The First Total Synthesis of the Proposed Structure of Montiporyne E

Christina G. Collison,* Jian Chen, Ryan Walvoord

Department of Chemistry, Rochester Institute of Technology, Rochester, NY 14623, USA Fax +1(585)4757800; E-mail: cgcsch@rit.edu *Received 16 December 2005; revised 15 March 2006*

Abstract: Montiporyne E, a novel diacetylenic lactam isolated from the stony coral *Montipora sp.*, was shown to exhibit cytotoxicity against certain solid tumor cells. Construction of a suitably functionalized α , β -unsaturated lactam for palladium-catalyzed couplings was realized via a Beckmann rearrangement. Subsequent Sonagoshira coupling with a known alkyne chain efficiently afforded the alleged structure of the natural product.

Key words: synthesis, Beckmann, lactams, coupling reactions, alkynes

Soft corals have been extensively studied since the 1960s. In contrast, stony corals (hard coral, scleractinian) have historically been dismissed by chemists partly based on the belief that a hard coral would barely produce enough organic extract since it consists mainly of a calcarious skeleton.¹ Recently, however, hard corals have resurfaced as sources of interesting biologically active natural products.² Among the marine metabolites often found are a number of diacetylenic compounds, mostly isolated from hermaphroditic scleractinian corals such as *Montipora digitata*.^{1,3} Several new diacetylenic compounds found in the hard coral *Montipora sp.* were reported,⁴ two of which were recently synthesized.⁵

Figure 1 Supposed structure of montiporyne E

The genus *Montipora* is especially rich in acetylenic compounds that have been shown to possess antifungal, antibacterial, ichthyotoxic, and cytotoxic properties. Biological evaluation of these acetylenic compounds showed that montiporyne E(1) has moderate cytotoxicity against a small panel of human solid tumor cell lines.⁴

Based on the analysis of its structure, our retrosynthetic strategy involved a Sonogashira coupling of a lactam enol triflate **2** with the known diyne side chain 3^6 (Scheme 1). The lactam **2** was envisioned as coming from a Beckmann rearrangement of the commercially available 3-ethoxy-2-cyclohexen-1-one (**4**). Beckmann rearrangements with vinylic halides were often met with poor yields.⁷ As such, we needed to investigate a method that was compatible with a vinyl functional group so that coupling via oxidative addition with a palladium catalyst could follow.

Scheme 2 Reagents and conditions: a) PPA, 110–120 °C.

Initially, Beckmann rearrangement of *syn-* and *anti*oximes **5** and **6** was attempted with polyphosphoric acid at 110–120 °C for one hour since it had been reported that isomerization occurs under these conditions to afford exclusively one desired product, **7** (Scheme 2).⁷ The resulting reaction mixture was extracted with dichloromethane to give the crude product **7** in 34% yield.

Scheme 1 Retrosynthetic analysis of montiporyne E

1

SYNTHESIS 2006, No. 14, pp 2319–2322 Advanced online publication: 28.06.2006 DOI: 10.1055/s-2006-942441; Art ID: M08405SS © Georg Thieme Verlag Stuttgart · New York

Scheme 3 Reagents and conditions: a) NH2OH·HCl, NaOAc, EtOH, 55-60 °C, 12 h.

Since β -keto lactam 7 was difficult to extract from water, and required exorbitant amounts of dichloromethane for extraction, this method was not practical. In addition, premature formation of the β -keto lactam complicated our efforts to enolize and trap the intermediate since the lactam nitrogen was not yet protected.

Therefore our approach was modified to facilitate protection of the nitrogen. Commercially available ethoxy-2-cyclohexen-1-one (**4**) was treated with hydroxylamine hydrochloride and sodium acetate in absolute ethanol. The solution was heated to 55 °C for two hours to give the desired oxime product.^{8,9} The solid white product obtained was a 2:1 mixture of *syn/anti*-oximes (Scheme 3.)¹⁰ The two isomers could be readily distinguished by their distinctive olefinic protons: a larger olefinic shift was observed for the *syn*-oxime relative to the *anti*-oxime.¹¹

Scheme 4 Reagents and conditions: a) p-TsCl/Et₃N, THF, then 10% K₂CO₃ (80%); b) PMBCl, NaH, DMF 63%; c) Concd HCl, EtOH-H₂O (87%); d) Tf₂O, NaOH (3 N), CH₂Cl₂ (60%).

