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Gold-catalyzed [4+1]-Annulation Reactions between Anthranils 
and 4-Methoxy-1,2-dienyl-5-ynes Involving a 1,2-Allene Shift 

Hsiang-Chu Hsieh,+ Kuo-Chen Tan,+ Antony Sekar Kulandai Raj and Rai-Shung Liu*

Gold-catalyzed [4+1]-annulations of 4-methoxy-1,2-dienyl-5-ynes 

with anthranils are described. The mechanism of these 

annulations involves nitrene formation of -imino gold carbenes 

that undergo a 1,2-allene shift to form (pyrrol-2-yl)methylgold 

intermediates. With allenyl ester substrates, these gold 

intermediates become enolate species to enable intramolecular 

aldol reactions to form useful pyrrolo[1,2-a]quinoline derivatives. 

Interest in the N,O-functionalizations of alkynes with 

isoxazoles and anthranils is rapidly increasing in gold catalysis 

because of their efficient generations of versatile -imino gold 

carbenes under ambient conditions.1 The current work focuses 

intensively on activated alkynes such as ynamides and 

propiolate derivatives.2-3 The N,O-functionalizations of 

unactivated alkynes with these aromatic nitroxy species are 

highly desirable. The high reactivity of 1,4-diyn-3-ols toward 

gold-catalyzed nucleophilic attack is notable.4 We believe that 

these 1,4-diyn-3-ols possess two adjacent alkynes toward gold 

catalysts, thus increasing their electrophilic reactions. Hashmi 

reported4a gold-catalyzed oxidations of 1,4-diyn-3-ols with 

pyridine-based oxides to generate -oxo gold carbenes In-1 

that underwent a subsequent 1,2-alkyne shift to give 3-

formylfuran derivatives. We reported4b catalytic [4+1]-

annulations of 1,4-diyn-3-ols with isoxazoles or anthranils to 

generate -imino gold carbenes In-2, resulting in a 1,2-alkyne 

shift before proceeding to N-enonyl 3-formylpyrrole products 

(eq 2). Apart from 1,4-diyn-3-ols, the present work reports 

regioselective N,O-funtionalizations of 4-methoxy-1,2-dienyl-5-

ynes (1)5 with anthranils; we postulate that the binding ability 

of allenes and alkynes with a gold complex are of comparable 

affinity.6 Herein, anthranils attack initially at a -acid activated 

alkyne to form -imino gold carbenes In-3, which undergo a 

subsequent 1,2-allene migration to form interesting (pyrrol-2-

yl)methylgold intermediates In-4. A subsequent aldol reaction 

of these gold enolates delivers useful pyrrolo[1,2-a]quinoline 

derivatives when allenyl esters were used (R’ = CO2Et). In 

mechanistic aspect, we are aware of no examples for a 1,2-

allene migration into metal carbene moieties. The significance 

of this work is to provide an easy access to pyrrolo[1,2-

a]quinoline frameworks7 that are commonly found in many 

bioactive molecules; the representatives I-IV are shown in 

Figure 1. Among them, compounds I and II are found to be 

highly active in human-breast cancer cells T47D8 and 

compound III exhibits bacteriostatic or fungistatic activity.9 

Species IV can decrease the sensitivity to the toxicity of 

anthrax.10 

 

   Figure 1. Representative bioactive molecules  

   Table 1 shows optimizations of conditions between 4-

methoxy-1,2-dienyl-5-ynes 1a with anthranil 2a.  Our initial 

tests employed IPrAuCl/AgNTf2 (10 mol %) to catalyze the 

reactions of 1,2-dienyl-5-yne 1a with anthranil 2a in 
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dichloroethane (DCE, 70 °C, 18 h), affording pyrrole 3a in 12% 

yield (entry 1). Under this condition, a high loading (4.0 equiv.) 

of anthranil 2a gave 3a in a slightly increased yield, ca. 19%; an 

alcohol derivative 4a was isolated in 13% yield (entry 2). A 

switch of catalyst to LAuCl/AgNTf2 (10 mol %, L = P(t-Bu)2(o-

biphenyl), rendered the desired product 3a in only 10% yield 

(entry 3). We observed no reactivity with PPh3AuCl/AgNTf2 

(entry 4). Among other silver salts (AgX, X = OTf, SbF6 and 

CO2CF3), only AgCO2CF3 gave an increased yield of compound 

3a with 27% (entries 5–7). Notably, we employed a high 

loading (15 mol %) of IPrAuCl/AgCO2CF3 to increase compound 

3a to 30% yield (entry 8); an increased amount of AgCO2CF3 

(50 mol %) gave compound 3a up to 65% yield (entry 9). In the 

presence of CF3CO2Li (35 mol %) additive, this 15 % IPrAuCl 

/AgCO2CF3 system became much less active  (entry 10). The 

use of IPrAuCl(15 mol %)/AgNTf2(50 mol %) gave the desired 

products 3a and 4a in small proportions (< 5%) (entry 11). 

