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Abstract: A catalytic asymmetric synthesis of halocyclo-
propanes is described. The developed method is based on

a carbenoid cyclopropanation of 2-haloalkenes with tert-
butyl a-cyano-a-diazoacetate using a chiral rhodium cata-
lyst that permits access to a broad range of highly func-

tionalized chiral halocyclopropanes (F, Cl, Br, and I) in
good yields, moderate diastereoselectivity, and excellent
enantiomeric ratios. The reported methodology represents
the first general catalytic enantioselective approach to hal-
ocyclopropanes.

The cyclopropane motif fascinates organic chemists, in fact
this intriguing and smallest cycloalkane is present in a phalanx
of natural and non-natural bioactive molecules.[1] This impor-

tant constrained unit has been applied to alter both the meta-
bolic stability and bioavailability of pharmacologically active

molecules. Due to this, there has been interest in developing
new approaches to synthesize this key structural motif. More-
over, the enantioselective and more particularly the catalytic
enantioselective synthesis of cyclopropanes has received much
attention.[2] Quite surprisingly, despite the advances made in

that field, the catalytic asymmetric synthesis of halocylopro-
panes remains underexplored. This statement is in sharp con-
trast with the high synthetic value of halocylopropane scaf-
folds. Indeed, although fluorocyclopropanes are of interest for

incorporation in bioactive compounds,[3] chloro-, bromo- and
iodocyclopropanes are considered as versatile building blocks
for the construction of complex molecular architectures. Most

of the depicted approaches to access chiral halocyclopropanes
require the use of a stoichiometric amount of chiral induc-

tors,[4] whereas their catalytic asymmetric synthesis remains
limited to few examples.[5] Regarding the catalytic enantiose-
lective synthesis of chloro- and bromocyclopropanes, a Mi-
chael-initiated cyclopropanation reaction catalyzed by the ox-

azaborolidinium ion was reported by Hwang and Ryu[5a, b]

(Figure 1), and a catalytic intramolecular cyclopropanation was
independently reported by one of us[5c] and Nakada.[5d] Finally,
the catalytic enantioselective synthesis of fluorocyclopropanes

was investigated by Haufe and others, even though the scope

of the reaction remained limited to a-fluorostyrene deriva-
tives.[6] To our knowledge, a single example of catalytic enan-
tioselective synthesis of iodocyclopropanes has been recently
reported.[5b] Basically, no general catalytic asymmetric process

allowing the synthesis of halocyclopropanes with a broad sub-
strate scope and high enantioselectivity has been reported to

date. As part of our ongoing research program focusing on
the development of straightforward access to halogenated cy-
clopropanes,[7] we envisioned the development of a catalytic

asymmetric route to halocyclopropanes by developing a Rh-
catalyzed asymmetric cyclopropanation of haloalkenes.

Initially, we investigated the Rh-catalyzed asymmetric cyclo-
propanation of fluoroalkene 1 a with tert-butyl a-cyano-diazo-
acetate (2 a ; Table 1). Initial attempts were devoted to select

the optimal chiral catalyst to promote the cyclopropanation of
1 a. Catalyst [Rh2{(S)-NTTL}4] was tested giving the fluorocyclo-

propane 3 a in 68 % yield and good diastereoisomeric ratio
(d.r.), albeit with poor enantioselectivities (entry 1), whereas

[Rh2{(S)-TCPTTL}4] furnished 3 a in similar yield and d.r. with
a slight enhancement of the enantioselectivity (entry 2). To our

