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Catalytic Enantioselective Synthesis of Halocyclopropanes

Amandine Pons,” Pavel Ivashkin,’” Thomas Poisson,”® André B. Charette,"

Xavier Pannecoucke,” and Philippe Jubault*®

Abstract: A catalytic asymmetric synthesis of halocyclo-
propanes is described. The developed method is based on
a carbenoid cyclopropanation of 2-haloalkenes with tert-
butyl a-cyano-a-diazoacetate using a chiral rhodium cata-
lyst that permits access to a broad range of highly func-
tionalized chiral halocyclopropanes (F, Cl, Br, and 1) in
good yields, moderate diastereoselectivity, and excellent
enantiomeric ratios. The reported methodology represents
the first general catalytic enantioselective approach to hal-
ocyclopropanes.
ycloprop )

The cyclopropane motif fascinates organic chemists, in fact
this intriguing and smallest cycloalkane is present in a phalanx
of natural and non-natural bioactive molecules." This impor-
tant constrained unit has been applied to alter both the meta-
bolic stability and bioavailability of pharmacologically active
molecules. Due to this, there has been interest in developing
new approaches to synthesize this key structural motif. More-
over, the enantioselective and more particularly the catalytic
enantioselective synthesis of cyclopropanes has received much
attention.” Quite surprisingly, despite the advances made in
that field, the catalytic asymmetric synthesis of halocylopro-
panes remains underexplored. This statement is in sharp con-
trast with the high synthetic value of halocylopropane scaf-
folds. Indeed, although fluorocyclopropanes are of interest for
incorporation in bioactive compounds,® chloro-, bromo- and
iodocyclopropanes are considered as versatile building blocks
for the construction of complex molecular architectures. Most
of the depicted approaches to access chiral halocyclopropanes
require the use of a stoichiometric amount of chiral induc-
tors,”) whereas their catalytic asymmetric synthesis remains
limited to few examples.”’ Regarding the catalytic enantiose-
lective synthesis of chloro- and bromocyclopropanes, a Mi-
chael-initiated cyclopropanation reaction catalyzed by the ox-
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azaborolidinium ion was reported by Hwang and Ryu®"

(Figure 1), and a catalytic intramolecular cyclopropanation was
independently reported by one of us®? and Nakada.*¥ Finally,
the catalytic enantioselective synthesis of fluorocyclopropanes
was investigated by Haufe and others, even though the scope
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Figure 1. Previous work.

of the reaction remained limited to a-fluorostyrene deriva-
tives.” To our knowledge, a single example of catalytic enan-
tioselective synthesis of iodocyclopropanes has been recently
reported.®™ Basically, no general catalytic asymmetric process
allowing the synthesis of halocyclopropanes with a broad sub-
strate scope and high enantioselectivity has been reported to
date. As part of our ongoing research program focusing on
the development of straightforward access to halogenated cy-
clopropanes,” we envisioned the development of a catalytic
asymmetric route to halocyclopropanes by developing a Rh-
catalyzed asymmetric cyclopropanation of haloalkenes.

Initially, we investigated the Rh-catalyzed asymmetric cyclo-
propanation of fluoroalkene 1a with tert-butyl a-cyano-diazo-
acetate (2a; Table 1). Initial attempts were devoted to select
the optimal chiral catalyst to promote the cyclopropanation of
1a. Catalyst [Rh,{(S)-NTTL},] was tested giving the fluorocyclo-
propane 3a in 68% yield and good diastereoisomeric ratio
(d.r), albeit with poor enantioselectivities (entry 1), whereas
[Rh,{(S)-TCPTTL},] furnished 3a in similar yield and d.r. with
a slight enhancement of the enantioselectivity (entry 2). To our

