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Chiral phosphite–urea bifunctional catalysts have been developed 

for the first enantioselective bromocyclization of 2-geranylphenols 

with N-bromophthalimide (NBP).  The chiral triaryl phosphite 

moiety activates NBP to generate a bromophosphonium ion.  On 

the other hand, the urea moiety interacts with a hydroxyl group of 

the substrate through hydrogen bonding interactions.  

Enantioselectivity is effectively induced through two-point 

attractive interactions between the catalyst and substrate. 

Optically active bromine-containing natural products isolated 

from marine organisms have been shown to possess several 

bioactivities such as anticancer and antiviral activities.
1
  These 

natural products are biosynthesized by enantioselective 

bromocyclization induced by enzymes such as vanadium 

bromoperoxidase (V-BPO).
2
  For example, in the biosynthesis 

of isoaplysin-20, the bromonium ion generated in the active 

site of V-BPO reacts with the terminal olefin of geranylgeraniol 

site- and enantioselectively.  Subsequent diastereoselective π-

cation cyclization gives isoaplysin-20.
3
  While the 

diastereoselective bromocyclization of linear polyprenoids has 

been studied for about 50 years,
4,5

 there have been few 

reports on the enantioselective bromocyclization of 

polyprenoids induced by chiral catalysts.
6
  In 2010, Snyder and 

colleagues demonstrated enantioselective bromocyclization 

with stoichiometric amounts of a Hg(OTf)2–chiral 

bis(oxazoline) complex.
6a

  In 2013, Braddock and colleagues 

reported that enantiospecific polyene cyclization was initiated 

by the formation of an enantiopure bromiranium ion.
6b

  

However, these methods require stoichiometric amounts of 

promoters or multiple reaction steps. 

Since 2007, we have also developed nucleophilic 

phosphorous(III) catalysts bearing protic functional groups, 3 

and 4, for the halocyclization of polyprenoids (Scheme 1).
7–14

  

Catalysts 3 and 4 activate N-halosuccinimides (X = I and Br) to 

generate active halophosphonium salt species in situ (Scheme 

2).  This activation step proceeds smoothly via a mechanism 

that involves catching a succinimide anion with protons of the 

catalysts under equilibrium.
15

  A halophosphonium salt then 

reacts with polyprenoids at the terminal olefin of 1 to mainly 

give halogenated trans-fused AB-ring product 2.  Chiral 

phosphoramidite 3 gave iodinated product 2 (X = I) with high 

enantioselectivity.
8a

  However, a stoichiometric amount of 3 

was required to give 2 (X = I) in sufficient yield due to strong 

acid–base affinity between 3 and succinimide.  In contrast, low 

enantioselectivity was observed in the bromocyclization of 1 

using 3 under the same conditions.
8a

  More recently, we 

succeeded in the highly efficient site- and diastereoselective 

 

Scheme 1  Halocyclization of 1 with nucleophilic phosphorous catalysts (Our previous 

results). 
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Scheme 2  Proposed mechanism (Our previous results). 

bromocyclization of 1 with the use of a catalytic amount of 

achiral triaryl phosphite–urea cooperative catalyst 4 to give 

brominated product 2 (X = Br) in excellent yield.
8c,d

  

Nevertheless, we still have not achieved a catalytic 

enantioselective halocyclization of 1. 

One reason why enantioselective bromocyclization is 

difficult is that the three-membered cyclic bromiranium ion 

rapidly transfers to other olefins.
16

  In the course of 

bromiranium ion–olefin transfer, the enantioenriched 

bromiranium ion is racemized.  We envisioned that 

bromiranium ion–olefin transfer might be suppressed by 

second non-covalent bonding interaction between a substrate 

and a catalyst.  Here we describe the rational design of chiral 

phosphite–urea bifunctional catalysts for the enantioselective 

bromocyclization of 2-geranylphenols. 

We first examined the bromocyclization of 2-geranylphenol 

5a with chiral phosphite–urea bifunctional catalysts 8 (Table 

1).  The reaction was conducted with 1.1 equivalents of N-

bromosuccinimide (NBS) as the brominating reagent in the 

presence of 10 mol % of 8a in toluene at –40 °C for 6 h.  As a 

result, trans-fused brominated AB-ring product 6a was 

obtained in 30% yield with 18% ee together with endo- and 

exo-isomeric A-ring products 7a in 56% yield with 39% ee 

(entry 1).
17,18

  A-ring products 7a could be converted to a 

diastereomeric mixture of trans- and cis-fused AB-ring 

products 6a (trans : cis = 3 : 1) by treatment with TfOH, and 

the enantioselectivity was determined at this stage.
19

  

Interestingly, 7a were obtained with higher enantioselectivity 

than 6a.  Next, we examined the use of other brominating 

reagents in place of NBS.  Both the reactivity and 

enantioselectivity were decreased with N-bromoacetamide 

(NBA) (entry 2).  In contrast, the use of 2,4,4,6-tetrabromo-2,5-

cyclohexadienone (TBCO) and N-bromophthalimide (NBP) 

slightly increased the enantioselectivity (entries 3 and 4).  

