# Cyclopalladated Complexes Derived from Diphenylhydrazones and their Transmetallation Reaction

# Fernando Ortega-Jiménez, Elizabeth Gómez, Pankaj Sharma, M. Carmen Ortega-Alfaro, Rubén A. Toscano, and Cecilio Alvarez-Toledano\*

México D.F. / México, Instituto de Química-Universidad Nacional Autonoma de Mexico

Received April 15th, 2002.

 $-C \equiv C-Ph$ ) (3). The complexes **2a-2c** and compound **3** were characterized by IR, Mass, <sup>1</sup>H, <sup>13</sup>C, and 2D NMR spectroscopy. X-ray structure of complex **2c** was also determined.

**Keywords**: Palladium; Cyclopalladated complexes; Hydrazones; Transmetallation; Crystal structure

### Cyclopalladierte Komplexe durch Transmetallierungsreaktion mit Diphenylhydrazonen

**Inhaltsübersicht**. Einkernige Palladiumkomplexe der Art PdCl(Ph<sub>2</sub>N-N=CR<sub>1</sub>-C-R<sub>2</sub>=N-NPh<sub>2</sub>), mit R<sub>1</sub>=R<sub>2</sub>=H (**2a**), R<sub>1</sub>= R<sub>2</sub>=CH<sub>3</sub> (**2b**) und R<sub>1</sub>=H, R<sub>2</sub>=CH<sub>3</sub> (**2c**) wurden durch Reaktion von Palladiumchlorid mit Hydrazonen dargestellt. Zusätzlich wurde die Reaktion des Komplexes **2c** mit Lithiumphenylacetylid untersucht, die  $Ph_2N-N=C(CH_3)-CH=N-N(Ph)(o-C_6H_4-C=C-Ph)$  (3) ergab. Die Komplexe **2a-c** und die Verbindung 3 wurden durch IR-, Massen-, <sup>1</sup>H-, <sup>13</sup>C- und 2D-Spektroskopie charakterisiert. Eine Röntgenstrukturanalyse von **2c** wurde ebenfalls vorgenommen.

#### Introduction

Palladium complexes have been the subject of interest due to their applications in organic synthesis [1, 2]. Various cyclopalladated complexes with tridentate N-donor ligands e.g. azines, oximes [3], hydrazones [4-11] have been reported affording to mononuclear structures, while tridentate imines present dinuclear as well as mononuclear structures [12, 13].

It has been reported earlier that cyclopalladated complexes show reactivity towards alkynes, alkenes, CO and isocyanides [1, 2, 14]. Mono-, bis- and tris-insertions of alkynes in cyclopalladated complexes are known in literature [2, 15, 16]. Reports on insertion of alkynes into the  $\sigma$ (Pd-C<sub>sp2,ferrocene</sub>) bond show different reactivity to that of  $\sigma$ (Pd-C<sub>sp2,aryl</sub>) bond [17–20].

We report herein, the synthesis and characterization of some new palladium complexes derived from N,N-diphenylhydrazones. The transpalladation of these complexes on reaction with lithium phenylacetylide was also studied.

Instituto de Química-UNAM

circuito exterior S/N, Ciudad Universitaria Coyoacán C.P. 04510

#### **Results and Discussion**

The ligands 1a-1c were prepared by condensation reaction of *N*,*N*-diphenyl hydrazine with the corresponding 1,2-dicarbonylic compounds. The reaction of 1a-1c with PdCl<sub>2</sub> afforded cyclopalladated complexes 2a-2c (Scheme 1).

The IR spectra of ligands 1a-1c show an absorption band at  $1590cm^{-1}$  corresponding to v(C=N) vibration. This band shows a slight shift (~2-5 cm<sup>-1</sup>) to higher frequency after cyclopalladation. The FAB<sup>+</sup> mass spectra show molecular ions m/z = 530 and m/z = 544 for 2a and 2c respectively. A molecular ion peak could not be observed for compound 2b, but ion peak observed at m/z = 523 represents the molecular ion with loss of a chlorine atom.

The <sup>1</sup>H and <sup>13</sup>C data are reported in Table 1. The assignments of the parameters are based on 2D experiments.