Beckmann rearrangement was facilitated by *p*-toluenesulfonyl chloride instead of polyphosphoric acid. Since these conditions were milder, only the *syn*-oxime could undergo rearrangement. We treated the recrystallized *syn*oxime **5** with *p*-toluenesulfonyl chloride and triethylamine to give the lactam **8** in 80% yield (Scheme 4).⁷ In addition to spectroscopic techniques, the structure of lactam **8** was characterized by X-ray crystallographic analysis to verify the correct direction of Beckmann rearrangement.

With the lactam **8** in hand, the nitrogen was then protected as a *p*-methoxybenzyl group (PMB). Lactam **8** was treated with PMBCl to afford PMB-protected lactam **9** in 63%yield. Next, acidic hydrolysis of **9** gave the corresponding

Synthesis 2006, No. 14, 2319–2322 © Thieme Stuttgart · New York

 β -keto lactam **10** in 87% yield. Finally, β -keto lactam **10** was converted to the desired enol triflate **2** in 60% yield via treatment with trifluoromethane sulfonic anhydride and a sodium hydroxide solution (3 N) in a two-phase system.

Scheme 5 *Reagents and conditions*: a) **3**, Pd(PPh₃)₂Cl₂, CuI, DMF (90%); b) CAN, MeCN–H₂O (88%).

The Sonogashira coupling¹² of the enol triflate **2** with diyne **3** ensued, when treated with bis(triphenylphosphine)palladium(II) dichloride and copper(I) iodide in DMF, to give the desired coupled product **11** in 90% yield (Scheme 5).¹³ Removal of PMB in **11** was achieved via treatment with CAN in acetonitrile and water at room temperature¹⁴ to afford the presumed structure of montiporyne E (**1**) in 88% yield after purification by column chromatography.

Comparison of the ¹H and ¹³C NMR spectral data of the synthetic sample with those of the natural product suggests they are not identical (Table 1). Despite the spectral differences, we are confident that we have synthesized the reported structure of montiporyne E. However, largely due to the many impurities present in the spectral data of the isolated natural product, it remains difficult to explain the observed significant shift discrepancies.¹⁵

In summary, an efficient synthetic approach to the proposed structure of the natural product montiporyne E has been explored. Our synthesis has resulted in a convergent strategy using a Sonogashira coupling for the connection of a monosubstituted diacetylenic side chain with a novel seven-membered lactam enol triflate. All spectral data for our synthesized compound **1** are in agreement with its chemical structure.

Position	¹ H 1 (ppm)	¹ H Natural (ppm)	¹³ C 1 (ppm)	¹³ C Natural (ppm)
3	6.22	6.60	131.2	115.7
5	2.58	2.75	32.9	28.2
6	2.03	1.86	28.2	23.4
7	3.27	3.35	39.7	42.9

All solvents were freshly distilled before use and anhyd THF and Et₂O were distilled under argon from Na/benzophenone. Chemical shifts in ¹H and ¹³C NMR spectra are reported relative to residual solvents. Progress of the reactions were monitored by TLC using Kodak silica gel 60 F254 pre-coated plates and visualized using UV lamps or staining with a mixture of *p*-anisaldehyde/H₂SO₄/EtOH or KMnO₄/NaOH/K₂CO₃/H₂O. The products were purified by column chromatography (SiO₂). Analytical data of all known compounds were stable were fully characterized.

4-Ethoxy-1,5,6,7-tetrahydroazepin-2-one (8)

To a solution of *syn*-3-ethoxy-2-cyclohexen-1-one (**5**; 1.0g, 6.5 mmol) in anhyd THF (25 mL) was added Et₃N (1.8 mL) at 0–5 °C, followed by addition of *p*-TsCl (1.5 g, 7.8 mmol). After stirring for an additional 1 h at this temperature, the reaction was quenched with a 10% solution of K₂CO₃ (20 mL). After removal of the ice water bath, the reaction mixture was allowed to warm to r.t. for 1 h. The solvent was removed under reduced pressure, the residue was neutralized with 1 N HCl and extracted with CH₂Cl₂ (2 × 15 mL). The combined organic layers were washed with H₂O (30 mL), brine (25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography to give the pure product **8** as colorless needles (795 mg, 80%);^{7,11} mp 117–118 °C.

