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Metal-free dehydrosulfurization of thioamides to nitriles under 
visible light
 Tianxiao Xu,a Tianpeng Cao,a Qingyuan Feng,b Shenlin Huang,*b Saihu Liao*a 

A visible light mediated, metal-free dehydrosulfurization reaction  
of thioamides to nitriles is described. This reaction features the high 
yields, mild reaction conditions, and the use of a cheap organic dye 
as the photoredox catalyst and air as the oxidant.

Nitriles are versatile intermediates in synthetic chemistry,1 and 
also widespread structural motifs in pharmaceuticals, 
agricultural chemicals, herbicides, dyes and electronic 
materials.2-3 One of the most classical methods for the synthesis 
of nitrile compounds involves the use of highly toxic inorganic 
and organic cyanides.4 Over the past few years, considerable 
efforts to the synthesis of nitriles have been reported, using 
non-metallic cyano-group sources.5 However, these methods 
often require transition metals and/or stoichiometric oxidants. 
Alongside these procedures, the dehydrosulfurization of 
thioamides to nitriles have become an attractive alternative 
method, as thioamides are easily accessible and widely used in 
organic synthesis.6 Typically, the reported protocols for the 
preparation of nitriles from thioamides normally required 
stoichiometric dehydrosulfurization reagents to irreversibly 
convert thioamides to the key sulfide intermediates (Scheme 
1a).7 In contrast, catalytic approaches for dehydrosulfurization 
of primary thioamides are more desirable but rarely reported. 
So far, only two examples of catalytic dehydrosulfurization of 
thioamides to nitriles have been revealed recently, using 
amorphous MnO2

8 and gold-carbon nanotube nanohybrid 
(AuCNT)9 as the catalyst, respectively (Scheme 1b).

On the other hand, visible-light is an environmentally benign 
and renewable energy source for chemical reactions, and 
visible-light photoredox catalysis has emerged as a highly 
versatile tool for organic synthesis.10,11 Despite these advances, 
a direct conversion of thioamides to nitriles by visible-light 
photocatalysis remains elusive so far. Herein, we report an 
unprecedented, visible light-mediated photocatalytic approach 
for dehydrosulfurization of thioamides to nitriles, by using an 

organic dye (Methylene Blue, MB) as photocatalyst and molecular 
oxygen (air) as oxidant at room temperature (Scheme 1).
Previous work:

a)

R

S
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R CN

b)
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S
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visible light
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Scheme 1 Synthesis of nitriles from thioamides and the visible light-mediated 
dehydrosulfurization in this work.

Initially, 4-methoxybenzothioamide 1a was selected as the 
model substrate for optimization of the dehydrosulfurization 
conditions. When the reaction was conducted in CH3CN using 
Eosin Y as catalyst, DIPEA as base, with 6 W blue LED irradiation 
over 8 h under an air atmosphere (air balloon) at room 
temperature, the expected 4-methoxybenzonitrile 2a was 
obtained in 50% yield, together with amide and several other 
side-products (Table 1, entry 1, for details, please see Scheme 
S1 in the supporting information). Light is crucial to this 
reaction, and in the absence of visible light irradiation, no 
reaction was observed (entry 2). Subsequently, different 
organic dyes including Mes-Acr+ClO4

-, Rose Bengal, Methylene 
Blue, Rhodamine B, Fluorescein, Methyl Orange, and Acid Red 
51 were investigated as the photocatalyst (entries 3–9). 
Commercially available Acid Red 51 showed the highest 
selectivity to afford 2a in 65% yield (entry 9). Lower yield was 
obtained when transition-metal-based catalyst 
[Ru(bpy)3]Cl2·6H2O was used (entry 10). Switching the solvent 
from CH3CN to CH2Cl2, 1,4-dioxane, DMSO, or THF led to lower 
yields (entries 11–14). In addition, different inorganic bases 
such as Na2CO3 and K2CO3 were examined, showing that the 
yield was increased as the basicity increase (Table 1, entries 15–
16). Other organic bases, such as TMEDA, Et3N, and DBU, were 
also tested in the model reaction (entries 17–19). Pleasingly, the 
strong base DBU was found to give the best result with 93% 
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Table 1 Optimization of Reaction Conditionsa

NH2

S

1a

2.5 mol% photocatalyst

base, air, solvent, rt, 8 h
6 W Blue LED 2aMeO

CN

MeO

Entry Photocatalyst Base Solvent Yieldb(%)
1 Eosin Y DIPEA CH3CN 50

 2c Eosin Y DIPEA CH3CN  n.r.
3 Mes-Acr+ClO4

- DIPEA CH3CN 55
4 Rose Bengal DIPEA CH3CN 32
5 Methylene Blue DIPEA CH3CN 43
6 Rhodamine B DIPEA CH3CN 52
7 Fluorescein DIPEA CH3CN 58
8 Methyl Orange DIPEA CH3CN 50
9 Acid Red 51 DIPEA CH3CN 65

10 [Ru(bpy)3]Cl2•6H2O DIPEA CH3CN 49
11 Acid Red 51 DIPEA CH2Cl2 57
12 Acid Red 51 DIPEA 1,4-dioxane 62
13 Acid Red 51 DIPEA DMSO 36
14 Acid Red 51 DIPEA THF 53
15 Acid Red 51 Na2CO3 CH3CN 23
16 Acid Red 51 K2CO3 CH3CN 26
17 Acid Red 51 TMEDA CH3CN 61
18 Acid Red 51 Et3N CH3CN 66
19 Acid Red 51 DBU CH3CN 93
20 Methylene Blue DBU CH3CN 96

aReaction conditions: 1a (0.05 mmol), photocatalyst (2.5 mol%), base (1.0 equiv.) 
and solvent (0.05 mL) were irradiated with 6 W blue LEDs at room temperature 
under air for 8 h. bDetermined by NMR using benzyl ether as an internal standard. 
DIPEA: N,N-Diisopropylethylamine. cWithout light. n.r. = no reaction.

yield (entry 19). Finally, we tested several organic dye again 
with DBU, and glad to find that Methylene Blue could give a very 
clean reaction with the nearly quantitative yield (96%, entry 20).