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 1. Optimization study.”
aF NCTCOZtBu [Rh] 2 mol%, ?%:\‘B“
F N2 solvent,-20°Ctort  CI”
1a 2a 3a
Entry [Rh]™ Solvent  Yield [%]9  d.r ee'®
1 [Rh,{(S)-NTTL},] DCM 71 32:68 8/7
2 [Rh,{(S)-TCPTTL},] DCM 68 28:72 39/11
3 [Rh,{(S)-IBAZ},] DCM 51 76:24 95/85
410 [Rh,{(S)-IBAZ},] DCM 56 75:25 95/86
5 [Rh,{(S)-1BAZ},] DCM 63 76:224  96/88
69 [Rh,{(S)-IBAZ},] toluene 58 64:36  96/90
79 [Rh,{(S)-IBAZ},] THF 42 65:35 97/91
89 [Rh,{(S)-1BAZ},] CPME 63 61:39  97/92
gle:h [Rh,{(S)-IBAZ},] DCM 57 62:38 93/81
1019 [Rh,{(S)-IBAZ},] DCM 58 74:26 95/86
RhT0O \L Rh1Q \L
I[)= o | | 9= o rRhi0
RO N Rh+O N B
o= O O _C Rh1N
O N N CO,iBul 4
4 Cl 4
[Rho{(S)-NTTL},] [Rho{(S)-TCPTTL},] [Rhx{(S)-IBAZ},]
[a]l 1a (2 equiv), 2a (1 equiv), [Rh] (2 mol%), and solvent (0.2 m), —20°C
to rt. [b] See the Supporting Information for detailed names. [c] Isolated
yields. [d] Diastereoisomeric ratio (trans:cis) determined by '°F NMR on
the crude reaction mixture. [e] Enantiomeric excess (trans/cis) determined
by GC analysis on a chiral stationary phase. [f][2a]=1Mm. [g] [2a]=2m™
[h] Reaction was performed at rt. [i] Addition of 2a was performed at
0°C. CPME =cyclopentyl methyl ether.

delight, the use of [Rh.{(S)-IBAZ},]® allowed the formation of
3a in 51% yield, 76:24 diastereoisomeric ratio, and excellent
enantioselectivities for both diastereoisomers (95% and 85 %,
entry 3). To improve the conversion into 3a, the concentration
of 2a was studied, leading an optimal 2m concentration,
giving 3a in 63 % isolated yield along with a similar d.r. and no
alteration of the enantioselectivities (entries 4 and 5). A solvent
survey revealed that dichloromethane (DCM) was the most ap-
propriate solvent to ensure decent diastereoselectivities and
excellent enantiomeric excess (entries 5-8). The temperature of
the reaction was then examined, and the addition of 2a per-
formed at —20°C gave the best results since no improvement
of the reaction yield nor the diastereo- and enantioselectivities
was detected (entries 9 and 10).

With the optimal set of conditions in hand (Table 1, entry 5),
we sought to extend the scope of the reaction to several fluo-
rinated and halogenated olefins (Scheme 1). First, we examined
the influence of the steric demand of diazo derivatives. A
screening of tert-butyl, isopropyl, and ethyl ester derivatives
was performed. Steric hindrance of the diazo derivative had
little effect on the diastereoselectivity of the reaction. However,
a slight decrease of the enantioselectivity was noticed since
the best ee’s were obtained with 2a as a reaction partner. We
then turned our attention to the synthesis of various enan-
tioenriched fluorocyclopropanes. When 1b was used, the cor-
responding fluorocyclopropane 3b was obtained in 57 % vyield,
57:43 d.r., and excellent enantioselectivities for both diastereo-

Chem. Eur. J. 2016, 22, 6239 - 6242 www.chemeurj.org

6240

CHEMISTRY

A European Journal

Communication
2
] NC. _CO,R2 [Rh{(S)-IBAZ}4] (2 mol%) COR
RO, OO s, >=CN
X N, DCM, -20 °C to rt RT
1a-t 2a-a" 3a-t
CO,R CO,tBu
~CN CN
/Iu,‘ /lu“
c’ g PhO,S” ¢