IR (film): 3260, 1680,1580 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 6.08$ (br s, 1 H), 5.11 (s, 1 H), 3.82 (q, *J* = 7.0 Hz, 2 H), 3.29–3.25 (m, 2 H), 2.52 (t, *J* = 7.0 Hz, 2 H), 2.0–1.96 (m, 2 H), 1.35 (t, *J* = 7.0 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 172.9, 168.4, 97.0, 63.9, 41.4, 33.1, 27.4, 14.6.

LC-MS (APCI+): m/z = 156.1 (M + H), 311.0 (2 M + H).

4-Ethoxy-*N*-(*p*-methoxybenzyl)-1,5,6,7-tetrahydroazepin-2-one (9)

To a solution of **8** (50 mg, 0.3 mmol) in anhyd DMF (1 mL), was added NaH (60%; 15.4 mg, 0.4 mmol) at r.t., followed by the addition of PMBCl (65 μ L, 0.5 mmol). The reaction mixture was stirred at r.t. for 6 h and then quenched with H₂O (5 mL). The mixture was extracted with EtOAc (2 × 8 mL), the combined organic phases were washed with brine (10 mL), dried over MgSO₄, filtered, and concentrated. The residue was purified by column chromatography to give the pure product **9** as a yellow oil (55 mg, 63%).

IR (film): 1680, 1520, 1260 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.25 (d *J* = 8.7 Hz, 2 H), 6.86 (d, *J* = 8.7 Hz, 2 H), 5.15 (s, 1 H), 4.61 (s, 2 H), 3.81 (s, 3 H), 3.80 (q, *J* = 7.0 Hz, 2 H), 3.31 (dd, *J* = 7.4, 6.0 Hz, 2 H), 2.36 (t, *J* = 7.3 Hz, 2 H), 1.81–1.75 (m, 2 H), 1.34 (t, *J* = 7.0 Hz, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 166.2, 159.3, 130.8, 129.9, 116.5, 114.3, 96.8, 63.9, 55.6, 50.4, 46.8, 31.1, 27.8, 14.7.

LC/MS (APCI+): m/z = 276.0 (M + H).

HRMS (ESI): m/z calcd for $C_{16}H_{21}O_3N$ [M⁺]: 275.1516; found: 275.15201.

N-(p-Methoxybenzyl)azepane-2,4-dione (10)

To a solution of **9** (231 mg, 0.8 mmol) in EtOH (3 mL), was added H_2O (3 mL) and concd HCl (1 mL). The mixture was heated to 50 °C for 2–3 h, then cooled to r.t. The mixture was poured into an ice bath, neutralized with a 10% solution of K_2CO_3 (10 mL), and then extracted with EtOAc (2 × 10 mL). The resulting organic layers were dried over MgSO₄, filtered, and concentrated to give **10** as a pure yellow oil (180 mg, 87%).

IR (film): 1700, 1650, 1520, 1250 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.24 (d, *J* = 8.7 Hz, 2 H), 6.87 (d, *J* = 8.7 Hz, 2 H), 4.59 (s, 2 H), 3.81 (s, 3 H), 3.61 (s, 2 H), 3.52 (t, *J* = 6.0 Hz, 2 H), 2.54 (t, *J* = 7.1 Hz, 2 H), 1.79 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 203.5, 167.0, 159.2, 129.6 (2 C), 129.2, 114.1 (2 C), 55.2, 52.2, 50.1, 46.2, 41.6, 25.5.

HRMS (ESI): m/z calcd for $C_{14}H_{17}O_3NNa$ [M + Na]: 270.1101; found: 270.1093.

Trifluoromethanesulfonic Acid *N*-(*p*-Methoxybenzyl)-2-oxoazepan-4-yl Ester (2)

To a solution of **10** (146 mg, 0.6 mmol) in CH_2Cl_2 (4 mL) was added an aq solution of NaOH (3 N, 4 mL), followed by the dropwise addition of Tf₂O (0.2 mL, 1.2 mmol) at 0 °C. The resulting mixture was slowly warmed to r.t. over 12 h. The mixture was diluted with CH_2Cl_2 (10 mL) and the phases separated. The organic phase was washed with H₂O (15 mL) and brine (15 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography to give **2** as a colorless oil (133 mg, 60%).

