime}-, 17^{\prime}-, 18^{\prime}-, 19^{\prime}-, 20^{\prime}-, 21^{\prime}-\mathrm{H}\right), 1.58\left(\mathrm{~s}, 6 \mathrm{H}, 4^{\prime \prime}-, 5^{\prime \prime}-\mathrm{Me}\right)$, $1.57-1.65(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 1.85-1.97\left(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}_{2}, 5-\mathrm{H}\right)$, $2.13-2.15\left(\mathrm{~m}, 3 \mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}, 7^{\prime \prime \prime}-\mathrm{H}_{2}\right), 2.30-2.38\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}\right)$, $2.55-2.65\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime \prime \prime}-\mathrm{H}\right), 3.94\left(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right)$, $4.02-4.10\left(\mathrm{~m}, 3 \mathrm{H}, 1-, 2^{\prime}-, 3^{\prime}-\mathrm{H}\right), 4.18-4.23(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, 4.35-4.43 (m, 2 H, $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.48\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.60-4.64(\mathrm{~m}, 2 \mathrm{H}$, $\left.1^{\prime \prime}-, 2^{\prime \prime \prime}-\mathrm{H}\right), 4.70-4.76\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime \prime}-, 2-\mathrm{H}\right), 4.74(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.81(\mathrm{dd}, J=10.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 5.48-5.55(\mathrm{~m}, 1$ $\left.\mathrm{H}, 6^{\prime \prime \prime}-\mathrm{H}\right), 5.58-5.63\left(\mathrm{~m}, 1 \mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right), 5.67-5.71\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right)$, $6.50-6.70(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{OH}), 7.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 8.27(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}) .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): \delta=11.4,14.3$, $16.2,18.1,22.9,23.8,25.7,26.6,27.7,29.0,29.9-30.1,32.1,34.9$, $35.8,54.4,62.2,69.6,69.9,70.3,71.1,71.9,74.5,77.0,79.8,105.6$, 123.1, 129.7, 130.9, 135.3, 174.9. - These ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data are virtually identical to those of 1. - HR-FABMS (negative-ion mode) $\left[\mathrm{C}_{57} \mathrm{H}_{104} \mathrm{NO}_{9}\right]$: calcd. 946.7684; found 946.7706. ${ }^{[21]}$

Acknowledgments

We are grateful to Mr. A. Kayo for his early contribution. We thank Prof. E. Fattorusso (Università di Napoli) for his interest in this
work. Our thanks are due to Dr. Y. Hirose (Amano Pharmaceutical Co.) for the gift of lipases. This work was financially supported by Kyowa Hakko Kogyo Co.
${ }^{[1]}$ V. Costantino, E. Fattorusso, A. Mangoni, M. Di Rosa, A. Ianaro, J. Am. Chem. Soc. 1997, 119, 12465-12470.
${ }^{[2]}$ V. Costantino, E. Fattorusso, A. Mangoni, Tetrahedron 2000, 56, 5953-5957.
${ }^{[3]}$ M. Seki, A. Kayo, K. Mori, Tetrahedron Lett. 2001, 42, 2357-2360.
${ }^{[4]}$ K. C. Nicolaou, J. Li, G. Zenke, Helv. Chim. Acta 2000, 83, 1977-2006.
${ }^{[5]}$ K. Laumen, M. Schneider, Tetrahedron Lett. 1985, 26, 2073-2076.
${ }^{\text {[6] W. Kasel, P. G. Hultin, J. B. Jones, J. Chem. Soc., Chem. Com- }}$ mип. 1985, 1563-1564.
${ }^{[7]}$ D. Grandjean, P. Pale, J. Chuche, Tetrahedron 1991, 47, 1215-1230.
${ }^{[8]}$ C. Fouquet, M. Schlosser, Angew. Chem. Int. Ed. Engl. 1974, 13, 82-83.
${ }^{[9]}$ P. Garner, J. M. Park, E. Malecki, J. Org. Chem. 1988, 53, 4395-4398.
${ }^{[10]}$ T. Fujisawa, M. Nagai, Y. Koike, M. Shimizu, J. Org. Chem. 1994, 59, 5865-5867.
${ }^{[11]}$ K. Mori, T. Takigawa, T. Matsuo, Tetrahedron 1979, 35, 933-940.
${ }^{[12]}$ A. G. Cole, J. Wilkie, D. Gani, J. Chem. Soc., Perkin Trans. I 1995, 2695-2707.
${ }^{[13]}$ G. J. F. Chittenden, Carbohydr. Res. 1988, 183, 140-143.
${ }^{[14]}$ M. Izumi, O. Turuta, S. Harayama, H. Hashimoto, J. Org. Chem. 1997, 62, 992-998.
${ }^{[15]}$ U. E. Udodong, C. S. Rao, B. Fraser-Reid, Tetrahedron 1992, 48, 4713-4724.
${ }^{[16]}$ C. Li, L.-D. Nord, P. B. Savage, Am. Chem. Soc., Division of Org. Chem., Abstracts: 219th ACS Meeting, San Francisco, March 26-30, 2000, No. 485.
${ }^{[17]}$ A. Yajima, H. Takikawa, K. Mori, Liebigs Ann. 1996, 1083-1089.
${ }^{[18]}$ K. Mori, J. Heterocycl. Chem. 1996, 33, 1497-1517.
${ }^{[19]}$ H. Takikawa, T. Maeda, M. Seki, H. Koshino, K. Mori, J. Chem. Soc., Perkin Trans. 1 1997, 97-111.
${ }^{[20]}$ K. Otaka, K. Mori, Eur. J. Org. Chem. 1999, 1795-1802.
${ }^{[21]}$ Supporting information for this article $\left[{ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR spectra of Plakoside A (1)] is available; see footnote first page.

Received May 9, 2001
[O01233]

[^0]: [*] Synthesis of Sphingosine Relatives, XXIII. - Part XXII: H. Takikawa, D. Nozawa, A. Kayo, S. Muto, K. Mori, J. Chem. Soc., Perkin Trans. 1 1999, $2467-2478$.
 [a] Department of Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan Fax: (internat.) + 81-3/3235-2214
 国 Supporting information for this article is available on the WWW under http://www.eurjoc.com or from the author.