The <sup>1</sup>H spectra of 2a-2c show upfield shifts for the aromatic protons with respect to free ligands 1a-1c. Proton present at *ortho* position to the Pd-C bond (H-3) was strongly shielded after cyclopalladation in comparison to protons present at *meta* and *para* positions.

Similar to <sup>1</sup>H NMR spectra, <sup>13</sup>C NMR data of 2a-2c reveal that the aromatic carbon atoms for the cyclopalladated ring are shifted to higher frequencies in comparison to the free ligand.

The molecular structure of 2c was established by singlecrystal X-ray diffraction analysis. Structural data, selected bond lengths and angles are given in Table 2 and 3, respectively. The structure of 2c shows that the palladium atom is linked to four atoms and the bond angles at the palladium

<sup>\*</sup> Dr. C. Alvarez-Toledano

México D.F. / México

e-mail address: cecilio@servidor.unam.mx, Fax; +52 56162217

Table 1 <sup>1</sup>H and <sup>13</sup>C NMR data for 2a-2c

|            | CH <sub>3</sub> | H-3                           | H-4                             | H-5                            | H-6                              | H-o'                          | H- <i>m</i> ′            | H- <i>p</i> ′            | H-o                      | H- <i>m</i>              | Н-р                      | HC=N                  |
|------------|-----------------|-------------------------------|---------------------------------|--------------------------------|----------------------------------|-------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------|
| <b>2</b> a |                 | 5.79(1H,<br>dd,J=7.2)         | 6.63(1H,<br>J= 7.1)             | t,6.77(1H,<br>J=7.1)           | t,7.56 (1H,<br>dd,J=7.7,<br>1.7) | 7.16-<br>7.63(17H,<br>m)      | 7.16-<br>7.63(17H,<br>m) | 7.16-<br>7.63(17H,<br>m) | 7.16-<br>7.63(17H,<br>m) | 7.16-<br>7.63(17H,<br>m) | 7.16-<br>7.63(17H,<br>m) | 7.16-<br>7.63(17H, m) |
| 2b         | 1.65(3H,s)      | 2.01(3H,s)                    | 6.11(1H,<br>dd,J=7.7,<br>1.7)   | 6.67(1H,<br>td,J= 7.7,<br>1.7) | 6.75(1H,<br>td, J=7.7,<br>1.7)   | 7.46(1H,<br>dd,J=7.7,<br>1.7) | 7.48-<br>7.52(3H,m)      | 7.40(6H,<br>t, J=7.7)    | 7.48-<br>7.52(3H,m)      | 7.26(4H,d,<br>J=7.1)     | 7.40(6H,t,<br>J=7.7)     | 7.18(2H,t,<br>J=7.1)  |
| 2c         | 1.90(3H,s)      | 5.81(2H,<br>dd,J=7.7,<br>1.7) | 6.68(1H,<br>td,J= 7.7,<br>1.7)) | 6.75(1H,<br>td, J=7.7,<br>1.7) | 7.46(1H,<br>dd,J=7.7,<br>1.7)    | 7.60-<br>7.66(3H, m)          | 7.33-<br>7.38(6H,m)      | 7.60-<br>7.66(3H, m      | 7.24(4H,d,<br>J=7.1)     | 7.33-<br>7.38(6H,m)      | 7.15(2H,t,<br>J=7.1)     | 6.34(1H,s)            |

|                | -C=N                    | C-1                     | C-2                     | C-3                     | C-4            | C-5                     | C-6                     | C-i            | С-0                     | C- <i>m</i>             | С-р                     | C- <i>i</i> ′  | C- <i>o'</i>            | C- <i>m</i> ′           | C- <i>p</i> ′           |
|----------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------|-------------------------|-------------------------|----------------|-------------------------|-------------------------|-------------------------|----------------|-------------------------|-------------------------|-------------------------|
| 2a<br>2b<br>2c | 126.6<br>174.4<br>172.2 | 130.6<br>136.1<br>135.2 | 143.0<br>148.9<br>148.9 | 110.5<br>112.6<br>111.3 | 122.7<br>122.8 | 125.5<br>125.5<br>125.5 | 131.2<br>146.0<br>136.2 | 159.1<br>159.1 | 129.7<br>130.3<br>146.1 | 129.0<br>128.1<br>129.4 | 129.7<br>130.3<br>125.0 | 159.1<br>156.3 | 129.7<br>148.9<br>130.3 | 129.0<br>129.5<br>129.5 | 125.3<br>125.0<br>130.3 |