¹H NMR (400 MHz, CDCl₃): δ = 7.23 (d, *J* = 8.6 Hz, 2 H), 6.90 (d, *J* = 8.6 Hz, 2 H), 6.19 (s, 1 H), 4.61 (s, 2 H), 3.82 (s, 3 H), 3.39 (m, 2 H), 2.65 (t, *J* = 7.1 Hz, 2 H), 1.89 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 164.0, 159.2, 156.9, 129.6 (2 C), 128.8, 118.8, 113.9 (2 C), 55.2, 50.7, 45.8, 43.4, 31.7, 26.3.

LC-MS (APCI+): m/z = 380.0 (M + H).

N-(*p*-Methoxybenzyl)-4-undeca-1,3-diynyl-1,5,6,7-tetrahydroazepin-2-one (11)

To a solution of enol triflate **2** (29 mg, 0.08 mmol) and diacetylene **3** (13.6 mg, 0.09 mmol) in DMF (2 mL) was added CuI (2.9 mg, 0.2 mmol) and Pd(PPh₃)₂Cl₂ (5.4 mg, 0.1 mmol), followed by the addition of Et₃N (21.5 μ L, 0.15 mmol) at r.t. The solution was stirred for 12 h and then diluted with Et₂O (8 mL). The organic phase was washed with a sat. solution of NaHCO₃, a sat. solution of NH₄Cl (10 mL), H₂O (10 mL), and brine (15 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by column chromatography to afford **11** as a brown oil (26 mg, 90%).

IR (film): 2920, 2240, 1640, 1510, 1460, 1210 cm⁻¹.

¹H NMR (400 MHz, CD₃OD): δ = 7.25 (d, J = 8.6 Hz, 2 H), 6.89 (d, J = 8.6 Hz, 2 H), 6.30 (s, 1 H), 4.58 (s, 2 H), 3.78 (s, 3 H), 3.36 (t, J = 6.20 Hz, 2 H), 2.37 (t, J = 7.1 Hz, 2 H), 2.35 (t, J = 7.5 Hz, 2 H), 1.79 (m, 2 H), 1.55 (m, 2 H), 1.42–1.40 (m, 2 H), 1.34–1.31 (m, 6 H), 0.91 (t, J = 6.6 Hz, 3 H).

¹³C NMR (100 MHz, CD₃OD): δ = 168.3, 159.4, 131.7, 130.6, 129.4, 129.2 (2 C), 113.6 (2 C), 87.1, 77.8, 74.1, 64.0, 54.2, 49.4, 45.5, 31.4, 30.6, 28.4, 28.3, 28.0, 27.8, 22.2, 18.6, 12.9.

HRMS (ESI): m/z calcd for $C_{25}H_{33}O_2N$ [M + H]⁺: 378.2428; found: 378.2413.

4-Undeca-1,3-diynyl-1,5,6,7-tetrahydroazepin-2-one (1)

To a solution of **11** (5 mg, 13.3 mol) in H_2O (0.2 mL) and MeCN (0.8 mL), CAN (36 mg, 0.07 mmol) was added at r.t. The mixture was stirred for 2–5 h, then poured into H_2O (5 mL), and extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with a sat. solution of NaHCO₃ (5 mL), H_2O (5 mL), brine (10 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography to give **1** as a white foam (3 mg, 88%).

IR (film): 3320–3180, 2220, 1660 cm⁻¹.

¹H NMR (400 MHz, CD₃OD): δ = 6.22 (s, 1 H), 3.27 (t, *J* = 4.4 Hz, 2 H), 2.58 (t, *J* = 6.9 Hz, 2 H), 2.42 (t, *J* = 6.9 Hz, 2 H), 2.03 (quin, *J* = 6.7 Hz, 2 H), 1.60 (quin, *J* = 7.2 Hz, 2 H), 1.48–1.44 (m, 2 H), 1.38–1.31 (m, 6 H), 0.95 (t, *J* = 6.8 Hz, 3 H).

¹³C NMR (100 MHz, CD₃OD): δ = 170.1, 133.5, 131.0, 87.2, 77.7, 74.4, 64.0, 39.7, 32.9, 31.5, 28.5 (2C), 28.2, 27.8, 22.2, 18.6, 12.9.

HRMS (ESI): m/z calcd for C₁₇H₂₅ON [M + H]⁺: 258.1852; found: 258.1857.