AgCO2CF3 (50%) alone was catalytically inactive (entry 12). The 

performance of IPrAuCl/AgCO2CF3 in a 15/50 molar ratio was 

also examined in toluene, 1,4-dioxane, and DMF; only toluene 

showed a moderate efficiency to deliver desired 3a in 48% 

yield (entries 13-15). The molecular structures of compound 3a 

and 4a were characterized with X-ray diffraction study.11  

We assess the scope of these [4+1]-annulation reactions   

with various 4-methoxy-1,2-dienyl-5-ynes 1 and anthranil 2a 

using IPrAuCl (15 mol %)/AgCO2CF3 (50 mol %) in DCE; the 

results are summarized in Table 2. For 1,2-dien-5-ynes bearing 

4-substituted phenylalkynyl species (1b-f; R = 4-XC6H4, X = Cl, 

Br, OMe, Me, t-Bu), their gold-catalyzed reactions yielded 

 
Table 1. Catalytic reactions with various metal catalysts 

 
1a (0.14 M, 1.0 equiv.) a Product yields are obtained after purification from  

a silica column, b IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, c L = P(t-

Bu)2(o-biphenyl), Tf = trifluoromethanesulfonyl. d LiCF3CO2 (35 mol %) was 

added 

   Table 2. Reactions with 4-Methoxy-1,2-dienyl-5-ynes 

1 (0.14 M, 1.0 equiv.) a Product yields are obtained after purification 

         from a silica column. b IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene. 

 

desired 3b–3f in 54-66% yields (entries 1–5). To our delight, 

these annulations were applicable also to various alkyl-

substituted 1,2-dienyl-5-ynes (1g-i; R = isopropyl, cyclopropyl 

and n-butyl), further affording the desired products 3g-3i in 

61-75% yields (entries 6-8). For 2-thienyl-substituted 1,2-

dienyl-5-yne 1j, its corresponding product 3j was obtained in 

41% yield (entry 9). We tested the reaction on 3-allenyl-5-yne 

1k, but yielding a complicated mixture of product (entry 10).  

   We also prepared various anthranils 2b-2l to test their 

efficiencies with these gold catalyzed reactions. For species 2b-

2f bearing various 5-substituted anthranils (X = Cl, Br, Me, 

OMe and OAc), their gold catalyzed reactions rendered the 

desired products 3b’-3f’ in 59-74% yields (Table 3, entries 1-5). 

In the case of 6-substituted anthranils 2g-2j (X = Cl, Br, Me, and 

OMe), their resulting products 3g’-3j’ were obtained in 62-71% 

yields (entries 6-9). Under the standard conditions, dioxolo- 

substituted anthranil 2k delivered compound 3k’ in  

 
Table 3. Catalytic Reactions with various anthranils 

1a (0.14 M, 1.0 equiv.) a Product yields are obtained after purification from 

 a silica column. b IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene. 
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68% yield (entry 10). We examined the reaction on 3-

methylanthranil 2l, yielding compound 3l’ in 76% yield (entry 

11). 

   The presence of the minor byproduct 4a in Table 1 (entry 2) 

inspires us to prepare an allenyl ester derivative 1a’ to 

facilitate a possible aldol reaction. Among different silver salts 

(X = NTf2, SbF6 and CO2CF3), IPrAuCl/AgNTf2 (15 mol %) was the 

most productive, delivering an aldol product 4b in 78% yield 

with dr = 1.6:1. In the presence of DBU (1 equiv.), this aldol 

product was efficiently converted to pyrrolo[1,2-a]quinoline 5a 

in 85% yield (eq 4). The molecular structure of compound 5a 

was characterized by X-ray diffraction.11 

 

   We assess the scope of the pyrrolo[1,2-a]quinoline synthesis 

with various aryl- substituted allenyl esters 1b’-1k’ via one-pot 

two-step operations; the results were summarized in Table 4. 

Treatment of 4-methoxy-1,2-dienyl-5-ynes 1’ with anthranil 2a 

(4 equiv.) and IPrAuCl/AgNTf2 (15 mol %) in hot DCE (70 °C, 42-

45 h) afforded the intermediate 4 that was converted to 

pyrrolo[1,2-a]quinolines with DBU (1.0 equiv.) in DCE at 25 °C. 