2c R<sub>1</sub>= CH<sub>3</sub> R<sub>2</sub>= H

Scheme 1

 Table 2
 Crystallographic Data for Complex 2c

| Formula                         | C27H23ClN4Pd       |
|---------------------------------|--------------------|
| Formula Weight /g $mol^{-1}$    | 545.34             |
| Crystal size (mm)               | 0.40 x 0.38 x 0.08 |
| Color                           | purple             |
| Crystal system                  | orthorhombic       |
| Space group                     | Pbca               |
| a /Å                            | 17.748(2)          |
| b /Å                            | 14.582(2)          |
| c /Å                            | 18.190(2)          |
| $a=\beta=\gamma /^{\circ}$      | 90                 |
| V/Å <sup>3</sup>                | 4794.8(10)         |
| Z                               | 8                  |
| $D_{calc}$ . /g cm <sup>3</sup> | 1.511              |
| No. of collected reflections    | 3922               |
| No. of independent reflections  | 3922               |
| No. of observed reflections     | 3922               |
| No. of parameters               | 298                |
| R <sup>a)</sup>                 | 0.0765             |
| $R_w^{(b)}$                     | 0.1361             |
| GOF                             | 0.991              |

<sup>a)</sup>  $R = \Sigma ||F_o|| - |F_c|| / \Sigma |F_o|, {}^{b}R_w(F_o)^2 = [\Sigma w(F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2}$ 

center range from 77.2(5) to 104.8(3)° giving rise to a distorted square planar structure (Figure 1). The Pd-N(5) bond length (1.96 (1) Å) *trans* to the chlorine, is slightly shorter than Pd-N(2) 2.19(1) Å distance, *trans* to the  $\sigma$ -Pd-C bond. This lengthening can be explained in terms of the *trans* influence of the  $\sigma$ -bonded carbon atom of the aryl group [5, 7]. It is important to notice, that the bond angle N(5)-N(6)-C(26) 117(1)° deviates from a previously re-

| Table 3 | Selected | bond | Lengths /A | and Angles | /° | of | 2c |
|---------|----------|------|------------|------------|----|----|----|
|---------|----------|------|------------|------------|----|----|----|

| Pd-C(27)      | 1.95(2) | C(27)-Pd-N(5)       | 81.8(6)    |
|---------------|---------|---------------------|------------|
| Pd-N(2)       | 2.19(1) | N(5) - Pd - N(2)    | 77.2(5)    |
| Pd-N(5)       | 1.96(1) | N(5)-Pd-Cl          | 177.7(4)   |
| Pd-Cl         | 2.29(4) | C(7)-N(1)-N(2)      | 114.3(10)  |
| N(1) - N(2)   | 1.44(1) | C(3) - N(2) - Pd    | 111.8(9)   |
| N(2) - C(3)   | 1.29(2) | N(2)-C(3)-C(4)      | 116.7(13)  |
| C(3) - C(19)  | 1.45(2) | C(4) - C(3) - C(19) | 117.5(13)  |
| N(5) - N(6)   | 1.38(2) | C(4) - N(5) - N(6)  | 124.7(13)  |
| N(6) - C(20)  | 1.43(2) | N(6) - N(5) - Pd    | 116.7(10)  |
| N(6) - C(26)  | 1.39(2) | C(26)-C(27)-Pd      | 115.1 (14) |
| C(26) - C(27) | 1.42(2) | N(6)-C(26)-C(27)    | 117.3(12)  |
| C(4) - N(5)   | 1.34(2) | C(28)-C(27)-Pd      | 132.7(13)  |
| C(3) - C(4)   | 1.44(2) | C(27) - Pd - N(2)   | 158.9(5)   |
|               |         | C(27)-Pd-Cl         | 96.3(5)    |
|               |         | N(2)-Pd-Cl          | 104.8(3)   |
|               |         | C(3)-N(2)-N(1)      | 115.1(11)  |
|               |         | N(1) - N(2) - Pd    | 133.0(9)   |
|               |         | N(2)-C(3)-C(19)     | 125.8(13)  |
|               |         | N(5)-C(4)-C(3)      | 115.7(13)  |
|               |         | C(4)-N(5)-Pd        | 118.6(10)  |
|               |         |                     |            |



Fig. 1 Molecular Structure for Complex 2c

ported analogous 112° [7]. The Pd-C bond distance 1.95(2) Å is shorter than those found in similar square planar palladium complexes [6,9,10,18] which could be associated with the overlapping of  $\pi$  electron cloud of aromatic ring to the *d* metal orbitals as suggested elsewhere [7].

