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ABSTRACT: The selective hydroxylation of C—H bonds
is of great interest to the synthetic community. Both ho-
mogenous catalysts and enzymes offer complementary
means to tackle this challenge. Herein, we show that bio-
tinylated Fe(TAML)-complexes (TAML = Tetra Amido
Macrocyclic Ligand) can be used as cofactors for incor-
poration into streptavidin to assemble artificial hydroxyl-
ases. Chemo-genetic optimization of both cofactor and
streptavidin allowed optimizing the performance of the
hydroxylase. Using H,O; as oxidant, up to ~300 turnovers
for the oxidation of benzylic C—H bonds were obtained.
Upgrading the ee was achieved by kinetic resolution of
the resulting benzylic alcohol to afford up to >98% ee for
(R)-tetralol. X-ray analysis of artificial hydroxylases
highlights critical details of the second coordination
sphere around the Fe(TAML) cofactor.

The selective functionalization of C—H bonds represents
one of the frontiers in synthetic methodology.'” To address
this challenge, homogeneous catalysis often relies on direct-
ing groups present on the substrate that coordinate to the
metal center, thus allowing distinguishing between equally
reactive C—H bonds.” Enzymes have been optimized thanks
to evolution to differentiate C—H bonds with exquisite selec-
tivity: The active site around the cofactor is tailored to en-
sure proper orientation of the substrate.

For the hydroxylation of inert C—H bonds, iron-contain-
ing enzymes and iron-based homogeneous catalysts occupy
aplace of choice. They are complementary in many respects.
While the former operate under physiological conditions,
homogeneous catalysts perform best at low temperature in
organic solvents. The reactivity of homogeneous catalysts is
often tuned via first-coordination sphere modifications,
whereas enzymes rely on secondary sphere interactions.

Iron metalloenzymes catalyze the C—H oxyfunctionali-
zation of hydrocarbons via iron-oxygen species resulting
from activation of O,""'” The selective hydroxylation of C—
H bonds using homogeneous catalysts has been achieved by
designing structurally-elaborated ligands that provide a tai-
lored cavity around the metal center.'®™

To complement homogeneous catalysts and enzymes, ar-
tificial metalloenzymes (ArMs), that result from anchoring
an abiotic cofactor within a macromolecular scaffold, have
attracted increasing interest in the past years. The well-de-
fined secondary coordination sphere around the cofactor
provided by the protein offers fascinating perspectives to op-
timize both activity and selectivity of the ArMs.**** In this
context several protein scaffolds have proven versatile.**
These include carbonic anhydrase,* hemoproteins,*™* pro-
line oligopeptidase,” lactococcal multiresistance regula-
tor,44 four helix bundles,“s'46 nitrobindin,47 (strept)avidinf&
%0 etc. In the context of asymmetric C—H hydroxylation, in-
troduction of an Mn-porphycene cofactor within myoglobin
afforded promising ArMs®' that complement evolved cyto-
chrome P450 enzymes.**>*

Fe(TAML) complexes are a versatile family of iron
complexes that typically contain a ferric center tightly bound
to a tetraamido macrocyclic ligand.”>*® Their reactivity as
peroxidase mimics has been extensively studied.”>>"® Some
Fe(TAML) complexes hydroxylate hydrocarbons in aque-
ous media using oxidants such as /BuOOH or m-CPBA***"
51 or electrochemically.”” Thanks to their stability in water,
we surmised that Fe(TAML) complexes may allow to as-
semble an iron-based artificial hydroxylase using the biotin-
streptavidin technology. The secondary coordination sphere
provided by streptavidin (Sav), may enable enantioselective
hydroxylation and minimize the formation of less reactive
dimeric species.
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Scheme 1. Artificial C—H hydroxylase based on biotin-
streptavidin. a) Structure of cofactors biot“*~1 and biot“>—1.
To increase the electron-withdrawing property of the ligand,
a biotin amine was coupled to Fe-TAML (green) bearing a
carboxylic acid to afford an “inverted” amide (blue); b) rep-
resentation of the ArM resulting from anchoring biot“"—1 in
streptavidin.

Initial ligand design and reactivity tests. Sav is a ho-
motetrameric protein that displays exceptional affinity for
biotinylated probes (K4 107" M) and maintains its function
and quaternary structure in the presence of various cha-
otropic agents (pH, temperature, cosolvent tolerance,
etc.).® To ensure localization of the TAML cofactor
within Sav, we synthesized a complex bearing a biotin an-
chor, biot“—1. It was designed to bind to the Fe-TAML
moiety through an “inverted” amide bond to the aromatic
ring (Scheme 1a) to increase the electron withdrawing effect,
which has been shown to be beneficial for the reactivity of
Fe-TAML complexes.®!

