Green Chemistry

Cite this: Green Chem., 2011, 13, 2576

www.rsc.org/greenchem

Sulfonic acid supported on hydroxyapatite-encapsulated- γ -Fe₂O₃ nanocrystallites as a magnetically separable catalyst for one-pot reductive amination of carbonyl compounds[†]

Jia Deng, Li-Ping Mo, Fei-Yang Zhao, Lan-Lan Hou, Li Yang and Zhan-Hui Zhang*

Received 28th April 2011, Accepted 6th July 2011 DOI: 10.1039/c1gc15470b

A novel, environmentally friendly procedure has been developed for the preparation of secondary or tertiary amines by one-pot reductive amination of carbonyl compounds using sodium borohydride in the presence of a magnetically recoverable sulfonic acid supported on hydroxyapatite-encapsulated- γ -Fe₂O₃ [γ -Fe₂O₃@HAP-SO₃H] at room temperature. The catalyst was easily separated from the reaction mixture by applying an external magnet and reused for six cycles without significant loss of catalytic activity.

Introduction

Currently, the development of novel, non-toxic, low cost, ecofriendly, recyclable catalytic systems with high efficiency has received a great deal of research attention in organic synthesis for environmental and economic reasons. In this regard, nanoparticles (NPs) have emerged as viable and appealing candidates and are considered to be a bridge between homogeneous and heterogeneous catalysts.1 NPs-supported catalysts mimic their homogeneous counterparts and can be employed in a quasi-homogeneous phase or serve as precursors for heterogeneous catalysts since they readily disperse in reaction medium through forming stable suspensions, thus display highly accessible surface catalytic sites. Despite their distinct catalytic activities, difficulties in recovering the catalyst from the reaction mixture, due to their small diameter, severely limit their wide applications. To further address the issues of recyclability and reusability, magnetic nanoparticles (MNPs) are particularly attractive since their paramagnetic nature enables trouble-free separation of the catalyst from the reaction mixture using an external magnet. Thus eliminating the necessity for tedious centrifugation, filtration, or membrane separation.² Meanwhile, tandem catalysis that enables multi-step reactions in one-pot has the great advantage over multiple-step synthesis, of eliminating isolation of unstable intermediates and reducing the number of chemical steps and waste production.³ Design of a recyclable catalytic system that promotes efficient one-pot synthesis has become an important research area in organic chemistry.

Amine formation is one of most important transformations in organic synthesis. Amides are also found in numerous natural products and also serve as building blocks for pharmaceuticals, agrochemicals, dyes, resins, fine chemicals, solvents, textile additives, disinfectants, rubber stabilizers, corrosion inhibitors, in the manufacture of detergents and plastics, bases for many synthetic transformations, and ligands in coordination chemistry.⁴ As a consequence, various methods for the efficient formation of C–N bond have been widely investigated. Among all the available methods, direct reductive amination (DRA) is one of the oldest, but the most powerful and widely used synthetic transformations, which allows creation of a new C–N bond by coupling diverse carbonyl compounds with amine-containing fragments in one vessel without isolation of the intermediary imines or hydroxyamines.⁵

A variety of methods have been reported to accomplished this transformation including hydrogenation in the presence of Pd/C, iridium complex or Fe^{II}/EDTA complex,⁶ transfer hydrogenation,⁷ or using a reducing agent such as sodium cyanoborohydride,⁸ sodium triacetoxyborohydride,⁹ zinc borohydride,¹⁰ N-methyl piperidine zinc borohydride,¹¹ pyridine-BH₃,¹² zirconium borohydride-piperazine complexes,¹³ organosilane,14 (PMHS),¹⁵ tin poly(methylhydrosiloxane complex¹⁶ 1,2,3-triazole-borane hvdride complexes.17 aminoboranes,18 and Al.19 However, consideration of functional group tolerance, and side reactions, most of these reagents may have one or more drawbacks. For example, catalytic hydrogenation methods, are efficient for DRAs, but are not compatible with compounds containing other reducible functional groups such as carbon–carbon double or triple bonds, cyano, and nitro groups, and require expensive metals as catalysts. Cyanoborohydride and organotin are highly toxic and resulted in contamination of the product with toxic by-products such as HCN, NaCN or organotin compounds. Pyridine-BH₃ is

Key Laboratory of Inorganic Nanomaterial of Hebei Province, The College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang, 050016, China. E-mail: zhanhui@mail.nankai.edu.cn † Electronic supplementary information (ESI) available: XRD, IR and TEM data of the catalyst, and ¹H NMR and ¹³C NMR spectra of all new compounds. See DOI: 10.1039/c1gc15470b

quite unstable to heat and must be handled with extreme care. Triacetoxyborohydride is flammable, water-reactive, and poorly soluble in most organic solvents.

Sodium borohydride is a relatively inexpensive, mild, safe, water tolerant agent for applications in a wide range of reduction processes.²⁰ Although sodium borohydride has been used in combination with some catalysts such as $Ti(O-i-Pr)_4$,²¹ ZrCl₄,²² NiCl₂,²³ H₃BO₃,²⁴ H₃PW₁₂O₄₀,²⁵ guanidine hydrochloride,²⁶ silica phosphoric acid,²⁷ Amberlyst-15,²⁸ silica chloride,²⁹ wet clay,³⁰ and cellulose sulfric acid³¹ or in 2,2,2-trifluoroethanol³² for DRAs, in some cases catalyst can not be recovered or high temperature was required. Therefore, the search continues for better methods for reductive amination of carbonyl compounds with mild reaction conditions, economic viability and environmentally benignity.

Very recently, we have discovered that magnetic Fe₃O₄ nanoparticles are excellent catalysts for the synthesis of quinoxalines³³ and 2,3-dihydroquinazolin-4(1*H*)-ones.³⁴ As a continuation of our interest in developing efficient and environmental benign synthetic methodologies,³⁵ we report here a new, green, and practical method for one-pot reductive amination of carbonyl compounds using NaBH₄ in the presence of γ -Fe₂O₃@HAP-SO₃H as an highly efficient, inexpensive, and reusable catalyst (Scheme 1).

