

0040-4039(95)00125-5

Ring-enlargement of Cyclopropylacylsilanes with Sulfuric or Triflic Acid. Selective Formation of Cyclobutanones or 2-Silyl-4,5-dihydrofurans.

Tadashi Nakajima,* Masahito Segi, Takeshi Mituoka, Yasuyuki Fukute, Mitsunori Honda, and Kaneyuki Naitou

Department of Chemistry and Chemical Engineering, Faculty of Technology, Kanazawa University, 2-40-20 Kodatsuno, Kanazawa 920, Japan

Abstract: Reaction of cyclopropylacylsilanes with sulfuric or triflic acid in aprotic solvent affords the corresponding cyclobutanone or 2-silyl-4,5-dihydrofuran derivatives, depending upon the substituents on the three-membered ring or acid used. The use of triflic acid results in the selective formation of the dihydrofurans.

Opening of the three-membered ring of cyclopropyl ketones and cyclopropylcarbinyl compounds under acidic conditions followed by attack of a nucleophile is an area of considerable interest in organic synthesis.^{1,2} The chemical behavior of cyclopropylacylsilanes, however, has not yet been fully clarified because of their synthetic difficulty.³ Previously, we presented that a series of cyclopropylacylsilanes (1) reacted with hydrogen chloride or halogenated Lewis acids under milder conditions than their non-silylated counterparts to give the corresponding γ -halogenoacylsilanes or 2-silyl-4,5-dihydrofurans, depending upon the substituents on the three-membered ring of 1 or the acids used.⁴ However, there have been few reports on the formation of dihydrofurans from cyclopropyl ketones under acidic conditions.⁵ Furthermore, Danheiser et al. observed the isomerization of 1-methylcyclopropylacylsilane to 2-methyl-2-silylcyclobutanone in the presence of TiCl.⁶

In connection with the above observations, we report here that cyclopropylacylsilanes (1) react with *strong* acids having low nucleophilic counter anion in aprotic solvents to yield two types of ring-enlargement products, cyclobutanones (2) or 2-silyl-4,5-dihydrofuran derivatives (3), depending upon the substituents on the threemembered ring of 1 or the acids used. The results were summarized in Table 1,^{7,8}

At first, the reaction of 2-arylcyclopropylacylsilanes (1) with H_3SO_4 in THF or dimethoxyethane (DME) at

 60° C proceeded with the exclusion of the silvl group to give the corresponding 2-arylcyclobutanones (2) as sole isolable product. In this reaction, the use of DME as solvent increased the yield of 2.⁹ This result is in contrast to the previous studies^{1b,10} that cyclopropylcarbinyl-cyclobutyl ring-enlargement under acidic conditions is facilitated by the presence of electron donating substituent on 1-position of the three-membered ring.

In contrast, a similar reaction of 2,2-dimethylcyclopropylacylsilane (1d) with H_2SO_4 in THF at 20°C afforded 5,5-dimethyl-2-silyl-4,5-dihydrofuran (3d) as sole isolable product, and that of 1e resulted in the formation of a mixture of the corresponding dihydrofuran (3) and its hydrated product (3'). Incidentally, a similar reaction of 1 with H_2SO_4 in methanol was found to give the corresponding ring opening products, γ -methoxyacylsilanes (4) in high yield, regardless of substituents on the cyclopropyl ring of 1.

	A	cylsilane		Solvent	Molar	Temp	Time		Proc	lucts and Yie	eld ²⁾
_1	R ¹	R ²	R ³		ratio1)	(°C)	(h)	2 ((%)	3 (3')(%)	4 (%)
1a	Н	Ph	Н	THF	Α	60	9	2a	51		-
				DME	Α	60	2		63	-	-
				DME	в	60	2		70	-	-
1b	Н	p-MeC ₆ H ₄	Н	DME	в	60	1	2b	85	-	-
1c	Н	p-CIC ₆ H ₄	Н	DME	в	60	7	2c	63	-	-
1a	Н	Ph	Н	MeOH	Α	20	2		-	-	4a 94
1d	Me	e Me	Н	DME	Α	0	0.5		-	3d 69	-
				MeOH	Α	20	3		-	-	4d 96
1e	Н	-(CH ₂)	4-	THF	Α	20	5		-	3e 20 (10)	-
				MeOH	Α	20	6		-		4e 95

Table 1. Reaction of Cyclopropylacylsilanes (1) with Sulfuric Acid

1) A; 1:H₂SO₄:solvent=1:1:40~100, B; 1:H₂SO₄:solvent=1:2.5:100. 2) Based on 1 and determined by GC.

