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In 2011, Guo and co-workers reported
1
 the isolation and 

structure determination of a novel natural product, paracaseolide 

A 1 from the stem bark of Sonneratia paracaseolaris, an 

endemic mangrove species found in China. In structural terms, 

tetracyclic 1 is an unusual construct that features oxa-bowl 

architecture and embodies a 3-alkenylbutenolide substructure 

reminiscent of many bioactive natural products.
2 

The five oxygen 

atoms present in 1 essentially dot the rim of its bowl-like 

framework and the additional presence of two long linear 

hydrophobic chains on its convex surface impart the natural 

product a dipolarofacial character. Indeed, 1 can be formally 

derived through a [4+2]-type dimerization of a 3-

alkenylbutenolide precursor 2. 

 

Paracaseolide 1 has been shown to exhibit impressive 

inhibitory activity against dual-specificity phosphatase CDC25B 

with an IC50 value of 6.44 µM. This is a potentially significant 

bioactivity attribute as CDC25B is a proto-oncogene in humans 

and shown to be over expressed in a number of cancers and is 

implicated in cell cycle progression in tumors.
3 

 

Both, on account of its complex and unusual molecular 

structure and its bioactivity profile, natural product 1 presents a 

challenging and interesting target for total synthesis. We were 

instantly drawn to a synthesis of 1 in view of our long standing 

interest in the oxa-bowl like constructs.
4
 While our own efforts 

towards 1 were underway, two total syntheses of 1 from the  

groups of  Vassilikogiannakis
5
 and Kraus

6
 have appeared in the 

very recent past. Herein we report a total synthesis of 1, 

essentially along the proposed biosynthetic route
1,5

 involving the 

[4+2]-dimerization of a butenolide precursor 2. Such a 

biomimetically patterned approach to 1 involving the [4+2]-

dimerization was successfully implemented in the first synthesis 

of the natural product by Vassilikogiannakis et al.
5
 However, our 

access to the key precursor 2 is shorter, well differentiated and 

the outcome of the dimerization protocol is somewhat different, 

which in turn sheds some light on the nature of the [4+2]-type 

dimerization leading to the natural product. 

 

In our quest for 1, we initially carried out a model study in 

which a sibling 3-alkenylbutenolide 3 was deployed to probe the 
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A total synthesis of bioactive tetracyclic natural product paracaseolide A, embodying an 

architecturally unusual oxa-bowl framework, has been accomplished from commercially 

available 5-methyl-2-furfural. The key step involving a thermal [4+2]-dimerization of an 

appropriately crafted 5-methyl-3-alkenylbutenolide is shown to proceed in a stepwise manner. 
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key dimerization process. Commercially available furfural 4 

was elaborated to butenolide 5 via a known
7
 protocol involving 

dye sensitized photo-oxygenation as the key step, Scheme 1. 

Bromine addition
8
 to 5 and in situ dehydrobromination led to 3-

bromo-butenolide 6. Pd-mediated Suzuki cross-coupling
9
 

between 6 and vinylicboronate 7 delivered 3-alkenylbutenolide 8 

and further 5-methoxy deprotection
10

 led to the requisite 3-

alkenylbutenolide 3.
11 

Heating (neat, sealed tube, 100 
o
C) 3 

triggered the tandem [4+2]-type dimerization and concomitant 

dehydration to furnish a mixture (40:60) of two diastereomeric 

dimers 9 and 10 in 52% isolated yield. Stereo-structures of 9 and 

10 were derived through incisive analyses of their 2D NMR 

(COSY, HMBC and ROESY) studies and the key connectivities 

are displayed in Figure 1. In addition, structure of one of the 

diastereomers 10 was further verified by a single crystal X-ray 

structure determination and an ORTEP
12

 is shown in Scheme 1. 

Interestingly, in 9 both the alkenyl and the alkyl hydrophobic  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Reagents and conditions. (a) (i) 
1
O2, MeOH; (ii) 

MeOH, reflux, 3 d; (b) 1.2 equiv Br2, 0.08 equiv PBr3, CCl4, 0 
o
C-rt, 12 h; py, 0 

o
C-rt, 4 h 65%; (c) 1.5 equiv 7, 3 mol% 

PdCl2dppf, 4 equiv CsF, 1 equiv TBAB, THF/H2O (4:1), µW, 
100 

o
C, 4 min, 41%;  (d) TFA/acetone/H2O (1:1:1), 0 

o
C-rt, 2 h, 

59%; (e) neat, sealed tube, 100 
o
C, 14.5 h 52% (9:10 = 2:3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Key HMBC, COSY, ROESY connectivities of 

compound 9, 10. 

chains are cis disposed and located on convex surface as present 

in the natural product 1, but in the diastereomer 10 the two chains 

are trans with the alkyl chain protruding towards the cavity of the 

oxa-bowl. In separate experiments, it was shown that under the 

conditions of thermal activation employed to effect dimerization, 

both 9 and 10 were stable and did not interconvert. This clearly 

established that 9 and 10 were independently produced during the 

[4+2]-dimerization protocol.  