Initial reactivity tests were performed with ethylbenzene
(PhEt, BDEcy = 87 kcal/mol) using 2 equiv. H,O; in phos-
phate buffer (KPB) at pH 8.2 and 40% acetone for 3 h.5%
Under these conditions, biot“>~1-Sav WT afforded (rac)-1-
phenylethanol ((rac)-PhEtOH)) and acetophenone (23 total
turnover number, TTON®®). Both activity and selectivity of
biot“~1-Sav WT were comparable to the free cofactor bi-
ot““—1 (21 TTON, (rac)-PhEtOH). Next, we screened a Sav
library that included mutations at positions Sav S112X
and/or Sav K121X (Scheme 2 and Table S4). The TTON and
enantioselectivity remained modest (up to 16% ee (R)-
PhEtOH and 29 TTON). We hypothesized that the moderate
influence of the host protein on the catalytic performance
may be due to the poor localization of the Fe-TAML within
the biotin-binding vestibule. We surmised that a shorter bio-
tin C"-linker may increase the influence of Sav on the cata-
Iytic performance by positioning the metal center deeper
within the binding pocket. We prepared biot“*—1 and evalu-
ated its performance (Scheme 1, 2 and Table S4).

Shortening the C"-linker positively affects the selectiv-
ity: biot“*=1-Sav WT affords 6% ee (R)-PhEtOH. Screening
the above Sav library with biot“*—1 reveals that close-lying
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aminoacids influence the ee: biot™—1-Sav S112R yields
28% ee (R)-PhEtOH (28 TTON), and biot“*-1-Sav
S112R/K121E affords 24% ee (S)-PhEtOH (29 TTON).

biot®"—1-Sav OH
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Scheme 2. Fingerprint summary of the artificial hydrox-
ylase optimization with PhEt.

Intrigued by these findings, the oxidation of PhEt by bi-
t““~1-Sav S112R was monitored. Two consecutive oxida-
tion steps take place. Initially, hydroxylation of the benzylic
position affords (R)-PhEtOH with ee > 40% after a few
TTON (Figure S8). As the reaction progresses, the formation
of acetophenone is observed along with a gradual erosion of
the ee. This suggests that the alcohol oxidation is (partially)
stereospecific: (R)-PhEtOH is oxidized preferentially to ace-
tophenone. Indeed, kinetic resolution of (rac)-PhEtOH by
biot“*—1-Sav S112R affords acetophenone (38 TTON),
leaving enantioenriched ($)-PhEt (20% ee after 3 hours, £ =
k(R)/k(S): 34, Figure S9)

In contrast, product analysis after PhEt oxidation by bi-
ot“*—1-Sav (Sav: K121R or SI12R/K121E) yielded ee of
(S)-PhEtOH (Scheme 2), the opposite enantiomer than bi-
ot“*—1-Sav S112R. However, monitoring product formation
over time reveals a similar reaction pathway for all three
ArMs: The hydroxylation of PhEt yields preferentially (R)-
PhEtOH, which is then oxidized faster to acetophenone (Fig-
ure S10-11). This mechanistic pathway is reflected in an ero-
sion of ee over time, eventually affording (S)-PhEtOH with
both Sav K121R and Sav S112R/K121E. Indeed, the ee 1s
highly variable, depending on conversion and mutant.
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The reaction conditions to improve performance of the
hydroxylase were fine-tuned for biot“*—1-Sav S112R. A
large excess of H,O, favors overoxidation and erosion of ee
(Figure S13). The impact of Sav on the activity is also evi-
dent at different pHs: biot“*~1-Sav S112R displays maxi-
mum TTON and enantioselectivity at 8.2 < pH < 8.8. Out-
side this widow, the activity decreases markedly (Figure
S14). The free cofactor biot“*—1 has maximum activity at 6
< pH < 8 and is quenched at higher pH.

Structural Characterization. To scrutinize the differ-
ences in the second coordination sphere that influence the
activity of the ArMs, we determined their structure by crys-
tallography. Data sets were obtained for biot“*~1-Sav and
biot“~1-Sav (Sav = WT, S112R, and S112R/K121E, Table
S1 and S2).