Acknowledgment

We thank the RIT Department of Chemistry for the start-up funds for this project and the RIT honors program for an undergraduate summer research assistantship. We are indebted to Dr. Zecheng Chen and Dr. Andrew S. Kende of the University of Rochester for their helpful discussions on the project. We also thank Dr. Sandip Sur and Dr. Christine Flaschenriem of the University of Rochester for advanced spectral data of our final compound and the X-ray crystal structure.

References

(1) Higa, T.; Tanaka, J.; Kohagura, T.; Wauke, T. *Chem. Lett.* **1990**, 145.

Synthesis 2006, No. 14, 2319-2322 © Thieme Stuttgart · New York

- (2) For some early examples of metabolites from hard corals, see: (a) Alam, M.; Sanduja, R.; Welling, G. M. *Heterocycles* 1988, 27, 719. (b) Higa, T.; Sakai, R. *Chem. Lett.* 1987, 127. (c) Fusrtani, N.; Asano, M.; Matsunaga, S.; Hashimoto, K. *Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol.* 1986, 85, 845. (d) Sanduja, R.; Alam, M.; Wellington, G. E. *J. Chem. Res., Synop.* 1986, 450. (e) Sanduja, R.; Martin, G. E.; Weinheimer, A. J.; Alam, M.; Hossain, M. B.; van der Helm, D. *J. Heterocycl. Chem.* 1984, 21, 845.
- (3) (a) Coll, J. C.; Bowden, B. F.; Meehan, G. V.; Kong, G. M.; Carroll, A. R.; Tapiolas, D. M.; Alino, P. M.; Heaton, A.; De Nys, R.; Leone, P. A.; Maida, M.; Aceret, T. L.; Willis, R. H.; Babcock, R. C.; Willis, B. L.; Florian, Z.; Clayton, M. N.; Miller, R. L. *Mar. Biol.* **1994**, *118*, 177. (b) Fusetani, N.; Toyoda, T.; Asai, N.; Matsunga, S.; Maruyama, T. J. Nat. Prod. **1996**, *59*, 796.
- (4) (a) Bae, B. H.; Im, K. S.; Choi, W. C.; Hong, J.; Lee, C.-O.; Choi, J. S.; Son, B. W.; Song, J.-I.; Jung, J. H. J. Nat. Prod. 2000, 63, 1511. (b) Stefani, H. A.; Costa, I. M.; Zeni, G. Tetrahedron Lett. 1999, 40, 9215.
- (5) Speed, T. J.; Thamattoor, D. M. *Tetrahedron Lett.* 2002, 43, 367.
- (6) Dabdoub, M. J.; Baroni, A. C. M.; Lenardao, E. J.; Gianeti, T. R.; Hurtado, G. R. *Tetrahedron* **2001**, *57*, 4271.
- (7) Tamura, Y.; Kita, Y.; Matsutaka, Y.; Terashima, M. Chem. Pharm. Bull. 1971, 19, 529.
- (8) Tamura, Y.; Kita, Y.; Matsutaka, Y.; Terashima, M. Chem. Pharm. Bull. 1971, 19, 523.
- (9) Hu, H.; Jagdomann, G. E. Jr.; Hughes, P. F.; Nichols, J. B. Tetrahedron Lett. 1995, 36, 3659.
- (10) The oxime mixture could be recrystallized from EtOH to give pure *syn*-oxime **5** in 43% yield.
- (11) Tamura, Y.; Kita, Y.; Matsutaka, Y.; Terashima, M. *Chem. Pharm. Bull.* **1971**, *19*, 523.
- (12) (a) Katritzky, A. R.; Yao, J.; Qi, M. J. Org. Chem. 1997, 62, 8201. (b) Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* 1975, 16, 4467.
- (13) Miller, M. W.; Johnson, C. R. J. Org. Chem. 1997, 62, 1582.
- (14) Yamaura, M.; Suzuki, T.; Hashimoto, H.; Yoshimusa, J.;
 Okamoto, T.; Shin, C.-G. *Bull. Chem. Soc. Jpn.* **1985**, *58*, 1413.
- (15) The ¹H and ¹³C NMR spectra of natural montiporyne E were provided by Dr. Jee H. Jung, College of Pharmacy, Pusan National University, Korea.