3a, R = tBu, 68%,1% (75:25) "] ee = 97%, 90%[° 3b, 57%[2. (53:47)0b]
3a', R = iPr, 57%,18 (77:23),Pl ee = 92%, 85%[  ee = 84%, 90%I°}
3a", R = Et, 65%,1? (76:24),"! ee = 86%, 80%[°!
CO,tBu CO,tBu
) =CN .}~ =CN
BnO F F

3c, 59%,12 (64:36)P1  3d, 63%,2 (69:31)1°]
ee = 96%, 78%!° ee = 95%, 76%°

CO,tBu
t,, - CN

F

3e, 53%,24 (53:47)]
ee = 94%, 83%!°

/

PMBO PhtN

CO,Bu CO,Bu
[ >=CN u>=CN
F PhMe,Si”

3f, 56%, 29 (49:51)
ee = 93%, 85%!1

CO,tBu
Ph/rJ>;.CN

F

3h, 80%,181 (70:30)°!
ee = 94%, 99%!°

Boc,N

3g, 80%,12] (43:57)!
ee = 93%, 82%9

CO,tBu CO,tBu
o, CN .

I CN
Cl cl PMBO ci

3i, 77%,181 (87:13)) 3j, 53%,18 (76:24)!
ee = 96%, 88%!° ee = 95%, 45%°

CO,tBu
1. | >=CN

Cl

3k, 61%,12.41 (82:18)P)
ee = 92%, 84%°

PhO,S

CO,tBu CO,tBu CO,tBu
., ~CN

i CN ph,,J><CN
PhMe,Si PhtN

Cl Cl Cl

31, 82%,12 (62:38)F1  3m, 45%,2¢1 (79:21)]  3n, 62%,[4] (91:9)]
ee = 83%, 72%!° ee = 93%, 15%° ee = 88%, 1%

CO,tBu
/,,,)>-CN i,

Br B PMBO Br

30, 74%,121 (83:17)P)
ee = 93%, 89%!!

CO,tBU CO,fBu
o PhOS - 4 o
22 Br

3p, 50%,@1 (81:19))
ee = 98%, 52%[°!

3q ,57%,@9 (81:19)!
ee = 92%, 74%!

CO,tBuU
L J>=CN
PhtN

CO,tBu CO,tBu
Phn)>‘CN Phr,P‘CN

Br Br |

3r, 39%°1 (80:20)1  3s, 75%,121 (90:10)1  3t, 94%,[1 (90:10)]
ee = 92%, 52%!° ee = 85%, 10%° ee=74%, < 5%

Scheme 1. Scope of the reaction. [a] Isolated yield (mixture of diastereoiso-
mers). [b] Diastereoisomeric ratio (trans:cis). [c] Determined by HPLC or GC
analysis on a chiral stationary phase (trans/cis). [d] [2] =1 m. [e] [2] =0.5 M.

[f] Determined by '°F NMR using Eu(hfc), as a chiral agent after chemical
transformation, see the Supporting Information for details. [g] Determined
by GC on a chiral stationary phase (trans/cis) after Tamao-Fleming oxidation.

isomers, 84% and 90 %, respectively. The X-ray crystallographic
analysis of both diastereoisomers, separated by flash chroma-
tography, led us to determine unambiguously the relative and
absolute configuration of each diastereoisomer.”'®™ As it is
typically observed in rhodium carbene chemistry, the forma-
tion of the major diastereomer resulted from an attack of the
rhodium carbene on the pro-S face of the alkene, whereas the
other diastereomer was generated by an attack on the oppo-
site enantiotopic face (pro-R). Then, the process was extended
to olefins 1c and 1d and the corresponding fluorocyclopro-
panes 3¢ and 3d, respectively, were isolated in good yields,
moderate diastereoselectivities, and excellent enantioselectivi-
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ties. N-Protected olefins 1e and 1f reacted smoothly under
our conditions furnishing N-phthalimide 3 e and bis-N-Boc-pro-
tected fluorocyclopropanes 3f, respectively, in decent yields
and excellent enantioselectivities for both diastereoisomers.