With the optimized conditions in hand, the reaction scope 
of this new visible light-mediated dehydrosulfurization protocol 
was investigated using various structurally diverse aromatic, 
heteroaromatic, and aliphatic primary thioamides (Table 2). 
Gratifyingly, the aromatic thiobenzamide (1a–1j) which contain 
both electron-donating and electron-withdrawing substituents 
were well tolerated under the reaction conditions, affording the 
corresponding substituted benzonitrile derivatives 2a-2j in high 
yields (Table 2, entries 1−10). An ortho-substituted substrate, 2-
methoxybenzothioamide 1c could also be converted to the 
corresponding nitrile 2c in excellent yield (entry 3). 
Interestingly, halide substituted thiobenzamides are also 
suitable substrates, giving the corresponding benzonitriles (2e-
2g) in excellent yields (entries 5–7). Notably, a range of 
functional groups such as methoxy (1a & 1c), halide (1f & 1g), 
and phenolic (1d) groups were compatible with the reaction 
conditions, and the corresponding products could be potentially 
further modified. Apart from thiobenzamides, heterocyclic 
thioamides (1k–1p) with nitrogen and sulfur atoms could also 
work well in this reaction to produce the desired nitriles (2k–2p) 
in excellent yields (entries 11−16). It is worth mentioning that, 
in most cases, we could observe a clean reaction by crude 1H 
NMR analysis. Some isolated yields lower than 90% may be due 
to the product sublimation (visible on the evaporator) or its 
volatile nature. 

Table 2 Reaction Scopea

R NH2

S

1

2.5 mol% Methylene Blue, 1 equiv DBU

6 W Blue LED, air, CH3CN, rt, 7-13h
R CN

2

Entry Substrate Product Entry Substrate Product

1

3

5

7

9

11

13

15

17

O

NH2

S

O

CN

NH2

S

O

CN

O

F

NH2

S

F

CN

F
Cl

NH2

S

F
Cl

CN

F3C
NH2

S
F3C CN

NH2

S

N
N

CN

NH2

S

N
N

CN

N

N
NH2

S

N

N CN

NH2

S
CN

NH2

S
CN

NH2

S

HO

CN

HO

Cl

NH2

S
CN

Cl

NH2

S

F3C

CN

F3C

O

O

NH2

S
O

O

CN

N

NH2

S

N

CN

N

S

NH2
N

CN

S
S

NH2

S
CN

2

4

6

8

10

12

14

16

1a 2a, 94% 1b 2b, 80%

1c 2c, 91% 1d 2d, 88%

1e 2e, 86% 1f 2f, 87%

1g 2g, 89% 1h 2h, 87%

1i 2i, 85% 1j 2j, 95%

1k 2k, 87% 1l 2l, 95%

1m 2m, 93% 1n 2n, 86%

1o 2o, 81% 1p 2p, 90%

1q 2q, 91%

NH2

S
CN

18

1r 2r, 62%

aReaction conditions: 1 (0.3 mmol), Methylene Blue (2.5 mol%), DBU (1.0 equiv.) 
and CH3CN (3.0 mL) were irradiated with 6 W blue LEDs at room temperature under 
air for 7-13 h. bIsolated yield.

Moreover, not only aromatic thioamides but also aliphatic 
thioamides were amenable to undergo this 
dehydrosulfurization to furnish the corresponding nitrile 2q in 
good yields (entry 17). In addition, thiocinnamamide 1r can also 
be converted to the desired α,β-unsaturated nitrile 2r (entry 
18).

On the basis of previous reports12,13 and our observations, a 
plausible reaction pathway is outlined in Scheme 2. Initially, 
organic photoredox catalyst Methylene Blue (MB) is converted 
into the excited MB* under visible-light irradiation. Next, a 
single electron transfer from 1 to MB* affords the 
corresponding radical cation 3 and MB•− radical anion. Then, the 
radical cation 3 is deprotonated to give the stabilized sulfur 
radical 4 in the presence of base. Meanwhile, MB•− is oxidized 
by molecular oxygen (air) to regenerate the photocatalyst MB 
and concurrently affords O2

•−, which is subsequently coupled 
with the sulfur radical 4 to yield peroxysulfenate 5. Finally, 
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deprotonation/elimination in the presence of base produces 
the desired final nitrile product 2.

In summary, a visible light mediated dehydrosulfurization of 
thioamides to nitriles has been demonstrated for the first time. 
This new approach features the high reaction yield, good 
functional-group tolerance, and the use of a cheap organic dye 
(Methylene Blue) as the photocatalyst and air as the 
environmentally benign oxidant.

R NH2

S

MB

R NH2

S

R NH

S

MB

MB*

visible light

- H

O2

O2

R N

SOO
- H

- SO2
2-

R CN

1

3 4

5 2

base

SET

SET

H

Scheme 2 Proposed mechanism
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Table of content entry:

R

S

NH2 Methylene Blue (2.5 mol%), air

Blue LEDs
R C

visible light metal-free mild conditions

R = aryl, alkyl up to 95% yield

Dehydrosulfurization under visible light:

N

A visible light-mediated dehydrosulfurization of thioamides to nitriles is developed, using an organic dye as 
photocatalyst and air as oxidant.
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