 $\label{eq:scheme1} \begin{array}{l} \mbox{Reductive amination of carbonyl compounds by $NaBH_4-[\gamma-Fe_2O_3@HAP-SO_3H]$}. \end{array}$

Results and discussion

Initially, 2-nitrobenzaldehyde and aniline were used as model substrates to study the activity of various catalysts, including protic acids such as toluenesulfonic acid, Lewis acids such as LiCl, solid acid such as $HClO_4/SiO_2$, heteropoly acids such as silicotungstic acid, and nanocrystalline metal oxides such as nano Fe₃O₄ and γ -Fe₂O₃ (Table 1).

In a typical reaction, 2-nitrobenzaldehyde and aniline were mixeded in EtOH and catalyst was then added. After completion of the imine formation, NaBH₄ was added. The mixture was stirred at room temperature. It was observed that all of the investigated catalysts were able to catalyze this DRA and furnished the corresponding product in moderate to high yields, while the reaction performed in the absence of catalyst, only resulted in the formation of trace amount of the desired product. In order to further improve this procedure and recover the heterogeneous catalyst, we decided to prepare the sulfonic acid supported on hydroxyapatite-encapsulated-y-Fe₂O₃ $[\gamma$ -Fe₂O₃@HAP-SO₃H] according to a previously reported procedure with some modifications.³⁶ The prepared catalyst was characterized by XRD, SEM, TEM, and FT-IR (ESI⁺, Fig. S1-4). We examined the use of γ -Fe₂O₃@HAP-SO₃H as a catalyst and observed that this reaction proceeded well and afforded the alkylated aniline in 95% yield.

In the following studies, the above reaction was conducted in the presence of γ -Fe₂O₃@HAP-SO₃H with various solvents. The

 Table 1
 Influence of different catalysts on the reductive condensation of 2-nitrobenzaldehyde with aniline^a

	NO ₂ + NH ₂ NH ₂ Cata	NaBH₄ (1 eq.) llyst (10 mmol%) EtOH, r. t.	NO ₂
Entry	Catalyst	Time (min)	Isolated yield (%)
1	No	180	Trace
2	p-TSA	60	77
3	Chlorosulfonic acid	40	39
4	LiCl	60	61
5	HClO ₄ /SiO ₂	60	80
6	Silicotungstic acid	60	62
7	Nano Fe_3O_4	60	42
8	Nano γ - Fe ₂ O ₃	180	25
9	γ-Fe ₂ O ₃ @HAP-SO ₃ H	45	95

^{*a*} Reaction conditions: 2-nitrobenzaldehyde (1 mmol), aniline (1 mmol), NaBH₄ (1 mmol), catalyst (10 mmol%), EtOH (5 ml).

Table 2 Optimisation of reaction conditions

Entry	Catalyst (mol%)	Solvent	Time (min)	Isolated yield (%)
1	10	No	60	78
2	10	CH_2Cl_2	60	65
3	10	CH ₃ CN	60	73
4	10	AcOEt	60	61
5	10	H_2O	45	90
6	10	MeOH	45	94
7	5	EtOH	60	81
8	10	EtOH	45	95
9	15	EtOH	45	96

^{*a*} Reaction conditions: 2-nitrobenzaldehyde (1 mmol), aniline (1 mmol), NaBH₄ (1 mmol), solvent (5 ml).

results indicated that different solvents affected the efficiency of the reaction (Table 2). Based on the reaction yields and environmental consideration, ethanol was proved to be superior to others such as dichloromethane, acetonitrile, ethyl acetate, methanol, and water. Moreover, we found that the yields were obviously affected by the loading of γ -Fe₂O₃@HAP-SO₃H. When 5 mol%, 10 mol% and 15 mol% of γ -Fe₂O₃@HAP-SO₃H were used, the yields were 81%, 95%, and 96%, respectively (Table 2, entries 7–9). Therefore, 10 mol% of γ -Fe₂O₃@HAP-SO₃H SO₃H was sufficient for this DRA.

To evaluate the scope and limitations of this methodology, we extended our studies to various structurally different carbonyl compounds and amines. Firstly, we examined the reactions of aniline with different aldehydes and the results are summarized in Table 3. It was found that there was no remarkable electron and position effects from the aromatic aldehydes for this DRA, since benzaldehydes with o-, m, and p-substituents (Table 3, entries 14-16) resulted in the corresponding alkylated anilines in excellent yields, while both 4-methoxybenzaldehyde (Table 3, entry 5) and 4-nitrobenzaldehyde (Table 3, entry 21) were competent substrates in this procedure. It is important to note that acidsensitive aldehydes such as furan-2-carbaldehyde, thiophene-2-carbaldehyde, and nicotinaldehyde (Table 3, entries 26-28) were suitable substrates, affording the corresponding products in high yields without the formation of any side products. Furthermore, this procedure is applicable to reductive amination

Table 3 Direct reductive amination of carbonyl compounds using NaBH₄-[γ-Fe₂O₃@HAP-SO₃H]