Thus, we chose NBP because it was less expensive than TBCO.  

Next, we examined the solvent effect.  The enantioselectivity 

was decreased with chlorobenzene (entry 5) and the reactivity 

was decreased with mesitylene (entry 6).  The use of 8b gave 

especially high enantioselectivity for 7a, while the 

enantioselectivity of 6a was decreased (entry 7).  Moreover, 

when the concentration was lowered to 0.02 M, the 

enantioselectivity was increased to 65% (entry 8).  The 

enantioselectivity was rather decreased when the reaction was 

cooled to –60 °C (entry 9).  This result suggests that catalysts 

may aggregate under these reaction conditions.  The use of 2 

mol % of 8b was also effective, and both 6a and 7a were 

obtained without any loss of enantioselectivity (entry 10).  

Catalyst 8c was examined because in our previous studies 

chiral 3,3’-bis(triphenylsilyl)-1,1’-binphthol-derived catalysts 

were effective for inducing high enantioselectivity, such as in 

the iodo- and protocyclization of polyprenoids
8,9

 and 

iodolactonization.
11c

  However, 8c did not induce high 

enantioselectivity (entry 11).  The use of 8a was much more 

effective than the use of 8d or 8d–10 (entries 12 and 13).  

Some phosphites [P(III)] are readily oxidized to the 

corresponding phosphates [P(V)] in the presence of 

halogenating reagents and moisture or air.  Although the 

reaction was examined using phosphate 9 as a catalyst or 

without catalysts just in case, 5a was almost recovered (entries  

14 and 15).  The absolute configuration of 6a and 7a was 

determined to be (2R,4aR,9aR) by derivatization to known  

Table 1  Enantioselective bromocyclization of 5a with 8a
a
  

 

Entry Cat. Br–L Solvent 

6a 7a 

Yield 

(%)
b
 

Ee 

(%) 

Yield 

(%)
b
 

Ee 

(%)
c
 

1 8a NBS PhMe 30  18 56  39 

2 8a NBA PhMe 18  13 32  33 

3 8a TBCO PhMe 31  21 55  44 

4 8a NBP PhMe 29  21 57  43 

5 8a NBP PhCl 35   4 40  19 

6 8a NBP 1,3,5-Me3C6H3 22  24 47  36 

7 8b NBP PhMe 25  16 54  51 

8
d
 8b NBP PhMe 21  19 63  65 

9
d,e

 8b NBP PhMe 21  13 66  61 

10
d,f

 8b NBP PhMe 19  19 60  65 

11 8c NBP PhMe 21 –16 34 –21 

12 8d NBP PhMe  8  – 16  – 

13
g
 8d/10 NBP PhMe 29  – 26  – 

14 9 NBP PhMe  4  –  5  – 

15 – NBP PnMe 0 – 0 – 

a 
Unless otherwise noted, the reaction of 5a (0.1 mmol) was conducted with Br–L 

(1.1 equiv) in the presence of 8 (10 mol %) in toluene (1 mL) at –40 °C for 6 h.  
b 

Determined by 
1
H NMR analysis using tetrachloroethane as an internal standard.  

c 
Determined after treatment with TfOH (4 equiv) in i-PrNO2 (0.6 mL) at –78 °C for 

24 h.  
d 

The reaction was conducted in toluene (5 mL).  
e 

The reaction was 

conducted at –60 °C.  
f 
2 mol % of 8b was used for 12 h.  

g 
Each 10 mol % of 8d 

and 10 was used. 
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Scheme 3  Determination of the absolute configuration of 6a and 7a. 

optically active compound 11a (Scheme 3).
19

 

The substrate scope and limitations were investigated 

under the optimized conditions (Table 2).  The results showed 

that 4- or 5-substituted 2-geranylphenols were suitable as 

substrates.  A-ring products 7 were obtained in good yields 

with good enantioselectivities (65 ~ 71% ee).  In contrast, AB-

ring products 6 were obtained in low yields with low 

enantioselectivities (13 ~ 29% ee).
17

  Products 6 and 7 were 

easily separated by column chromatography on silica gel. 