The structures reveal the following features: all six struc-
tures are nearly superimposable, reflected by a C,—RMSD
varying between 0.038-0.256 A (Table S3). The electron
density of the Fe-TAML moiety is defined for biot“*~1, the
Fe-occupancy is 60% for Sav WT and 100% for Sav S112R
and S112R/K121E (Figure 1). This contrasts with biot“*~1,
for which only the electron density of the biotin Cs—linker is
defined and modelled with 100% occupancy (Figure S5-
S7). We tentatively trace this to the higher flexibility of the
Cs-linker, resulting in delocalization of the Fe-TAML moi-
ety.

The localization of the Fe(TAML) moiety is af-
fected by the residue at position 112 (Figure 1 and S2-
S4). For biot“-1:Sav WT, the closest amino acids
are Sav* S112 (3.7 A) and Sav® K121° (4.2 A). They hardly
mteract with Fe(TAML), resulting in a reduced occupancy
of Fe(TAML). The mutation Sav S112R forces the
Fe(TAML) into a fixed conformation with 100% occupancy,
placing the arginine within H-bonding distance to the C=0
of the Fe(TAML) (2.5 A, in one of two conformations, Fig-
ure 1b). This alternative position of Fe(TAML) al-
lows Sav® K121 to coordinate to Fe of biot“*—1:Sav* (2.3
A, Figure 1b). To enable the coordination of Sav® K121” to
the Fe of biot“-1, the lysine side-chain adopts a compact
conformation with acute dihedral () angles of 54.2°, 106.9°,
80.0° and 41.2°. We hypothesize that both the precise local-
ization of the Fe(TAML) and its interaction with either
K121 or E121” through an n*-coordination (in biot“*~1-Sav
S112R/K121E, Fe---O 2.3 and 2.9 A, Figure 1c¢) impact the
catalysis outcome (product distribution and ee, Scheme 2).

Substrate scope. The substrate scope for biot“*—1-Sav
S112R was expanded to substrates containing benzylic Cyy3—
H bonds (Table 1). Propylbenzene and butylbenzene af-
forded the corresponding (R)-alcohol in 45% ee (26 and 19
TTON, respectively). Electron-rich p-substituted ethylben-
zenes afforded higher TTONSs, highlighting the electrophilic
character of the Fe(O) species (Figure S15).

A kinetic isotope effect KIE = 9.2 was determined for the
oxidation of PhEt/PhEt-d;, by biot“*—1-Sav S112R at 25 °C
(Figure S16). This value compares well with previously de-
scribed KIE for Fe-TAML complexes and suggests that the
rate determining step of the reaction is the hydrogen abstrac-

- 56,60,67-68
tion.”

! S 5 ] .
Figure 1. Crystallographic char
1-Sav WT (a, PDB: 6Y2T), biot“~1-Sav S112R (b, PDB:
6Y2M) and biot“*~1-Sav S112R/KI121E (¢, PDB: 6Y25).
Sav is depicted as orange cartoon and its surface representa-
tion in grey and mauve (for Sav* and Sav® monomers re-
spectively). The cofactor and relevant amino acids are de-
picted as sticks. The Fe atoms are depicted as spheres and
surrounded by their anomalous electron density (red mesh at
5 o).

The oxidation of indane and tetralin (BDEcyx = 87 and
85.7 kcal/mol)® afforded high TTON (205 and 316 TTON
respectively) and good ee in favor of the (R)-alcohol (47%
and 65% ee respectively, Table 1).
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Table 1. Benzylic C—H oxidations catalyzed by biot“-1-Sav
S112R."

[alcohol] Conversion (%)

Substrate TTON  ee (%) [ketone]  (alcohol yield (%))°
R =CHs 57 32 32 115 (8.8)
R R=CHxCHs3 26 45 84 59(53)
R =(CH2)2CH3 19 45 7.5 43(38)
R =C(CHa) 0 - - -
_ 316 65 5.7 60 (44.3)
n=2 3000 >98 1.1 86.8 (343)
©3’n n=l 205 47 74 45.7 (40.2)
1736 80 08 557 (24.7)
n=0 0 - -

R =0CH; 120 12 59 263 (22.5)
/O/\ R=Cl 20 14 38 4133)
R R=Br 9 18 >20 23(23)

@Conditions: 25pM biot“*~1-Sav S112R (50uM Fe), 20
mM substrate, 20 mM H,0,, 50 mM KPB pH 8.5, 35% ace-
tone, 2.5% MeCN, 3 h at 25 °C. 1o mM substrate, 25 mM
H,0,, to promote alcohol overoxidation which yields in-
creased ee. “See Table S6 for more details.