	(HN ^{-R³}		
	P1	$\mathcal{H}_{\mathbf{P}^2} + \mathcal{H}_2 N \mathbb{R}^3 - \mathcal{H}_2 \mathcal$				
	N 1	1 2	EtOH, r. t.	R ^{1'} `R ² 3		
Entry	Carbonyl compound	Amine	Product	Time (min)	Yield (%) ^a	Ref.
1	PhCHO	$PhNH_2$	3a	40	94	14a
2	3-CH ₃ C ₆ H ₄ CHO	PhNH ₂	3b	40	93	37
3	$4-CH_3C_6H_4CHO$	$PhNH_2$	3c	40	92	31
4	$2-OCH_3C_6H_4CHO$	$PhNH_2$	3d	35	93	37
5	$4-OCH_3C_6H_5CHO$	PhNH ₂	3e	20	94	14a
6	$2,3,4-(OMe)_3C_6H_2CHO$	PhNH ₂ DhNU	31 2a	30	93	20
8	$2-OHC_6H_4CHO$ $3-OMe_2OHC_H_CHO$	$P III N \Pi_2$ PhNH.	Jg 3h	30	95	50
9	4-OMe-2-OHC/H3CHO	PhNH ₂	3i	30	90	
10	5-F-2-OHC ₆ H ₃ CHO	PhNH ₂	3i	45	92	
11	5-Br-2-OHC ₆ H ₃ CHO	PhNH ₂	3k	35	93	
12	5-NO ₂ -2-OHC ₆ H ₃ CHO	$PhNH_2$	31	45	92	38
13	$4-FC_6H_4CHO$	$PhNH_2$	3m	35	93	39
14	$2-ClC_6H_4CHO$	$PhNH_2$	3n	40	91	31
15	$3-CIC_6H_4CHO$		30	35	92	32
16	$4-CIC_6H_4CHO$		3p 2-	35	94	31 14-
1/	$4 - BFC_6 H_4 CHO$	Phinh ₂ Phnh	3q 3r	55 60	93 85	14a
19	2-NO ₂ C/H/CHO	PhNH ₂	38	45	95	31
20	$3-NO_2C_6H_4CHO$	PhNH ₂	3t	40	93	15a
21	$4-NO_2C_6H_4CHO$	PhNH ₂	3u	40	94	14a
22	3-CF ₃ C ₆ H ₄ CHO		3v	80	91	14a
23	4-CNC ₆ H ₄ CHO	PhNH ₂	3w	80	90	14a
24	PhCH=CHCHO	$PhNH_2$	3x	60	94	14a
25	O II	$PhNH_2$	Зу	100	85	39
	H					
26	СНО	PhNH ₂	3z	40	95	15a
27	⟨_s↓ _S ↓ _{CHO}	PhNH ₂	3aa	60	95	15a
28	H N O	$PhNH_2$	3ab	40	90	15b
29	0 H	PhNH ₂	3 ac	60	81	36
30		$PhNH_2$	3ad	45	93	15b
31	CH ₃ CHO	PhNH ₂	3ae	40	88	40
32 33	CH_3CH_2CHO CH_4CH_3CHO	PhiNH ₂ PhNH	5a1 3ag	40 60	90 02	35e 27
34	$CH_3(CH_2)_2CHO$ $CH_3(CH_2)_2CHO$	PhNH	Jag Rah	50	92 91	27 15a
35	$CH_3(CH_2)_4CHO$ $CH_2(CH_2)_7CHO$	PhNH ₂	3ai	50 60	94	13a 24
36	PhCH ₂ CHO	PhNH ₂	3ai	60	85	41
37	PhCHO	$4-OCH_3C_6H_5NH_2$	3ak	20	95	32
38	PhCHO	4-OEtC ₆ H ₅ NH ₂	3al	25	94	31
39	PhCHO	$4-CH_3C_6H_4NH_2$	3am	30	93	31
40	PhCHO	$4-ClC_6H_4NH_2$	3an	75	90	37
41 42		4-CIC ₆ H ₄ NH ₂ 4 BrC H MU	580 200	/U 100	89 01	31 150
43	PhCHO	$4-NO_2C_6H_4NH_2$	3aq	180	89	31

Table 3(Contd.)

	R ¹	$ \begin{array}{c} 0 \\ H_{R^2} + H_2 N R^3 \end{array} \xrightarrow{NaBH_4 - [\gamma - Fe_2]}{FtoH} $	O ₃ @HAP-SO ₃ H] ►	HN^{-R^3}		
Entry	Carbonyl compound	1 2 Amine	Product	3 Time (min)	Yield (%)"	Ref.
44	PhCHO	NH ₂	3ar	2	90	15a
45	PhCHO	NH ₂	3as	1	93	42
46	PhCHO		3at	120	82	32
47 48 49 50 51	РһСНО РНСНО РНСНО РһСНО РһСНО	PhCH ₂ NH ₂ MeNH ₂ EtNH ₂ CH ₃ (CH ₂) ₃ NH ₂	3au 3av 3aw 3ax 3ay	5 2 2 1 10	92 90 88 91 91	31 43 44 19 45
52 53	PhCHO	CH ₂ =CHCH ₂ NH ₂ 4-OCH ₃ C ₆ H ₅ NH ₂	3az 3ba	1 30	90 92	27 26
54	СНО	$4\text{-}ClC_6H_4NH_2$	3bb	40	91	46
55	СНО	$4\text{-}BrC_6H_4NH_2$	3bc	60	88	44
56	СНО	NH ₂	3bd	180	81	37
57	СНО	$CH_3(CH_2)_3NH_2$	3be	1	94	47
58	Сно сно	$\text{4-OCH}_3\text{C}_6\text{H}_5\text{NH}_2$	3bf	45	92	
59	Сло сно	$4\text{-}ClC_6H_4NH_2$	3bg	45	90	46
60	Сно сно	NH ₂	3bh	1	95	
61	К _s , сно	NH ₂	3bi	120	80	37
62	CHO	$CH_3(CH_2)_3NH_2\\$	3bj	1	96	47
63	С Н N	4-CH ₃ C ₆ H ₅ NH ₂	3bk	60	92	46

Table 3(Contd.)

		+ H ₂ NR ³ NaBH ₄ -[₇ -Fe ₂ O ₃ @ EtOH, r. t	2HAP-SO3H] ⊢ ► R ¹⁷	$\mathbb{N}^{\mathbb{R}^3}$		
Entry	1 Carbonyl compound	2 Amine	Product	3 Time (min)	Yield (%) ^a	Ref.
64	С Н N	V NH2	3bl	1	93	48
65	С N H	CH ₃ (CH ₂) ₃ NH ₂	3bm	1	94	
66	СНО	PhCH ₂ NH ₂	3bn	5	94	24
67	СНО	NH ₂	3bo	2	93	
68 69 70 71	PhCH=CHCHO PhCH=CHCHO PhCH=CHCHO PhCH=CHCHO	$\begin{array}{c} 4\text{-}CH_3C_6H_3NH_2\\ 4\text{-}OCH_3C_6H_3NH_2\\ 4\text{-}CIC_6H_4NH_2\\ \hline \\ \hline \\ NH_2 \end{array}$	3bp 3bq 3br 3bs	40 35 45 140	90 91 88 82	49 49 49
72	РһСНО	0 NH	3bt	7	89	31
73	PhCHO	NH	3bu	5	90	31
74) =0	PhNH ₂	3bv	40	87	50
75	0	PhNH ₂	3bw	40	87	31
76	0	$CH_3(CH_2)_3NH_2$	3bx	5	92	19
77	0	CH ₂ =CHCH ₂ NH ₂	3 by	5	93	19
78		PhNH ₂	3bz	45	88	51
79	— 0	PhNH ₂	3ca	45	89	50
80		PhNH ₂	3cb	35	91	52
81	0	PhNH ₂	3сс	45	87	53

Table 3(Contd.)