Furthermore the reaction of **2c** in the presence of phenylacetylene and BuLi, afforded an organic compound **3** as a result of depalladation of complex **2c**, as shown in Scheme 2. IR spectrum of compound **3** shows a band at 2219 cm<sup>-1</sup> which can be assigned to v(C=C). The <sup>1</sup>H and <sup>13</sup>C NMR spectra show additional signals corresponding to the phenylacetylene fragment, which is the result of transmetallation and reductive elimination process [1,2].



Scheme 2

#### Conclusions

Some new cyclopalladated complexes were synthesised containing N-donor imine ligands. The X-ray structure of **2c** reveals the distorted square planar coordination around the palladium atom. Complex **2c** was depalladated after the insertion of  $PhC \equiv C^-$  nucleophile. Other similar reactions and their application in organic synthesis are still in progress.

#### **Experimental Section**

All reagents were obtained from commercial suppliers and used as received. Starting hydrazones were prepared by the corresponding ketones and N.N-diphenylhydrazine in ethanol according to reported procedures [20]. Infrared spectra were obtained with a Nicolet Magna 750 instrument. Melting points were measured on a Metl-b Temp II and are uncorrected. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Jeol Eclipse +300, chemical shifts (ppm) are relative to the TMS. The mass spectra were obtained on Jeol JMS-AX505 HA; The X-Ray Crystallography study for 2c was done on a Siemens P4/PC diffractometer  $\lambda_{(Mo-K\alpha)} = 0.71073$  Å, graphite monochromator, T= 293 K,  $\omega$ -2 $\theta$  scan, range 1.5 <  $\theta$  < 25°. Corrections were done for Lorentz and polarization effects. The structures were solved by direct methods; all nonhydrogen atoms were refined anisotropically by full least squares, (SHELXL-97) [21]. Absorption correction based on psi-scans was applied; hydrogen atoms bound to carbon atoms inserted at calculated position with isotropic temperature factor 1.2 times the  $U_{iso}$  of the parent carbon atom.

#### Bis(N,N' diphenylhydrazone) of glyoxal (1a)

Compound 1a was prepared from 0.3 mL (2.6 mmol) of glyoxal (40 % wt) and 1.14 g (5.2 mmol) of diphenylhydrazine. The product was obtained as a white solid 60 % yield, m.p. 207 °C.

IR (CHCl<sub>3</sub>)v<sub>max</sub>: 1590 ( C=N), 1494 (C=C) cm<sup>-1</sup>; MS (EI):  $m/z = 390 [M^+, (100)]$ , 316(19), 270(10), 222 [M<sup>+</sup>-N(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>, (10)], 168 [M<sup>+</sup>-(C<sub>14</sub>H<sub>11</sub>N<sub>3</sub>), (32)], 77(5), 45(12), 29(5), 4(8); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): 7.08 (8H, dd, J=7.68, 1.65 Hz, H-o), 7.13(2H, s, HC=N), 7.15 (4H, t, J=7.68 Hz, H-p), 7.36 (8H, td, J=7.68, 1.65 Hz, H-m) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):122.5 (C-o), 124.7 (C-p), 129.8 (C-m), 136.4 (H*C*=N), 143.4 (C-*i*) ppm.

#### Bis-N,N-diphenylhydrazone of 2,3-Butanedione (1b)

Compound **1b** was prepared from 0.21 mL (2.4 mmol) of 2,3-Butanedione and 1.05 g (4.8 mmol) of diphenylhydrazine. The product was obtained as a yellow solid 50 % yield, m.p.190.5 °C.