Prompted by the good TTON and ee for tetralin, its oxi-
dation by biot“*-1-Sav S112R was scrutinized. Using 2.5
equiv HyO,, 73% ee of (R)-tetralol was determined at early
stages (Scheme 3a). In contrast to PhEt oxidation, the ee in-
creased with conversion, highlighting the preferential
(over)oxidation of (S)-tetralol. After 3 h, > 98% ee (R)-te-
tralol was obtained (300 TTON, Scheme 3b). Minimal
overoxidation at the second benzylic position was also de-
tected (Figure S17). Oxidation of (rac)-tetralol with biot“'—
1:Sav S112R yielded tetralone and > 99% ee of (R)-tetralol
(unreacted starting material) after ~120 minutes (Scheme 3c,
E =l / k= 2.7, and S18). Similarly, 173 TTON are ob-
tained for indane oxidation (80% ee (R)-indanol, Figure
S19). Thus, (R)-benzyl-alcohol derivatives are preferentially
overoxidized, while the (S)-enantiomer of the cyclic deriva-
tives (tetralol and indanol) are oxidized faster. This phenom-
enon can be attributed to the 1,3-allylic strain (Scheme
§2)7071

Lastly, we developed an enzymatic cascade with Glucose
Oxidase (GO) to enable the in-sifu production of H,O,, using
0, as oxidant and glucose as reductant (Scheme 4).”” To our
delight, after combining biot“*~1-Sav S112R and GO the
oxidation reactions progressed in a similar way compared to
the single batch addition of H,O,. 50 TTON were obtained
for PhEt oxidation, with an initial ee of (R)-PhEtOH of 47%,
which eroded to 37% after kinetic resolution. For tetralin
170 TTON were obtained, again observing the initial for-
mation of (R)-tetralol in 64% ee and posterior kinetic reso-
lution that upgraded it to up to 95%.

Catalysts derived from earth-abundant metals are gain-
ing attention in homogeneous catalysis. The inherent lability
of most such systems however limits their use in water. In
contrast to polypyridinamine-derived catalysts,” and thanks
to its remarkable stability and catalytic activity, the
Fe(TAML) system proved amenable to the design and opti-
mization of an artificial hydroxylase based on the biotin-
streptavidin technology.

Journal of the American Chemical Society

[eskioelveiloe

tetralin {R)-tetralol {S)-tetralol tetralone

biot®4-1-Sav S112R

o

10 100 300

90 200

o
&
TTON

100

0
0 100 200 0 100 200
time (min}) time (min)

concentration (mM}
w
(R)-tetralol ee (%)
.
(=]

0 50 100 150 200
) time (min}
9
10 1 100 250
R 80 200
9 1 )
Q
5 60 % 150
8 ® E
H 40 100
=71 &
< & 20 50
E 6] 0 0
S 0 100 200 0 100 200
®5 time {min) time (min)
5
g 41
8 |t o
31
; O
21/
AN oH
11 Ay : t
.~~~
0 o= : : ‘ .
o 50 100 150 200 250
time (min)

Scheme 3. Enantioselective hydroxylation of tetralin and ki-
netic resolution of tetralol by biot“*~1-Sav S112R a) Con-
secutive oxidation scheme b) Time course of tetralin oxida-
tion. Inset: kinetic resolution affords > 98% ee (R)-tetralol
and TTON = 300 ¢) Time course of the kinetic resolution of
rac-tetralol by biot“*~1-Sav S112R. Inset: kinetic resolution
yields > 99% ee (R)-tetralol (I'TON = 220). See SI for de-

tails.
(:)H o]

D-glucose H,0, Fe!ll- OHz
Glucose maijor products
Oxidase
H,O Fe=0O

D-glucono-
1,5-lactone GOreq

= biot¢4-1-Sav S112R

Scheme 4. Cascade with GO to generate H,O, in situ, ena-
bling hydroxylation using O, as oxidant. See SI.

Chemogenetic optimization of the catalytic performance
led to the identification of biot“*~1-Sav S112R as our best
hydroxylase for the oxidation of benzylic C—H bonds. With
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in vivo applications in mind, we have shown that the activity
of the artificial hydroxylase is compatible with glucose oxi-
dase, using O, as the terminal oxidant.

Efforts at modulating the activity of the hydroxylase by
fine-tuning the cofactors’ structure, and expanding the sub-
strate scope towards the oxidation of more complex mole-
cules are currently underway.
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