Interestingly, the selective conversion of 1 to dihydrofurans 3 was achieved by use of triflic acid (TfOH) in DME at -20°C or trimethylsilyl triflate (TfOSiMe₃) in CH_2Cl_2 at -80°C. The results were shown in Table 2.^{7,8} In these reactions, the use of excess amounts of the acid in low concentration was effective for the formation of 3, and no cyclobutanones and acyclic products were detected.

Acylsilane	Acid	Molar	Temp	Time	Products and Yield 2)		
1		ratio1)	(°C)	(min)	3	(%)	
1a	TfOH	Α	-20	15	3a	75	
	TfOSiMe ₃	В	-80	5		>99	
1b	TfOH	Α	-20	15	3b	62	
1c	TfOH	Α	-20	120	3c	47	
1d	TfOH	Α	-20	15	3d	52	
	TfOSiMe ₃	В	-80	5		>99	
1e	TfOH	Α	-20	15	3e	81	
	TfOSiMe ₃	в	-80	5		>99	

 Table 2.
 Selective Conversion of Cyclopropylacylsilanes (1) with Triflic Acid or Trimethylsilyl Triflate into 2-Silyl-4,5-dihydrofurans (3)

1) A; 1:TfOH:DME=1:10:400. B; 1:TfOSiMe₃:CH₂CH₂=1:50:200.

2) Isolated yield based on 1

In order to elucidate the reaction mechanism based on the facts that 1a (*trans*) was obtained quantitatively by the isomerization of the *cis* isomer (1a') with acids¹¹ and that dihydrofurans (3) were labile under acidic or high temperature conditions, we next measured changes of the products distribution in the reaction of 2-phenylcyclopropylacylsilane (1a/1a'=30/70) with an equivalent of H_2SO_4 in DME at 20°C. As shown in Figure 1, 1a' rearranged rapidly to 1a in the initial stage of reaction, and the amount of 3areached a maximum after 20 min and then decreased gradually with a concomitant accumulation of 2a. In addition, we confirmed separately that 3a reacted with an equivalent of H_2SO_4 in DME at 60°C to give 2a in ca 50 % yield.

Figure 1. The Reaction of 2-Phenylcyclopropylacylsilane (1a/1a'=30/70) with H_2SO_4 in DME at 20°C. [Molar ratio; $1:H_2SO_4:DME=1:1:40$]

A reasonable reaction pathways are shown in Scheme 2. The initial reaction with sulfuric acid involves the protonation of carbonyl group of the acylsilanes (1) followed by a series of cationic migrations involving ring opening of cyclopropyl group to form the four intermediary cationic species (**B**, **C**, **D** and **E**) in equilibrium. In the reaction of 2-arylcyclopropylacylsilanes ($1a \sim c$) with H_2SO_4 , cyclobutyl cation **D** rearranged to cation **E** in which the cation center is stabilized by the adjacent aryl group and by β -silicon effect.¹² Subsequent desilylation with ⁻OSO₃H proceeds irreversively¹³ and results in the formation of 2-arylcyclobutanones $2a \sim c$ through the unstable cyclobutenol **F**. In the case of acylsilanes bearing alkyl substituents on 2-positions of the three-memberd ring, the equilibrium may be lain to 1-oxacyclopent-2-enyl cation species (**C**) followed by work-up with water to give the 2-silyldihydrofurans (**3**) or by the rearrangement to 1-oxacyclopent-1-enyl cation (**C**')^{2a,2d} to give 2-hydroxy-2-silyloxolanes (**3**'). The exclusive formation of **3** in the reaction with TfOH or TfOSiMe₃ suggests that the exclusion of the silyl group from the cation species **E** does not proceed owing to the lower nucleophilicity of ⁻OTf compared with ⁻OSO₃H.

On the other hand, the reaction in the presence of methanol proceeds through acyclic cation B or C' to give the corresponding γ -methoxyacylsilanes (4) due to the highly nucleophilic nature of methanol.