Figure 1. Previous work.
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delight, the use of [Rh2{(S)-IBAZ}4][8] allowed the formation of
3 a in 51 % yield, 76:24 diastereoisomeric ratio, and excellent

enantioselectivities for both diastereoisomers (95 % and 85 %,
entry 3). To improve the conversion into 3 a, the concentration

of 2 a was studied, leading an optimal 2 m concentration,
giving 3 a in 63 % isolated yield along with a similar d.r. and no

alteration of the enantioselectivities (entries 4 and 5). A solvent

survey revealed that dichloromethane (DCM) was the most ap-
propriate solvent to ensure decent diastereoselectivities and

excellent enantiomeric excess (entries 5–8). The temperature of
the reaction was then examined, and the addition of 2 a per-

formed at ¢20 8C gave the best results since no improvement
of the reaction yield nor the diastereo- and enantioselectivities

was detected (entries 9 and 10).
With the optimal set of conditions in hand (Table 1, entry 5),

we sought to extend the scope of the reaction to several fluo-
rinated and halogenated olefins (Scheme 1). First, we examined
the influence of the steric demand of diazo derivatives. A

screening of tert-butyl, isopropyl, and ethyl ester derivatives
was performed. Steric hindrance of the diazo derivative had

little effect on the diastereoselectivity of the reaction. However,
a slight decrease of the enantioselectivity was noticed since
the best ee’s were obtained with 2 a as a reaction partner. We

then turned our attention to the synthesis of various enan-
tioenriched fluorocyclopropanes. When 1 b was used, the cor-

responding fluorocyclopropane 3 b was obtained in 57 % yield,
57:43 d.r. , and excellent enantioselectivities for both diastereo-

isomers, 84 % and 90 %, respectively. The X-ray crystallographic

analysis of both diastereoisomers, separated by flash chroma-
tography, led us to determine unambiguously the relative and

absolute configuration of each diastereoisomer.[9, 10, 11] As it is
typically observed in rhodium carbene chemistry, the forma-

tion of the major diastereomer resulted from an attack of the

rhodium carbene on the pro-S face of the alkene, whereas the
other diastereomer was generated by an attack on the oppo-

site enantiotopic face (pro-R). Then, the process was extended
to olefins 1 c and 1 d and the corresponding fluorocyclopro-

panes 3 c and 3 d, respectively, were isolated in good yields,
moderate diastereoselectivities, and excellent enantioselectivi-

Table 1. Optimization study.[a]

Entry [Rh][b] Solvent Yield [%][c] d.r.[d] ee[e]

1 [Rh2{(S)-NTTL}4] DCM 71 32:68 8/7
2 [Rh2{(S)-TCPTTL}4] DCM 68 28:72 39/11
3 [Rh2{(S)-IBAZ}4] DCM 51 76:24 95/85
4[f] [Rh2{(S)-IBAZ}4] DCM 56 75:25 95/86
5[g] [Rh2{(S)-IBAZ}4] DCM 63 76:24 96/88
6[g] [Rh2{(S)-IBAZ}4] toluene 58 64:36 96/90
7[g] [Rh2{(S)-IBAZ}4] THF 42 65:35 97/91
8[g] [Rh2{(S)-IBAZ}4] CPME 63 61:39 97/92
9[g, h] [Rh2{(S)-IBAZ}4] DCM 57 62:38 93/81
10[g, i] [Rh2{(S)-IBAZ}4] DCM 58 74:26 95/86

[a] 1 a (2 equiv), 2 a (1 equiv), [Rh] (2 mol %), and solvent (0.2 m), ¢20 8C
to rt. [b] See the Supporting Information for detailed names. [c] Isolated
yields. [d] Diastereoisomeric ratio (trans :cis) determined by 19F NMR on
the crude reaction mixture. [e] Enantiomeric excess (trans/cis) determined
by GC analysis on a chiral stationary phase. [f] [2 a] = 1 m. [g] [2 a] = 2 m.
[h] Reaction was performed at rt. [i] Addition of 2 a was performed at
0 8C. CPME = cyclopentyl methyl ether.

Scheme 1. Scope of the reaction. [a] Isolated yield (mixture of diastereoiso-
mers). [b] Diastereoisomeric ratio (trans :cis). [c] Determined by HPLC or GC
analysis on a chiral stationary phase (trans/cis). [d] [2] = 1 m. [e] [2] = 0.5 m.
[f] Determined by 19F NMR using Eu(hfc)3 as a chiral agent after chemical
transformation, see the Supporting Information for details. [g] Determined
by GC on a chiral stationary phase (trans/cis) after Tamao–Fleming oxidation.
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ties. N-Protected olefins 1 e and 1 f reacted smoothly under
our conditions furnishing N-phthalimide 3 e and bis-N-Boc-pro-

tected fluorocyclopropanes 3 f, respectively, in decent yields
and excellent enantioselectivities for both diastereoisomers.