We prepared 4-substituted phenyl derivatives 1b’-1d’ (X = 

OMe, Me and Cl) that afforded the desired products 5b-5d in 

52-80% yields (entries 1-3); as we expected, electron-rich 

arylalkyne derivatives (X = OMe and Me) were efficient with 

these annulations. We tested the reactions also on 3- and 2-

phenyl analogues 1e’-1h’ bearing OMe and Cl substituents 

(entries 5-8), their resulting products 5e-5h were obtained in 

high yields (> 74%) except compound 5f that was obtained in 

47% (entry 6). For 2-thienyl substituted analogue 1i’, its 

corresponding product 5i was produced in 34% yield (entry 9). 
We tested the reactions on alkyl substituted analogues 1j’ and 

1k’ that afforded compounds 5j and 5k in 76% and 60% yields 

respectively (entries 10-11). Such pyrrolo[1,2-a]quinoline 

synthesis was also operable with 5-substituted anthranils (R2 = 

Cl, OCO2Me; R3 = H), affording the desired compounds 5b’ and 

5c’ in 58% and 27% yields respectively (entries 12-13). For 6-

substituted anthranils (R2 = H; R3 = Cl and Me), their 

corresponding products 5d’ and 5e’ were produced in 41% and 

73% yields respectively (entries 14-15). 5,6-Disubstituted 

anthranils (R2 = R3 = OMe or R2,R3 = -OCH2O-) led to formation 

of pyrrolo[1,2-a]quinoline 5f’ and 5g’ species in high yields (70-

89% entries 16-17). 

As shown in Scheme 1, we found that 15% IPrAuCL/30% 

AgNTf2 gave cyclic alcohol 4a in a notable 18% yield (eq 5). But 

this condition failed to convert pyrrole 3a to the alcohol 

derivative 4a at all (eq 6). We also tested a running condition 

in Table 4. With a mixture of allenyl ester 1j’ (1 equiv.), 

anthranil 2a (4 equiv.) and pyrrolyl species 3a, we obtained 

only pyrrolo[1,2-a]quinoline 5j in 71% yield whereas another 

 

Table 4. One-pot synthesis of pyrrolo[1,2-a]quinolines  

1’ (0.10 M, 1.0 equiv.) a Product yields are obtained after purification from a 

silica column. b IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene. Tf = 

trifluoromethanesulfonyl. 

 

cyclized product 4a was completely absent (eq 7). This 

information indicated that (pyrrol-2-yl)methylgold species In-

Au likely formed cyclized product 4a, although species In-Au 

was more active toward hydrodeauration to form 3-

formylpyrrole product 3a. We also prepared species 1a with 
13C-enriched at the C(4)- carbon; the gold-catalyzed reaction 

gave pyrrolyl product 3a with the 13C-enrichment at the formyl 

carbon.     

   We postulate a mechanism in Scheme 2 involving gold-

containing intermediates In-Au that are inferred by our data in 

Scheme 1. The nitrogen of anthranil is generally more 

nucleophilic than its adjacent oxygen atom; this N-attack 

occurs preferably at the alkynyl rather than at the allene 

moiety. After a nitrene transfer, the resulting -imino gold- 

 Scheme 1. Mechanistic Elucidations 
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Scheme 2. A plausible mechanism 

carbenes undergoes a 1,2-allene shift rather than a 1,2-

hydrogen shift, subsequently yielding Au--allene species D; 

we postulate that this allene migration is probably due to an 

efficient overlap through space between the -orbitals of the 

C(3) and C(5) carbons in species B. An intramolecular 

cyclization of intermediate D generates gold-containing pyrrole 

species E in which the oxonium moiety is attacked by water to 

yield a key intermediate In-Au. For unsubstituted 1,2-dienyl-5-

yne 1a (R = H), most of species In-Au is protonated to give the 

observed product 3a. In the case of an ester derivative (1a’), 

species In-Au bearing a stable enolate (R = CO2Et) undergoes 

an aldol reaction to afford compounds 4b efficiently. 

    Catalytic N,O-functionalizations of alkynes with isoxazoles 

and anthranils were studied intensively on activated alkynes. 

In seeking unactivated alkynes, we report gold catalyzed [4+1]-

annulations of 4-methoxy-1,2-dienyl-5-ynes with 

anthranils.12,13 The mechanism of these annulations involves 

initial formation of -imino gold carbenes that undergo a 

subsequent 1,2-allene shift before forming (pyrrol-2-

yl)methylgold intermediates. With these organogold 

intermediates, we performed one-pot synthesis of pyrrolo[1,2-

a]quinoline products 5 using allenyl ester substrates; the key 

step involves intramolecular aldol reactions.14  
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