Acknowledgment. We thank the Ministry of Education, Science, and Culture, Japan for a Grant-in-Aid for Scientific Research.

REFERENCES AND NOTES

- For recent reviews on cyclopropane derivatives, see (a) Wong, H. N. C.; Hon, M-Y.; Tse, C-W.; Yip, Y-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165-198. (b) Trost, B. M. In Small Ring Compounds in Organic Synthesis I; de Meijere, A., Ed.; Springer-Verlag: Berlin, 1986; pp. 3-82.
- (a) Pittman, C. U., Jr.; McManus, S. P. J. Am. Chem. Soc. 1969, 91, 5915-5918. (b) Nakai, T.; Wada, E.; Okawara, M. Tetrahedron Lett. 1975, 1531-1534. (c) Caine, D.; Boucugnani, A. A.; Chu, C-Y.; Graham, S. L.; Smith, T. L., Jr. ibid. 1978, 2667-2670. (d) Marphy, W. S.; Hantawong, K. J. Chem. Soc., Perkin Trans. 1, 1983, 817-819. (e) Vankar, Y. D.; Kumaravel, G.; Rao, C. T. Synth. Commun. 1989, 19, 2181-2198, and references cited therein.
- 3. Ricci, A.; Degl'Innocenti, A. Synthesis 1989, 647-660.
- 4. Nakajima, T.; Miyaji, T; Segi, M.; Suga, S. Chem. Lett. 1986, 181-182.
- (a) Boykin, D. W., Jr.; Lutz, R. E. J. Am. Chem. Soc. 1964, 86, 5046-4047. (b) Lee-Ruff, E.; Khazanie, P. Can. J. Chem. 1975, 53, 1708-1713. (c) Cook, M. P., Jr. J. Org. Chem. 1979, 44, 2461-2468. (d) Recently, similar silyldihydrofurans were synthesized by an alternate method.: Miwa, K.; Aoyama, T.; Shioiri, T. Synlett 1994, 46-462.
- 6. Danheiser, R. L.; Hink, D. M. Tetrahedron Lett. 1985, 26, 2513-2516.
- 7. General procedure for the reaction. To a solution of cyclopropylacylsilanes (1, 0.5 mmol) in THF or DME (2 mL) was added a solution of excess amounts (1~40 equivalents) of concentrated H₂SO₄ or TfOH in the solvent dropwise at a given temperature. After being stirred until 1 was almost consumed, the resulting mixture was poured into icewater containing NaHCO₃, washed with brine and extracted with ether. The extract was concentrated and distilled *in vacuo* to give 2 or 3.
- 8. The selected physical data for 2 and 3 are as follows. 2a: bp. $72^{\circ}C$ (0.5 Torr). ¹H-NMR and IR were in accord with the reported data.¹⁵ ¹³C-NMR (CDCl₃) δ 17.6 (t, ¹J_{CH}=140Hz), 44.8 (t, ¹J_{CH}=143Hz), 64.4 (d, ¹J_{CH}=132Hz), 126.9 (d, ¹J_{CH}=158Hz), 128.6 (d, ¹J_{CH}=160Hz), 136.4 (s), 207.7 (s). 2b: bp. 102°C (0.3 Torr). ¹H-NMR (CDCl₃) δ 2.1~ 2.7 (m, 2H), 2.3 (s, 3H), 3.0~3.3 (m, 2H), 4.5 (t, *J*=9.2Hz, 1H), 7.13 (m, 4H). IR(cm⁻¹) 1780, 1510, 1460, 1175, 1140, 805. 2c: bp. 104°C (0.5 Torr). ¹H-NMR (CDCl₃) δ 2.0~2.8 (m, 2H), 2.8~3.4 (m, 2H), 4.5 (t, *J*=9.2Hz, 1H), 6.9~7.5 (m, 4H). IR(cm⁻¹) 1780, 1620, 1495, 1400, 1095, 1015, 820. 