IR (CHCl<sub>3</sub>)v<sub>max</sub>: 1590 (C=N), 1488 (C=C) cm<sup>-1</sup>; MS (EI): m/z = 418 [M<sup>+</sup>, (100)], 390 [M<sup>+</sup>-C<sub>2</sub>H<sub>4</sub> (5)], 250 [M<sup>+</sup>- N(C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>, (65)], 209(15), 182(10), 168 [M<sup>+</sup>-(C<sub>16</sub>H<sub>16</sub>N<sub>3</sub>), (90)], 77(8), 4(9); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):1.96 (6H, CH<sub>3</sub>), 7.06-7.10 (12H, m, H-o, H-p), 7.31(8H, td, J=7.71, 1.35, Hz, H-m) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):1.6.6 (CH<sub>3</sub>), 121.9 (C-o), 123.6 (C-p), 129.1 (C-m), 148.1 (C-*i*), 162.9 (CH<sub>3</sub>C=N) ppm.

#### Bis(N,N-diphenylhydrazone) of methylglyoxal (1c)

Compound 1c was prepared from 0.35 mL (2.26 mmol) of methylglyoxal (40 % wt) and 1 g (4.5 mmol) of diphenylhydrazine. The product was obtained as a yellow solid 80 % yield, m.p.186.5 °C.

IR (CHCl<sub>3</sub>)v<sub>max</sub>: 1590 (C=N), 1490 (C=C aromatic); MS (EI): m/z = 404 [M<sup>+</sup>, (100)], 236 (M<sup>+</sup>-N(C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>, (12)), 221(10), 168 [M<sup>+</sup>- (C<sub>15</sub>H<sub>14</sub>N<sub>3</sub>), (68)], 77(8); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):1.99 (3H, s, CH<sub>3</sub>), 7.02-7.07 (6H, m, H-o, H-p), 7.11-7.19 (7H, m, H-o', H-p', HC=N), 7.28 (4H, td, J=7.70, 1.65 Hz, H-m), 740(4H, td, J=7.70, 1.65 Hz, H-m') ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):1.5.6 (CH<sub>3</sub>), 121.9 (C-o), 122.4(C-o'), 123.4 (C-p), 125.1 (C-p'), 129.1 (C-m), 130.0 (C-m'), 136.6 (HC=N), 143.1 (C-i), 148.2 (C-i'), 163.5 (CH<sub>3</sub>C=N) ppm.

#### 1-Diphenylamino-10-chloro-5-phenyl-1,3,2-diazapalladolo[1,2-b]-1,2,3-benzodiazapalladol (2a)

Compound **2a** was prepared from 0.15 g (0.385 mmol) of Bis(*N*,*N*-diphenylhydrazone) of glyoxal (**1a**) and 0.136 g (0.77 mmol) of PdCl<sub>2</sub>. the reaction mixture was stirred for 3 days at room temperature. The solid obtained was chromatographed on alumina using Hexane/CH<sub>2</sub>Cl<sub>2</sub> as eluent. The product was obtained as a purple solid 95 % yield, m.p. 202 °C<sub>dec</sub>.

IR (CHCl<sub>3</sub>) $v_{max}$ : 1593 (C=N), 1488 (C=C aromatic) cm<sup>-1</sup>; MS (FAB<sup>+</sup>): m/z = 530 [M<sup>+</sup>, (1)) 495[M<sup>+</sup>-Cl, (3)], 307(35), 107(15), 77(10) 65(5); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):5.79(1H, dd J=7.16 Hz, H-3), 6.63(1H, t, J=7.14, H-4), 6.77 (1H, t, J=7.14 Hz, H-5), 7.16-7.63(18H, m, H-6, H-o, H-m, H-p, H-o', H-m', H-p', HC=N) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):110.5 (C-3), 125.3 (C-p'), 125.5 (C-5), 126.6 (HC=N), 129.0 (C-m, C-m'), 129.7 (C-o, Cp), 130.6 (C-1), 131.2 (C-6), 143.0 (C-2) ppm.

#### 1-Diphenylamino-10-chloro-5-phenyl-2,3-dimethyl-1,3,2diazapalladolo[1,2-b], 1,2,3-benzodiazapalladol (2b)

The title compound was prepared following the procedure described for **2a** from 0.17 g (0.4 mmol) of Bis(N,N-diphenylhydrazone) of 2,3-Butanedione (**1b**) and 0.15 g (0.8 mmol) of PdCl<sub>2</sub>. The product was obtained as a purple solid (90 %), m.p. 256 °C.