Fluoroallylsilane 1g was reacted under our standard condi-
tions and the resulting fluorocyclopropane 3 g was obtained in
80% isolated yield with a reverse diastereoselectivity and ex-
cellent enantiomeric excesses. Finally, fluorostyrene derivative
1h was tested, yielding fluorocyclopropanes 3h in good yield
with 70:30 diastereoisomeric ratio and an excellent enantio-
meric excess for each diastereoisomer. Encouraged by these
promising results using fluorinated olefins, we turned our at-
tention to the chlorinated substrates. Similarly, the asymmetric
cyclopropanation reaction proceeded well along with a good
functional group tolerance. Indeed, chlorinated olefins bearing
halogen, O-protected alcohol, sulfone, silyl group, N-protected
amine, or phenyl substituents reacted smoothly. The corre-
sponding highly functionalized chlorocyclopropanes 3i-n were
obtained in moderate to good yields and good to excellent
diastereoselectivities. Note that diastereoselectivities are gener-
ally higher with chlorinated olefins than their fluorinated ana-
logues. In all cases, the enantiocontrol of the reaction was ex-
cellent for the major diastereoisomer (up to 96% ee). Regard-
ing olefins, 1m and 1n, a significant drop of the enantiomeric
ratio was measured on the minor diastereoisomer since the
latter was obtained with less than 15% ee. Subsequently, we
studied the bromo-substituted olefins 10-s to extend the ver-
satility of our methodology. To our delight, our reaction condi-
tions were compatible with various functional groups, such as
halogen, benzyl ether, sulfone, phthalimides, and aryl substitu-
ent. Good levels of diastereocontrol were observed and excel-
lent enantioselectivities were measured for the major diaste-
reoisomers. Finally, in order to compare the effect of the halo-
gen atom on the stereochemical outcome of the reaction, o-
iodo styrene 1t was tested. The corresponding iodocyclopro-
pane 3t was isolated in 94 % yield as a 90:10 diastereoisomeric
ratio and 74% ee of the major isomer. Interestingly, the enan-
tioselectivity of the reaction decreased in the order: F>Cl>
Br>1. Indeed, the enantiomeric excess of the major isomer
slightly decreased, whereas the minor isomer was almost ob-
tained as a racemic mixture with a-chloro (3n), -bromo (35s)
and -iodo styrenes (3t). In contrast the diastereoselectivity of
the reaction is higher with chlorinated, brominated, and iodi-
nated olefins compared to the fluorinated ones.

The versatility of the resulting halocyclopropanes can be il-
lustrated by their further functionalization (Scheme 2). We first
demonstrated that the p-methoxybenzyl (PMB) protecting
group can be readily removed from compound 3d, giving 4 in
94% isolated yield."" In addition, silylated cyclopropane 3g
can be converted into 4 through a Tamao-Fleming oxidation
without loss of the enantiomeric excess. Then, the Yb-cata-
lyzed selective removal of one Boc protecting group was per-
formed giving 5 in 84 % isolated yield.

In summary, we reported in this communication the first
general method to access highly functionalized halocyclopro-
panes starting from readily available haloalkenes and function-
alized diazo derivatives in the presence of [Rh,{(S)-IBAZ},] as
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Scheme 2. Synthetic utility of the products.

a catalyst. The corresponding cyclopropanes were obtained in
good yields and moderate to good diastereoselectivities. Both
diastereoisomers were generally obtained with excellent enan-
tiomeric excess. The scope of the reaction was successfully ex-
tended to a broad range of functionalized olefins, highlighting
the high functional group tolerance of the method, giving
access to highly decorated halocyclopropanes. Finally, the ver-
satility of these halocyclopropanes was demonstrated in the
course of functional group manipulations.
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