" Isolated yield. " Two equivalents of benzaldehyde were used. " Two equivalents of amines were used.

of aliphatic and α , β -unsaturated aldehydes. In addition to aldehydes, some ketones were also selected to carry out this DRA. For the aliphatic ketones like cyclohexanone, cyclododecanone, bicyclo[2.2.1]heptan-2-one, 1*H*-inden-2(3*H*)-one and adamantan-2-one, the desired products were smoothly obtained in high yield through this catalytic system. Unfortunately, only a trace amount of the target product was isolated, when less reactive aromatic ketones like acetophenone was aminated with the aromatic and aliphatic amines under the same reaction conditions.

The reactivities of amines in this DRA were then tested. Aromatic amines with electron-withdrawing groups such as a nitro group showed slightly weaker reactivity than those containing electron-neutral or electron-donating groups (Table 3, entry 43). Besides, heteroaromatic amines like pyridin-2-amine acted as a suitable candidate for this reaction. Aliphatic amines and allylic amine were reactive and underwent the title reaction in a shorter reaction time compared to aromatic amines. It is noteworthy that optically active plenylglycinol underwent reductive amination successfully to give the corresponding amine (**3ay**) without any racemization or inversion as determined by measurement of optical rotation. The reactions worked also well when secondary amines like piperidine and morpholine were utilized.

Encouraged by the above interesting results, we also attempted to prepare bis-alkylated amines to further broaden the scope. To our delight, the reaction of *p*-phenylenediamine with 2 equiv. of benzaldehyde resulted in the desired product (**3cf**) in high yield. Similarly, terephthaldicarboxaldehyde also underwent reductive amination smoothly to afford the target product **3cg** in 89% yield (Scheme 2). Moreover, the model reaction was carried out in a scale of 100 mmol. As expected, the reaction proceeded nicely to afford the desired product in 93% yield in 50 min.

An important feature of this procedure is the tolerance of a variety of function groups such as fluoro, chloro, iodine, nitro,

Scheme 2 Synthesis of bis-alkylated amines.

cyanide, ethers, carbon-carbon double bond under the reaction conditions. Furthermore, the reaction was clean and no side products were observed.

From the view point of green chemistry, good recovery and reusability of the catalyst are highly preferable. In this work, we examined the possibility of recovery and reuse of γ -Fe₂O₃@HAP-SO₃H. After completion of the reaction of nitrobenzaldehyde and amine, the catalyst was recovered from the reaction mixture simply by applying an external magnet. Then the recovered catalyst was first washed with water and then with diethyl ether, and dried at room temperature. The recovered catalyst was added to fresh reaction mixture under same conditions for six runs without significant drop in yield and its catalytic activity (Fig. 1). No quantifiable amount of leached Fe was detected in the filtrates as determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). To determine of the percent leaching of the acid, the model reaction was carried out in the presence of γ -Fe₂O₃@HAP-SO₃H for 20 min and at that point the catalyst was removed by external magnet. The residual solution was then allowed to react, but no significant progress was observed after 1 h. Therefore, these experiments are a further testimony to the heterogeneous nature of the catalytic system.57 Furthermore, the SEM images of the used catalyst showed that the shape and size of catalyst particles remained almost the same after six-run reuse, which proved its robustness (ESI[†]).

Fig. 1 The catalytic activity of γ -Fe₂O₃@HAP-SO₃H in six cycles for the model reaction.

Conclusions

In conclusion, we have developed a highly efficient and ecofriendly method for one-pot reductive amination of carbonyl compounds using magnetically separable sulfonic acid supported on hydroxyapatite-encapsulated- γ -Fe₂O₃ as the catalyst under mild conditions. This protocol can be used to generate a diverse range of secondary or tertiary amines in high to excellent yields. The catalyst is completely magnetically recoverable and the efficiency of the catalyst remains unaltered even after six cycles. These advantages make this methodology attractive for large-scale synthesis.

Experimental

IR spectra were recorded with a Shimadzu FTIR-8900 spectrometer. The ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded on a Bruker DRX-500 spectrometer using CDCl₃ as solvent and TMS as internal standard. Elemental analyses were carried out on a Vario EL III CHNOS elemental analyzer. Commercially available reagents were used without further purification.

Preparation of y-Fe₂O₃@HAP-SO₃H³⁶

To γ -Fe₂O₃@HAP (1 g), chlorosulfonic acid (1 g, 9 mmol) was added dropwise at room temperature during 15 min. After completion of the addition, the mixture was mechanically stirred for 6 h until HCl was removed from reaction vessel. Then the mixture was washed with CH₂Cl₂ (10 ml), resulted magnetic nanoparticles were separated by an external magnet device and washed with distilled water until neutral, then dried under vacuum at room temperature to obtain γ -Fe₂O₃@HAP-SO₃H as brown powder. The number of H⁺ site (0.9 mmol SO₃H/g) of γ -Fe₂O₃@HAP-SO₃H was determined by acid–base titration.

General procedure for the reductive amination of carbonyl compounds

Carbonyl compound (1 mmol) and amine (1 mmol) were mixed in EtOH (5 ml) and then γ -Fe₂O₃@HAP-SO₃H (0.1 mmol) was added. After completion of the imine formation, NaBH₄ (1 mmol) was added. The progress of reaction was monitored by TLC or GC. After completion of the reaction, the catalyst was separated with the aid of an external magnet. Ethanol was evaporated and the crude product was purified by short column chromatography on silica gel using ethyl acetate/petroleum ether as the eluent.