Fluoroallylsilane 1 g was reacted under our standard condi-
tions and the resulting fluorocyclopropane 3 g was obtained in

80 % isolated yield with a reverse diastereoselectivity and ex-
cellent enantiomeric excesses. Finally, fluorostyrene derivative

1 h was tested, yielding fluorocyclopropanes 3 h in good yield

with 70:30 diastereoisomeric ratio and an excellent enantio-
meric excess for each diastereoisomer. Encouraged by these

promising results using fluorinated olefins, we turned our at-
tention to the chlorinated substrates. Similarly, the asymmetric

cyclopropanation reaction proceeded well along with a good
functional group tolerance. Indeed, chlorinated olefins bearing
halogen, O-protected alcohol, sulfone, silyl group, N-protected

amine, or phenyl substituents reacted smoothly. The corre-
sponding highly functionalized chlorocyclopropanes 3 i–n were

obtained in moderate to good yields and good to excellent
diastereoselectivities. Note that diastereoselectivities are gener-
ally higher with chlorinated olefins than their fluorinated ana-
logues. In all cases, the enantiocontrol of the reaction was ex-

cellent for the major diastereoisomer (up to 96 % ee). Regard-

ing olefins, 1 m and 1 n, a significant drop of the enantiomeric
ratio was measured on the minor diastereoisomer since the

latter was obtained with less than 15 % ee. Subsequently, we
studied the bromo-substituted olefins 1 o–s to extend the ver-

satility of our methodology. To our delight, our reaction condi-
tions were compatible with various functional groups, such as

halogen, benzyl ether, sulfone, phthalimides, and aryl substitu-

ent. Good levels of diastereocontrol were observed and excel-
lent enantioselectivities were measured for the major diaste-

reoisomers. Finally, in order to compare the effect of the halo-
gen atom on the stereochemical outcome of the reaction, a-

iodo styrene 1 t was tested. The corresponding iodocyclopro-
pane 3 t was isolated in 94 % yield as a 90:10 diastereoisomeric

ratio and 74 % ee of the major isomer. Interestingly, the enan-

tioselectivity of the reaction decreased in the order: F>Cl>
Br> I. Indeed, the enantiomeric excess of the major isomer

slightly decreased, whereas the minor isomer was almost ob-
tained as a racemic mixture with a-chloro (3 n), -bromo (3 s)

and -iodo styrenes (3 t). In contrast the diastereoselectivity of
the reaction is higher with chlorinated, brominated, and iodi-

nated olefins compared to the fluorinated ones.

The versatility of the resulting halocyclopropanes can be il-
lustrated by their further functionalization (Scheme 2). We first

demonstrated that the p-methoxybenzyl (PMB) protecting
group can be readily removed from compound 3 d, giving 4 in

94 % isolated yield.[11] In addition, silylated cyclopropane 3 g
can be converted into 4 through a Tamao–Fleming oxidation

without loss of the enantiomeric excess. Then, the Yb-cata-

lyzed selective removal of one Boc protecting group was per-
formed giving 5 in 84 % isolated yield.

In summary, we reported in this communication the first
general method to access highly functionalized halocyclopro-

panes starting from readily available haloalkenes and function-
alized diazo derivatives in the presence of [Rh2{(S)-IBAZ}4] as

a catalyst. The corresponding cyclopropanes were obtained in

good yields and moderate to good diastereoselectivities. Both
diastereoisomers were generally obtained with excellent enan-

tiomeric excess. The scope of the reaction was successfully ex-
tended to a broad range of functionalized olefins, highlighting

the high functional group tolerance of the method, giving

access to highly decorated halocyclopropanes. Finally, the ver-
satility of these halocyclopropanes was demonstrated in the

course of functional group manipulations.
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