3a: bp. 85°C (0.3 Torr). ¹H-NMR (CDCl₃) δ 0.20 (s, 9H), 2.54 (ddd, *J*=2.6, 7.7, 15.7Hz, 1H), 3.11 (ddd, *J*=2.6, 10.8, 15.7Hz, 1H), 5.15 (t, *J*= 2.6Hz, 1H), 5.51 (dd, *J*=7.7, 10.8Hz, 1H), 7.25~7.34 (m, 5H). IR(cm⁻¹) 1600, 1500, 1100, 840. 3b: bp. 100°C (0.3 Torr). ¹H-NMR (CDCl₃) δ 0.20 (s, 9H), 2.33 (s, 3H), 2.53 (ddd, *J*=2.6, 7.8, 15.7Hz, 1H), 3.08 (ddd, *J*=2.6, 10.6, 15.7Hz, 1H), 5.14 (t, *J*=2.6Hz, 1H), 5.47 (dd, *J*=7.8, 10.6Hz, 1H), 7.25~7.34 (m, 5H). IR(cm⁻¹) 1600, 1250, 1100, 850. 3c: bp. 105~110°C (0.3 Torr). ¹H-NMR (CDCl₃) δ 0.20 (s, 9H), 2.49 (ddd, *J*=2.5, 7.7, 15.6Hz, 1H), 3.18 (ddd, *J*=2.5, 10.8, 15.6Hz, 1H), 5.14 (t, *J*=2.6Hz, 1H), 5.14 (t, *J*=2.5Hz, 1H), 5.48 (dd, *J*=7.7, 10.8Hz, 1H), 7.15~7.35 (m, 5H). IR(cm⁻¹) 1600, 1250, 1100, 850. 3c: bp. 105~110°C (0.3 Torr). ¹H-NMR (CDCl₃) δ 0.20 (s, 9H), 2.39 (ddd, *J*=7.7, 10.8Hz, 1H), 7.15~7.35 (m, 5H). IR(cm⁻¹) 1604, 1250, 1100, 850. 3d: bp. 55 °C (40 Torr). ¹H-NMR (CDCl₃) δ 0.11 (s, 9H), 1.31 (s, 3H), 2.37 (d, *J*=2.5Hz, 2H), 5.0 (t, *J*=2.5Hz, 1H). IR(cm⁻¹) 1450, 1250, 1090, 840. 3e: bp. 38°C (0.2 Torr). ¹H-NMR (CDCl₃) δ 0.11 (s, 9H), 1.31 (s, 3H), 2.37 (d, *J*=2.5Hz, 2H), 5.0 (t, *J*=2.5Hz, 1H). IR(cm⁻¹) 1450, 1250, 1090, 840. 3e: bp. 38°C (0.2 Torr). ¹H-NMR (CDCl₃) δ 0.14 (s, 9H), 1.0~2.1 (m, 8H), 2.5~2.8 (m, 1H), 4.3
- 9. The formation of 2-silylcyclobutanone derivatives⁶ could not be observed in our system.
- Richey, H. G., Jr. In *Carbonium Ions III*; Olah, G. A.; Schleyer, P. v. R., Ed.; John Wiley & Sons: New York, 1972; pp. 1201-1294, and references cited therein.
- (a) Nakajima, T.; Segi, M.; Sugimoto, F.; Hioki, R.; Yokota, S.; Miyashita, K. *Tetrahedron* 1993, 49, 8343-8358.
 (b) It has recently been reported that *cis*-2-hydroxymethylcyclopropyl ketones isomerize under acidic conditions to give the *trans* isomer.: Dechoux, L.; Doris, E. *Tetrahedron Lett.* 1994, 35, 2017-2020.
- 12. Shimizu, N. Reviews on Heteroatom Chem. 1993, 9, 155-179, and references cited therein.
- 13. ¹H-NMR δ values [0.21(1a) and 0.05 ppm(1a')] of SiMe₃ in the initial reaction mixture were shifted to 0.4 ppm based on Me₃SiOSO₃H with the progress of reaction and then observed at 0.1 ppm ((Me₃Si)₂O) after quenching.
- TfOH has been known to be stronger acid than H₂SO₄: Olah, G. A.; Prakash, G. K. S.; Sommer, J. Superacid; John Wiley & Sons: New York, 1985; pp. 1-64.
- 15. Crandall, J. K.; Conover, W. J. Org. Chem. 1978, 43, 3533-3535.

(Received in Japan 24 September 1994; revised 6 December 1994; accepted 13 January 1995)