N-(2,3,4-Trimethoxybenzyl)aniline (3f). Viscous liquid; IR (neat): 3408, 2935, 1602, 1494, 1506, 1463, 1431, 1415, 1271, 1197, 1178, 1093, 1016, 904, 800, 750 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 3.82 (s, 3H), 3.87 (s, 3H), 3.91 (s, 3H), 3.98 (br s, 1H, NH), 4.25 (s, 2H), 6.60 (d, J = 8.0 Hz, 1H), 6.64 (d, J = 7.5 Hz, 2H), 6.68 (t, J = 7.5 Hz, 1H), 6.70 (d, J = 8.0 Hz, 1H), 7.15 (t, J = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 43.3, 53.0, 60.9, 61.2, 107.2, 113.1, 117.4, 123.5, 125.1, 129.2, 142.3, 148.4, 151.3, 153.2; Anal. Calcd for C₁₆H₁₉NO₃: C, 70.31; H, 7.01; N, 5.12. Found: C, 70.12; H, 6.88; N, 4.98.

2-Methoxy-6-((phenylamino)methyl)phenol (3h). White solid, Mp: 62–64 °C; IR (KBr): 3311, 3012, 1601, 1500, 1477, 1440, 1429, 1356, 1269, 1247, 1224, 1168, 1083, 1051, 925 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 3.78 (s, 3H), 4.36 (s, 2H), 6.44 (dd, J = 8.5, 2.5 Hz, 1H), 6.48 (d, J = 2.5 Hz, 1H), 6.85 (d, J = 8.0 Hz, 2H), 6.92 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 7.23–7.26 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 44.2, 56.1, 110.0, 113.7, 118.2, 119.6, 121.2, 124.7, 129.2, 144.1, 146.8, 148.1; Anal. Calcd for C₁₄H₁₅NO₂: C, 73.34; H, 6.59; N, 6.11. Found: C, 73.15; H, 6.76; N, 5.98.

4-Methoxy-2-((phenylamino)methyl)phenol (3i). White solid, Mp: 137–139 °C; IR (KBr): 3254, 2960, 1614, 1593, 1516, 1445, 1437, 1421, 1325, 1282, 1232, 1107, 954 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 3.89 (s, 3H), 4.38 (s, 2H), 6.70–6.76 (m, 3H), 6.81 (d, J = 5.0 Hz, 2H), 6.89 (t, J = 5.0 Hz, 1H), 7.18 (t, J = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 48.4, 55.3, 102.2, 106.0, 115.1, 116.0, 120.9, 129.3, 129.4, 147.2, 157.9, 160.7; Anal. Calcd for C₁₄H₁₅NO₂: C, 73.34; H, 6.59; N, 6.11. Found: C, 73.50; H, 6.41; N, 6.30.

4-Fluoro-2-((phenylamino)methyl)phenol (3j). White solid, Mp: 107–109 °C; IR (KBr): 3300, 1601,1498, 1438, 1252, 1230, 1201, 1078, 898, 825 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 4.39 (s, 2H), 6.80–6.84 (m, 3H), 6.87–6.95 (m, 3H), 7.23–7.26 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 48.6, 114.9 (d, ²*J*_{FC} = 23.4 Hz), 115.3 (d, ²*J*_{FC} = 22.6 Hz), 115.9, 117.4 (d, ³*J*_{FC} = 7.6 Hz), 121.1, 123.9 (d, ³*J*_{FC} = 6.9 Hz), 129.4, 146.9, 152.7, 156.5 (d, ¹*J*_{FC} = 236.1 Hz); Anal. Calcd for C₁₃H₁₂FNO: C, 71.87; H, 5.57; N, 6.45. Found: C, 71.92; H, 5.75; N, 6.28.

4-Bromo-2-((phenylamino)methyl)phenol (3k). White solid, Mp: 114–116 °C; IR (KBr): 3267, 2974, 1602, 1489, 1456, 1355, 1290, 1251, 1218, 1182, 1126, 1089, 1055, 864, 827, 804 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 4.39 (s, 2H), 6.76 (d, J = 8.5 Hz, 1H), 6.84(d, J = 8.0 Hz, 2H), 6.95 (t, J = 7.5 Hz, 1H), 7.24–7.32 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ : 48.6, 111.8, 116.1, 118.5, 121.3, 124.9, 129.5, 131.1, 131.9, 146.7, 156.1; Anal. Calcd for C₁₃H₁₂BrNO: C, 56.14; H, 4.35; N, 5.04. Found: C, 55.98; H, 4.26; N, 4.88.

N-(4-Iodobenzyl)aniline (3r). White solid, Mp: 53–55 °C; IR (KBr): 3429, 1593, 1504, 1492, 1436, 1448, 1398, 1375, 1325, 1292, 1271, 1153, 1124, 1058, 1028, 985, 806, 732 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 4.06 (br s, 1H, NH), 4.27 (s, 2H), 6.38 (d, J = 9.0 Hz, 2H), 7.25–7.28 (m, 1H) 7.32–7.33 (m, 4H), 7.38 (d, J = 9.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 47.92, 78.03, 115.0, 127.3, 128.6, 137.7, 138.7, 147.5; Anal. Calcd for

C₁₃H₁₂IN: C, 50.51; H, 3.91; N, 4.53. Found: C, 50.33; H, 7.05; N, 4.70.

(*S*)-2-(Benzylamino)-2-phenylethanol (3ay). White solid, Mp: 86–87 °C; $[\alpha]_D^{20} = +82.6$ (c 1.08 in CHCl₃), Lit.⁴⁵ $[\alpha]_D^{28} = +83.2$; IR (KBr): 3251, 2920, 1569, 1496, 1488, 1452, 1328, 1234, 1099, 1055, 1014, 920, 877, 756 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 3.64 (d, J = 13.5 Hz, 1H), 3.70–3.76 (m, 2H), 3.85 (d, J =13.5 Hz, 1H), 3.88–3.91 (m, 1H), 7.28–7.40 (m, 10H); ¹³C NMR (125 MHz, CDCl₃) δ : 51.1, 63.8, 66.7, 127.1, 127.3, 127.7, 128.2, 128.5, 128.7, 139.9, 140.3; Anal. Calcd for C₁₅H₁₇NO: C, 79.26; H, 7.54; N, 6.16. Found: C, 79.08; H, 7.70; N, 5.98.