Having demonstrated the viability of the 3-

alkenylbutenolide dimerization in 3, it was decided to extend 

the protocol to 5-methyl-3-alkenylbutenolide 2 to target the 

natural product 1. Towards this end, 5-methyl-2-furfural 11 

was photooxygenated
13

 to 5-methylbutenolide 12 (Scheme 2). 

Single pot iodination-dehydroiodination in 12 led to 5-methyl-

3-iodobutenolide 13. Pd-mediated Suzuki cross-coupling 

between 13 and vinylic boronate 7 delivered 14 in which 

methoxy deprotection
10

 was smoothly implemented to furnish 

the desired 5-methyl-3-alkenylbutenolide 2. Thermal 

activation (neat, sealed tube, 110 
o
C) of 2 led to the formation 

of two diastereomeric dimers 1, 15 and a ring opened 

compound 16
5
 in 66% yield and in a ratio of 4.9:1:2.4. While 

it was pleasing to establish the identity of the major dimeric 

product with the natural product paracaseolide A 1 through 

appropriate spectral comparison, the structure of the minor 

product 15 had to be deduced from 2D NMR studies (COSY, 

HMBC, ROESY) and the connectivities are displayed in 

Figure 2. Once again, we observed that subjecting either 1 or 

15 to prolonged thermal activation did not provide any 

evidence of interconversion among them. Thus, indicating an 

independent origin of both the natural product 1 and its 

epimer 15 during the dimerization process. 
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Scheme 2. Synthesis of diastereomeric dimers paracaseolide A 
(1), 15, and 16; Reagents and conditions. (a) (i) 

1
O2, MeOH; (b) 4 

equiv I2, Py/CCl4(1:1), 0 
o
C-rt, 24 h, 50%; (c) 1.5 equiv 7, 3 

mol% PdCl2dppf, 4 equiv CsF, 1 equiv TBAB, THF/H2O (4:1), 
µW, 120 

o
C, 40 min, 60%;  (d) TFA/acetone/H2O (1:1:1), 0 

o
C-rt, 

13 h, 82%; (e) neat, sealed tube, 110 
o
C, 12 h, 66% (1:15:16 = 

4.9:1:2.4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Key HMBC, COSY, ROESY connectivities of 
compound 15. 
    

 

   During their synthesis of paracaseolide A 1, involving the 
dimerization of 2, Vassilikogiannakis et al.

5 
hypothesized initial 

formation of a Diels-Alder dimer 17 in a stereoselective manner 
through a concerted endo-transition state. Intramolecular 
dehydration in 17 could led to a tetracycle 15 (unknown prior to 
the present work). An epimerization of the sp

3
 anchored alkyl 

side arm in 15 was proposed to account for the generation of the 
requisite cis stereochemistry of the alkyl and alkenyl arms to 
eventuate in the natural product (Scheme 3). As it turned out, the 
earlier authors

5
 observed the formation of only one diastereomer, 

namely natural product 1, during the thermal activation of 2, 
contrary to our observation of formation of 1 and 15 under 
essentially the same conditions. While the reasons for this 
discrepancy remain unclear at the moment, formation of two non-
interconvertible diastereomers during the dimerization of 3-
alkenylbutenolides 2 and 3 in the present study is indicative of 
the involvement of a step-wise process involving [4+2]-
dimerization.  We intend to probe this issue further employing 
experimental and quantum mechanical approaches to delineate 
the mechanistic contours of the dimerization process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 3. Proposed route

5
 for the dimerization of  2 to deliver 

the natural product 1 

In short, we have outlined a concise approach to the bioactive 

natural product paracaseolide A from commercially available 5-

methyl-2-furfural through a ‘putative’ biomimetic approach that 

involves [4+2]-dimerization of a suitably crafted 5-methyl-3-

alkenylbutenolide 2. 
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