IR (CHCl<sub>3</sub>) $v_{max}$ : 1595 (C=N), 1488(C=C aromatic) cm<sup>-1</sup>; MS (FAB<sup>+</sup>): m/z = 523 [M<sup>+</sup>-Cl, (2)). 307(37), 243(5), 167(4), 107(15), 77(11), 65(4);<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):1.65 (3H, s, CH<sub>3</sub>), 2.01 (3H, s, CH<sub>3</sub>), 6.11 (1H, dd, J=7.68, 1.65 Hz, H-3), 6.67 (1H, td, J=7.68, 1.65 Hz, H-4), 6.75 (1H, td, J=7.68, 1.65 Hz, H-5), 7.18 (2H, t, J=7.14 Hz, H-p'), 7.26 (4H, d, H-o'), 7.40 (6H, t, J=7.68 Hz, H-m, H-m'), 7.46 (1H, dd, J=7.68, 1.65 Hz, H-6), 7.48-7.52 (3H, m, H-o, H-p) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):18.8 (CH<sub>3</sub>), 12.6 (C-3), 148.9 (C-o'), 122.7 (C-4), 125.0 (C-p'), 125.5 (C-5), 128.1 (C-m), 129.5 (C-m'), 130.3 (C-o, C-p), 136.1 (C-I), 146.0 (C-6), 148.9 (C-2), 159.1 (C-i, C-i'), 174.4 (CH<sub>3</sub>C=N) ppm

#### 1,6-diphenylamino-10-chloro-5-phenyl-2-methyl-1,3,2diazapaladollo[1,2-b], 1,2,3-benzodiazapalladol (2c)

The title compound was prepared following the procedure described for **2a** from 0.125 g (0.309 mmol) Bis(N,N-diphenylhydrazone) of methylglyoxal (**1c**) and 0.109 g (0.618 mmol). The product was obtained as a purple solid 65 % yield, m.p. 190.5 °C.

IR (CHCl<sub>3</sub>) $v_{max}$ : 1592 (C=N), 1487 (C=C aromatic) cm<sup>-1</sup>; MS (FAB<sup>+</sup>): m/z = 544 [M<sup>+</sup>,(0.5)], 509 [M<sup>+</sup>-Cl, (2)], 307(35), 107(15), 77(10), 65(5); <sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.90 (3H, s, CH<sub>3</sub>), 5.81 (1H, dd, J=7.71, 1.65 Hz, H-3), 6.34(1H, s, HC=N), 6.68(1H, td, J=7.71, 1.65, Hz, H-4), 6.75 (1H, td, J=7.71, 1.65 Hz, H-5), 7.15 (2H, t, J=7.14 Hz, H-p'), 7.24 (4H, d, J= 7.14 Hz, H-o'), 7.33-7.38 (6H, m, H-m'), 7.46 (1H, dd, J=7.71, 1.65 Hz, H- 6), 7.60-7.66 (3H, m, H-o, H-p) ppm;  $^{13}\mathrm{C}$  NMR (75 MHz, CDCl<sub>3</sub>): 18.8 (CH<sub>3</sub>), 111.3 (C-3), 146.1 (C-o), 122.8 (C-4), 125.0 (C-p), 125.5 (C-5), 128.1 (C-p'), 129.5 (C-m), 130.3 (C-o', C-p'), 136.1 (C-1), 136.2 (C-6), 148.9 (C-2), 159.1 (C-i', C-i), 172.2 (CH<sub>3</sub>C=N) ppm.

# [*N-phenyl-N-phenyl(2-phenylethenyl)-N',N'-diphenyl hydrazone*] of methylglyoxal (3)

To a solution of 0.3 g (0.55 mmol) of **2c** in diethylether, was added a solution consisting of 0.6 mL (0.55 mmol) phenylacetylene in diethylether and 0.3 mL of BuLi 1.6M at -78 °C. The reaction mixture was allowed to warm to room temperature and after 4 h of stirring the solvent was evaporated obtaining a black oil which was chromatographed on alumina using Hexane/AcOEt as eluent. The product was obtained as a yellow solid 20 % yield, m.p. 40 °C.