4-Methoxy-*N***-(thiophen-2-ylmethyl)aniline** (3bf). White solid, Mp: 64–66 °C; IR (KBr): 3393, 2831, 1512, 1460, 1440, 1406, 1311, 1298, 1267, 1236, 1178, 1116, 1035, 850 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 3.74 (s, 3H), 4.46 (s, 1H), 6.64 (d, J = 9.0 Hz, 2H), 6.78 (d, J = 9.0 Hz, 2H), 6.95 (t, J = 5.0 Hz, 1H), 6.99 (d, J = 3.0 HZ, 1H) 7.20 (dd, J = 5.0 HZ, 1.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ : 44.5, 55.8, 114.6, 114.9, 124.5, 124.9, 126.9, 141.9, 143.4, 152.6; Anal. Calcd for C₁₂H₁₃NOS: C, 65.72; H, 5.97; N, 6.39. Found: C, 65.90; H, 6.15; N, 6.58.

1-(Furan-2-yl)-*N***-(thiophen-2-ylmethyl)methanamine** (3bh). Yellow oil; IR (neat): 3448, 1541, 1382, 1147, 1078, 1008, 734, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 3.81 (s, 2H), 3.97 (s, 2H), 6.19 (d, *J* = 3.0 Hz, 1H), 6.32 (dd, *J* = 3.0, 1.0 Hz, 1H), 6.92–6.96 (m, 2H), 7.22 (dd, *J* = 5.0, 1.0 Hz, 1H, ArH), 7.37 (d, *J* = 1.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ : 44.9, 47.2, 107.3, 110.1, 124.6, 125.2, 126.7, 141.9, 143.6, 153.5; Anal. Calcd for C₁₀H₁₁NOS: C, 62.15; H, 5.74; N, 7.25. Found: C, 61.96; H, 5.92; N, 7.08.

N-(Pyridin-3-ylmethyl)butan-1-amine (3bm). Yellow oil; IR (neat): 3442, 2956, 2927, 1577, 1560, 1477, 1458, 1423, 1382, 1120, 1028, 785, 713 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ: 0.91 (t, *J* = 7.5 Hz, 3H), 1.35 (sext, *J* = 7.5 Hz, 2H), 1.49 (quin, *J* = 7.5 Hz, 2H), 2.63 (t, *J* = 7.5 Hz, 2H), 3.80 (s, 2H), 7.25 (dd, *J* = 7.5, 5.0 Hz, 1H), 7.67 (d, *J* = 7.5 Hz, 1H), 8.49 (dd, *J* = 5.0, 1.5 Hz, 1H), 8.56 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ: 14.0, 20.4, 32.2, 49.2, 51.3, 123.3, 135.7, 135.8, 148.4, 149.7; Anal. Calcd for C₁₀H₁₆N₂: C, 73.13; H, 9.82; N, 17.06. Found: C, 72.96; H, 10.01; N, 16.90.

1-Cyclohexyl-*N***-(furan-2-ylmethyl)methanamine (3bo).** Colorless oil; IR (neat): 3421, 2922, 2850, 1506, 1448, 1332, 1147, 1120, 1074, 1006, 916, 731 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 0.86–0.93 (m, 2H), 1.13–1.27 (m, 2H), 1.42–1.48 (m, 1H), 1.64–1.74 (m, 6H), 2.44 (d, *J* = 7.0 Hz, 2H), 3.76 (s, 2H), 6.16 (d, *J* = 3.0 Hz, 1H), 6.30 (dd, *J* = 3.0, 1.5 Hz, 1H), 7.35 (d, *J* = 1.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ : 26.1, 26.7, 31.4, 37.94, 46.5, 56.0, 106.6, 110.0, 141.7, 154.8; Anal. Calcd for C₁₂H₁₉NO: C, 74.57; H, 9.91; N, 7.25. Found: C, 74.75; H, 10.09; N, 7.08.

N-Cinnamylpyridin-2-amine (3bs). White solid, Mp: 74– 76 °C; IR (KBr): 3232, 2923, 1598, 1573, 1529, 1440, 1328, 1290, 1157, 1147, 1124, 1080, 968, 767 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 4.11 (td, *J* = 6.0, 1.0 Hz, 2H), 4.68 (br s, 1H), 6.32 (dt, *J* = 16.0, 6.0 Hz, 1H), 6.43 (d, *J* = 7.5 Hz, 1H), 6.58–6.62 (m, 2H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.37 (d, *J* = 7.5 Hz, 2H), 7.43 (td, *J* = 7.5, 2.0 Hz, 1H), 8.11 (d, *J* = 5.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ : 44.3, 106.9, 113.2, 126.4, 126.7, 127.5, 128.6, 131.4, 136.8, 137.5, 148.2, 158.5; Anal. Calcd for C₁₄H₁₄N₂: C, 79.97; H, 6.71; N, 13.32. Found: C, 80.09; H, 6.88; N, 13.16.

N-Phenylcyclododecanamine (3cd). Yellow solid, Mp: 75– 77 °C; IR (KBr): 3401, 3043, 1601, 1503, 1440, 1435, 1316, 1260, 1185, 1145, 1110, 745, 690 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ: 1.28–1.72 (m, 22H), 2.47 (t, *J* = 6.0 Hz, 1H), 3.51 (br s, 1H), 6.58 (d, *J* = 7.5 Hz, 2H), 6.65 (t, *J* = 7.5 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ: 21.3, 22.4, 22.6, 23.3, 24.0, 24.3, 24.4, 24.7, 24.8, 29.8, 40.4, 49.5, 113.1, 116.7, 129.3, 147.9; Anal. Calcd for C₁₈H₂₉N: C, 83.33; H, 11.27; N, 5.40. Found: C, 83.15; H, 11.08; N, 5.56.

N,*N*'-**Dibenzyl**-*p*-**phenylenediamine (3cf).** White solid, Mp: 125–127 °C; IR (KBr): 3294, 1600, 1508, 1494, 1452, 1357, 1294, 1244, 1217, 1132, 1068, 1029, 817, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ: 4.26 (s, 4H), 6.60 (s, 4H), 7.24–7.27 (m, 2H), 7.32 (t, J = 7.5 Hz, 4H), 7.36 (d, J = 7.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃) δ: 49.6, 114.9, 127.1, 127.7, 128.5; Anal. Calcd for C₂₀H₂₀N₂: C, 83.30; H, 6.99; N, 9.71. Found: C, 83.45; H, 6.82; N, 9.90.

N-(4-((Phenylamino)methyl)benzyl)benzenamine(3cg).White solid, Mp: 105–107 °C; IR (KBr): 3423, 1604, 1508, 1490,1319, 1276, 1178, 1151, 1122, 1089, 1072, 983, 750 cm⁻¹; ¹HNMR (500 MHz, CDCl₃) δ : 4.02 (br s, 2H), 4.32 (s, 4H), 6.63(d, J = 7.5 Hz, 4H), 6.72 (t, J = 7.5 Hz, 2H), 7.17 (t, J = 7.5 Hz,4H), 7.35 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ : 48.0, 112.8,117.6, 127.8, 129.3, 138.5, 148.1; Anal. Calcd for C₂₀H₂₀N₂: C,83.30; H, 6.99; N, 9.71. Found: C, 83.16; H, 7.18; N, 9.53.

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (20872025 and 21072042) and Nature Science Foundation of Hebei Province (B2011205031).

References

- S. Shylesh, J. Schweizer, S. Demeshko, V. Schunemann, S. Ernst and W. R. Thiela, *Adv. Synth. Catal.*, 2009, **351**, 1789–1795.
- 2 (a) S. Shylesh, V. Schunemann and W. R. Thiel, Angew. Chem., Int. Ed., 2010, 49, 3428–3459; (b) Y. H. Zhu, L. P. Stubbs, F. Ho, R. Z. Liu, C. P. Ship, J. A. Maguire and N. S. Hosmane, ChemCatChem, 2010, 2, 365–374; (c) C. W. Lim and I. S. Lee, Nano Today, 2010, 5, 412–434; (d) K. V. S. Ranganath and F. Glorius, Catal. Sci. Technol., 2011, 1, 13–22; (e) K. Mori, N. Yoshioka, Y. Kondo, T. Takeuchi and H. Yamashita, Green Chem., 2009, 11, 1337–1342; (f) T. Q. Zeng, W. W. Chen, C. M. Cirtiu, A. Moores, G. H. Song and C. J. Li, Green Chem., 2010, 12, 570–573; (g) R. Luque, B. Baruwati and R. S. Varma, Green Chem., 2010, 12, 1540–1543.
- 3 (a) J. C. Wasilke, S. J. Obrey, R. T. Baker and G. C. Bazan, *Chem. Rev.*, 2005, **105**, 1001–1020; (b) M. J. Climent, A. Corma and S. Iborra, *Chem. Rev.*, 2011, **111**, 1072–1133.
- 4 J. Ward and R. Wohlgemuth, Curr. Org. Chem., 2010, 14, 1914–1927.
- 5 R. P. Tripathi, S. S. Verma, J. Pandey and V. K. Tiwari, *Curr. Org. Chem.*, 2008, **12**, 1093–1115.
- 6 (a) L. X. Xing, C. J. Cheng, R. Zhu, B. Y. Zhang, X. Y. Wang and Y. F. Hu, *Tetrahedron*, 2008, 64, 11783–11788; (b) D. Imao, S. Fujihara, T. Yamamoto, T. Ohta and Y. Ito, *Tetrahedron*, 2005, 61, 6988–6992; (c) M. D. Bhor, M. J. Bhanushali, N. S. Nandurkar and B. M. Bhanage, *Tetrahedron Lett.*, 2008, 49, 965–969.
- 7 (a) C. Wang, A. Pettman, J. Basca and J. L. Xiao, Angew. Chem., Int. Ed., 2010, 49, 7548–7552; (b) D. Menche and F. Arikan, Synlett,

2006, 841–844; (c) F. Alonso, P. Riente and M. Yus, *Synlett*, 2008, 1289–1292.

- 8 R. F. Borch, M. D. Bernstei and H. D. Durst, J. Am. Chem. Soc., 1971, 93, 2897–2904.
- 9 A. F. Abdel-Magid and S. J. Mehrman, Org. Process Res. Dev., 2006, 10, 971–1031.
- 10 B. C. Ranu, A. Majee and A. Sarkar, J. Org. Chem., 1998, 63, 370– 373.
- 11 H. Alinezhad, M. Tajbakhsh and R. Zamani, Synlett, 2006, 431-434.
- 12 M. D. Bomann, I. C. Guch and M. Dimare, J. Org. Chem., 1995, 60, 5995–5996.
- 13 A. Heydari, S. Khaksar, M. Esfandyari and M. Tajbakhsh, *Tetrahe*dron, 2007, 63, 3363–3366.
- 14 (a) S. C. A. Sousa and A. C. Fernandes, *Adv. Synth. Catal.*, 2010, 352, 2218–2226; (b) J. J. Kangasmetsa and T. Johnson, *Org. Lett.*, 2005, 7, 5653–5655.
- 15 (a) S. Enthaler, Catal. Lett., 2011, 141, 55–61; (b) S. Enthaler, ChemCatChem, 2010, 2, 1411–1415.
- 16 (a) H. Kato, I. Shibata, Y. Yasaka, S. Tsunoi, M. Yasuda and A. Baba, *Chem. Commun.*, 2006, 4189–4191; (b) T. Suwa, E. Sugiyama, I. Shibata and A. Baba, *Synthesis*, 2000, 789–800.
- 17 W. Y. Liao, Y. F. Chen, Y. X. Liu, H. F. Duan, J. L. Petersen and X. D. Shi, *Chem. Commun.*, 2009, 6436–6438.
- 18 M. Suginome, Y. Tanaka and T. Hasui, Synlett, 2006, 1047-1050.
- 19 C. Simion, A. M. Simion, T. Arimura, A. Miyazawa and M. Tashiro, Lett. Org. Chem., 2010, 7, 388–391.
- 20 M. Periasamy and M. Thirumalaikumar, J. Organomet. Chem., 2000, 609, 137–151.
- 21 S. Bhattacharyya, K. A. Neidigh, M. A. Avery and J. S. Williamson, Synlett, 1999, 1781–1783.
- 22 S. Bhattacharyya, J. Org. Chem., 1995, 60, 4928-4929.
- 23 I. Saxena, R. Borah and J. C. Sarma, J. Chem. Soc., Perkin Trans. 1, 2000, 503–504.
- 24 B. T. Cho and S. K. Kang, *Tetrahedron*, 2005, 61, 5725–5734.
- 25 A. Heydari, S. Khaksar, J. Akbari, M. Esfandyari, M. Pourayoubi and M. Tajbakhsh, *Tetrahedron Lett.*, 2007, 48, 1135–1138.
- 26 A. Heydari, A. Arefi and M. Esfandyari, J. Mol. Catal. A: Chem., 2007, 274, 169–172.
- 27 H. Alinezhad, M. Tajbakhsh and R. E. Ahangar, Monatsh. Chem., 2008, 139, 21–25.
- 28 H. Alinezhad, M. Tajbakhsh and N. Mahdavi, Synth. Commun., 2010, 40, 951–956.
- 29 H. Alinezhad, M. Tajbakhsh and N. Hamidi, *Turk. J. Chem.*, 2010, 34, 307–312.
- 30 R. S. Varma and R. Dahiya, Tetrahedron, 1998, 54, 6293-6298.
- 31 H. Alinezhad and Z. Tollabian, Bull. Korean Chem. Soc., 2010, 31, 1927–1930.
- 32 M. Tajbakhsh, R. Hosseinzadeh, H. Alinezhad, S. Ghahari, A. Heydari and S. Khaksar, *Synthesis*, 2011, 490–496.
- 33 H. Y. Lü, S. H. Yang, J. Deng and Z. H. Zhang, Aust. J. Chem., 2010, 63, 1290–1296.
- 34 Z. H. Zhang, H. Y. Lü, S. H. Yang and J. W. Gao, J. Comb. Chem., 2010, 12, 643–646.

- 35 (a) Z. H. Zhang, L. Yin, Y. M. Wang, J. Y. Liu and Y. Li, Green Chem., 2004, 6, 563–565; (b) Y. H. Liu, Q. S. Liu and Z. H. Zhang, J. Mol. Catal. A: Chem., 2008, 296, 42–46; (c) Y. H. Liu, Z. H. Zhang and T. S. Li, Synthesis, 2008, 3314–3318; (d) Z. H. Zhang, J. J. Li and T. S. Li, Ultrason. Sonochem., 2008, 15, 673–676; (e) Z. H. Zhang and Y. H. Liu, Catal. Commun., 2008, 9, 1715–1719; (f) Y. H. Liu, Q. S. Liu and Z. H. Zhang, Tetrahedron Lett., 2009, 50, 916–921; (g) H. J. Wang, L. P. Mo and Z. H. Zhang, ACS Comb. Sci., 2011, 13, 181–185.
- 36 L. Ma'mani, M. Sheykhan, A. Heydari, M. Faraji and Y. Yamini, *Appl. Catal.*, A, 2010, 377, 64–69.
- 37 B. Blank, M. Madalska and R. Kempe, Adv. Synth. Catal., 2008, 350, 749–758.
- 38 J. B. Steevens and U. K. Pandit, Tetrahedron, 1983, 39, 1395-1400.
- 39 G. K. S. Prakash, C. Do, T. Mathew and G. A. Olah, *Catal. Lett.*, 2010, **137**, 111–117.
- 40 P. A. Dub, M. Rodriguez-Zubiri, C. Baudequin and R. Poli, *Green Chem.*, 2010, **12**, 1392–1396.
- 41 D. L. Guo, H. Huang, Y. Zhou, J. Y. Xu, H. L. Jiang, K. X. Chen and H. Liu, *Green Chem.*, 2010, **12**, 276–281.
- 42 Z. R. Yu, S. Alesso, D. Pears, P. A. Worthington, R. W. A. Luke and M. Bradley, J. Chem. Soc., Perkin Trans. 1, 2001, 1947–1952.
- 43 L. R. Knöpke, N. Nemati, A. Köckritz, A. Brückner and U. Bentrup, *ChemCatChem*, 2010, 2, 273–280.
- 44 Y. Matsushita, N. Ohba, S. Kumada, T. Suzuki and T. Ichimura, *Catal. Commun.*, 2007, 8, 2194–2197.
- 45 I. Linzaga, J. Escalante, M. Munoz and E. Juaristi, *Tetrahedron*, 2002, 58, 8973–8978.
- 46 V. V. Kouznetsov, L. Y. V. Méndez, M. Sortino, Y. Vásquez, M. P. Gupta, M. Freile, R. D. Enriz and S. A. Zacchino, *Bioorg. Med. Chem.*, 2008, 16, 794–809.
- 47 C. L. Devi, O. S. Olusegun, C. Kumar, V. J. Rao and S. Palaniappan, *Catal. Lett.*, 2009, **132**, 480–486.
- 48 C. X. Zhang, Z. M. Ge, T. M. Cheng and R. T. Li, *Bioorg. Med. Chem. Lett.*, 2006, 16, 2013–2016.
- 49 S. C. Yang, Y. C. Hsu and K. H. Gan, *Tetrahedron*, 2006, 62, 3949– 3958.
- 50 H. V. Bailey, W. Heaton, N. Vicker and B. V. L. Potter, *Synlett*, 2006, 2444–2448.
- 51 B. C. Ranu, A. Sarkar and A. Majee, J. Org. Chem., 1997, 62, 1841– 1842.
- 52 P. Yin and T.-P. Loh, Org. Lett., 2009, 11, 3791-3793.
- 53 J. L. Romera, J. M. Cid and A. A. Trabanco, *Tetrahedron Lett.*, 2004, 45, 8797–8800.
- 54 A. D. Averin, M. A. Ulanovskaya, V. V. Kovaleva, A. K. Buryak, B. S. Orlinson, I. A. Novakov and I. P. Beletskaya, *Russ. J. Org. Chem.*, 2010, 46, 64–72.
- 55 T. Itoh, K. Nagata, M. Miyazaki, H. Ishikawa, A. Kurihara and A. Ohsawa, *Tetrahedron*, 2004, **60**, 6649–6655.
- 56 B. Sreedhar, P. S. Reddy and D. K. Devi, J. Org. Chem., 2009, 74, 8806–8809.
- 57 R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, *Acc. Chem. Res.*, 1998, **31**, 485–493.

Downloaded by University of Hong Kong Libraries on 05/04/2013 04:49:25. Published on 29 July 2011 on http://pubs.rsc.org | doi:10.1039/CIGCI5470B