Our proposed mechanism is shown in Scheme 4.  First, 

bromophosphonium ion intermediate 12 should be generated 

from 8b and NBP in situ.  The geometry of 12 is also shown by 

the Newman projection viewed along the P–Br bond.  The 

terminal alkenyl moiety of substrate 5a reacted with the 

bromonium ion of 12, which probably minimized steric 

hindrance for each other.  The approach of the bromonium ion 

to the si-face of 5a might be disfavored because of steric 

repulsion between the 3-[3,5-bis(pentafluorosulfanyl)phenyl] 

group and the dimethylmethylene group of 5a, as shown in 14.  

Therefore, the re-face approach via 13 might be favored to 

give (2R)-6a and (2R)-7a enantioselectively. 

Next, we considered why A-ring products 7a were obtained 

with higher enantioselectivity than AB-ring product 6a (Table 1 

and Scheme 4).  The cyclization step to form the A-ring should 

be different in the reaction pathways to 6a and 7a because 

both enantioselectivities were not identical.  The double-

cyclization reaction should concertedly occur via a transition 

state (TS) 15, since 6a was obtained as only a trans-fused 

diastereomer.  If 6a is formed by a stepwise mechanism, cis-

fused product 6a should also be generated as a minor 

diastereomer.  The ee value of 6a was quite low, probably due 

to rapid racemization of a chiral cyclic bromiranium ion 

intermediate
16

 or low enantioface discrimination of the 

terminal alkenyl moiety of 5a with 8b.  In contrast, A-ring 

Table 2  Enantioselective bromocyclization of 5 with NBP catalysed by 8b
a
  

 

Entry 5 (X) 6 
Yield 

(%)
b
 

Ee 

(%) 
7 

Yield 

(%)
b
 

Ee 

(%)
c
 

1 5b (4-CF3) 6b 23 29 7b 60 66 

2 5c (4-Br) 6c 18 21 7c 61 71 

3 5d (4-OMe) 6d 19 20 7d 68 67 

4 5e (4-Me) 6e 16 19 7e 56 67 

5 5f (5-Ph) 6f 28 13 7f 63 65 

a 
The reaction of 5 (0.1 mmol) was conducted with NBP (1.1 equiv) in the 

presence of 8b (10 mol %) in toluene (5 mL) at –40 °C for 6 h.  
b 

Determined by 
1
H 

NMR analysis using tetrachloroethane as an internal standard.  
c 
Determined after 

treatment with TfOH (4 equiv) in i-PrNO2 (0.6 mL) at –78 °C for 24 h. 

 

Scheme 4  Proposed mechanism for the enantioselective bromocyclization of 5a 
with NBP catalysed by 8b. 

products 7a were obtained as major products with good 

enantioselectivity.  The deprotonation of a tertiary carbocation 

intermediate to give 7a predominantly occurred in place of a 

second cyclization to give 6a.  Hydrogen bonding interactions 

between the 2-hydroxyl group of 5a and the urea moiety of 8b 

might dually suppress the second cyclization by decreasing 

nucleophilicity of the 2-hydroxy group and controlling its 

conformation.  Furthermore, these interactions might play a 

role in stabilizing TS-16 to give 7a with high 

enantioselectivity.
20

 

To ascertain the significance of the hydrogen bonding in 

the present catalysis, we examined the bromocyclization of 

geranylbenzene 17 and O-protected substrate 19 under the 
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Scheme 5  Bromocyclization of 17 and 19 with NBP catalysed by 8a. 

same conditions (Scheme 5).  In both cases, the corresponding  

brominated products were obtained in good yield with very 

low enantioselectivity.  These results suggest that a hydroxyl 

group plays a crucial role in asymmetric control.    

In conclusion, we designed chiral phosphite–urea 

bifunctional catalysts for the enantioselective 

bromocyclization of 2-geranylphenols 5.  Catalyst 8b gave A-

ring products 7 in good yield with good enantioselectivity.  

Subsequent treatment of 6 with TfOH gave trans-fused AB-ring 

products 6 as major diastereomers.  Hydrogen bonding 

interactions between the urea moiety of 8b and 2-hydroxyl 

group of the substrate strongly supported the enantioselective 

bromocyclization.  Further studies on the catalyst to improve 

enantioselectivity and catalytic activity and investigation of the 

detailed reaction mechanism are underway.  
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