MS (FAB<sup>+</sup>): m/z = 504 [M<sup>+</sup>,(11)], 404 (5), 336(20), 309(10), 295(4), 309(9), 279(22), 267(15), 167(65), 149(100), 184(15), 71(30), 57(62), 43(56), 29(23), 18(5); <sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.99 (3H, s, CH<sub>3</sub>), 6.99-7.24 (25H, m, HC=N, aromatic) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 15.6 (CH<sub>3</sub>), 85.6 (C=C), 95.1 (C=C), 115.4, 121.1, 122.7. 123.2, 123.9, 128.2, 128.5, 128.7, 128.4, 128.9, 129.0, 130.3, 130.4, 131.5, 134.1, 136.6 (H*C*=N), 140.6 146.0, 148.1(C-*i*), 163.5.(CH<sub>3</sub>*C*=N).

### Supplementary material

The crystallography data for the structural analysis have been deposited with the Cambridge Crystallographic Data Center, CCDC 185834 for compound **2c** Copies of this information may be obtained free of charge from to The director, CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: int.code+(1223)336-033;e-mail for inquiry: fileserv@ccdc.cam.ac.uk.

Acknowledgements. Financial support from DGAPA (IN216201) is acknowledged. We are grateful to *Luis Velasco Ibarra* and *Francisco Javier Pérez Flores* for recording mass spectrometry.

#### References

- [1] A.D. Ryabov, Chem Rev. 1990, 90, 403.
- [2] M. Pfeffer, Recl. Trav. Chim. Pays-Bas 1990, 109, 567.
- [3] I. Omae, Coord. Chem. Rev. 1988, 83, 137.
- [4] L. Caglioti, L. Cattalini, M. Ghedini, F. Gasparirini, P.A: Vigato, J. Chem Soc., Dalton 1972, 514.
- [5] L. Caglioti, L. Cattalini, F. Gasparrini, M. Ghedini, G. Paolucci, P.A. Vigato, *Inorg. Chim. Acta* 1973, 7, 538.
- [6] F. Gasparrini, D. Misiti, E. Cernia, Inorg. Chim. Acta 1976, 17, L3.
- [7] G. Bombieri, L. Caglioti, L. Cattalini, E. Forsellini, F. Gasparrini, R. Graziani, P.A. Vigato, *Chem. Commun.* 1971, 1415.
- [8] M. Nonoyama, C. Sugiura, Polyhedron 1982, 1, 179.
- [9] J. Granell, R. Moragas, J. Sales, J. Organomet. Chem. 1992, 431, 359.
- [10] J. Granell, R. Moragas, J. Sales, M. Font-Bardía, X. Solans, J. Chem. Soc., Dalton Trans. 1993, 1237.
- [11] J. Granell, R. Moragas, J. Sales, M. Font-Bardía, X. Solans, J. Chem. Soc., Dalton Trans. 1993, 1237.
- [12] J. M: Vila, M. Gayoso, M.T. Pereira, M. López Torres, J:J: Fernández, A. Fernández, J.M. Ortigueira, J. Organomet. Chem. 1997, 532, 171.
- [13] A. Fernández, P. Uria, J.J. Fernández M. López Torres, A. Suárez, D. Vásquez-García, M. T. Pereira, J. M. Vila, J. Organomet. Chem. 2001, 620, 8.

- [14] R. van Asselt, E.E.C.G. Gielens, R. E. Rülke, K. Vrieze, C.J. Elsevier, J. Am. Chem. Soc. 1994, 116 977.
- [15] A. D. Ryabov, R. Van Eldik, G. Le Borgne, M. Pfeffer, Organometallics 1993, 12 1386.
- [16] J. Vicente, J. A. Abad, J. Gill-Rubio, P. G. Jones, Organometallics 1995, 14, 2677.
- [17] C. López, A, Caubet, R. Bosque, X. Solans, M. Font-Bardia, J. Organomet. Chem. 2002, 645, 146.
- [18] G. Zhao, Q-G. Wang, T. C.W. Mak. J. Organomet. Chem. 1999, 574, 311.
- [19] M. Benito, C. López, X. Morvan, X. Solans, M. Font-Bardía. J. Chem. Soc., Dalton Trans. 2000, 4470.
- [20] O. L. Chapman, R. W. King, W. J. Welstead, T. J. Murphy, J. Am. Chem. Soc., 1964, 86, 4968.
- [21] G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany.