This article was downloaded by: [New York University] On: 19 June 2015, At: 10:02 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/Incn20</u>

Fluorescence Properties and Base Pair Stability of Oligonucleotides Containing 8-Aza-7-deaza-2'-deoxyisoinosine or 2'-Deoxyisoinosine

Frank Seela^a, Georg Becher^a & Yaoming Chen^a ^a Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastr. 7, D-49069, Osnabrück, Germany Phone: +49(541)969-2791 Fax: +49(541)969-2791 E-mail: Published online: 17 Apr 2008.

To cite this article: Frank Seela , Georg Becher & Yaoming Chen (2000) Fluorescence Properties and Base Pair Stability of Oligonucleotides Containing 8-Aza-7-deaza-2'-deoxyisoinosine or 2'-Deoxyisoinosine, Nucleosides, Nucleotides and Nucleic Acids, 19:10-12, 1581-1598, DOI: 10.1080/15257770008045448

To link to this article: <u>http://dx.doi.org/10.1080/15257770008045448</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

FLUORESCENCE PROPERTIES AND BASE PAIR STABILITY OF OLIGONUCLEOTIDES CONTAINING 8-AZA-7-DEAZA-2'-DEOXYISOINOSINE OR 2'-DEOXYISOINOSINE

Frank Seela^{*}, Georg Becher and Yaoming Chen

Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastr. 7, D-49069 Osnabrück, Germany Phone: +49(541)969-2791, Fax: +49(541)969-2370, email: Fraseela@rz.uni-osnabrueck.de

ABSTRACT: The fluorescence and the base pairing properties of 8-aza-7-deaza-2'deoxyisoinosine (1) are described and compared with those of 2'-deoxyisoinosine (2). The corresponding phosphoramidites (11, 12) are synthesized using the diphenylcarbamoyl (DPC) residue for the 2-oxo group protection. The nucleosides 1 and 2 base pair with 2'-deoxy-5-methylisocytidine in DNA duplexes with antiparallel chain orientation and with 2'-deoxycytidine in a parallel DNA. These base pairs are less stable than the canonical dA-dT pair and that of 2'-deoxyinosine (4) with 2'-deoxycytidine. The fluorescence of the nucleosides 1 and 2 is quenched (~95%) in duplex DNA. The residual fluorescence is used to determine the T_m-values, which are found to be the same as determined UV-spectrophotometrically.

Introduction

8-Aza-7-deaza-2'-deoxyisoinosine (1) represents the pyrazolo[3,4-d]pyrimidine analogue of 2'-deoxyisoinosine (2). The syntheses of 2 as well as of its pyrrolo[2,3-d] pyrimidine derivative 3 has been described recently.¹ An enzymatic procedure for the preparation of compound 2 was also reported.² Moreover, the conversion of 2 and its derivative 2',3'-didehydro-2',3'-dideoxyisoinosine into xanthosine derivatives by treatment with xanthine oxidase was investigated.^{3,4} The diphenylcarbamoyl (DPC) residue was used as the 2-oxo protecting group during phosphoramidite synthesis.^{5,6} Oligonucleotides containing the nucleoside 2 have been described and the base pairing between 5-methylisocytosine and the four canonical bases were studied.⁷⁻⁹

The synthesis of the nucleoside $1 (c^7 z^8 i I_d)$ was performed as it was assumed that pyrazolo[3,4-d]pyrimidine nucleosides show a number of favorable properties compared to those of purine nucleosides, such as a more stable glycosylic bond and an increased duplex stability.¹⁰ As nothing is known about the base pairing and fluorescence properties of 1, oligonucleotides containing this nucleoside were prepared and their duplex stability was studied by temperature-dependent UV- and fluorescence spectra. These data were compared with those of oligonucleotides containing 2'-deoxyisoinosine (2) and with 2'-deoxyinosine (4).

Results and Discussion

Monomers

The synthesis of 8-aza-7-deaza-2'-deoxyisoinosine (1) was performed by deamination of the corresponding 2-amino-8-aza-7-deazapurine 2'-deoxyribonucleoside ¹¹ with NaNO₂ in acetic acid. Compound 1 is more stable in acidic solution than the parent nucleoside 2. It is not hydrolyzed in 0.1 N HCl (30°C) within 6 h while the nucleoside 2 shows a half-life of only 24 min (30°C). Hydrolysis of 1 is observed in 1 N HCl ($\tau = 130$ min). The hydrolysis was followed by HPLC on a RP-18 column. Similar to 7-deaza-2'deoxyisoinosine (3), 8-aza-7-deaza-2'-deoxyisoinosine (1) is not oxidized by xanthine oxidase, while oxidation of 2'-deoxyisoinosine (2) leads to 2'-deoxyxanthosine.^{3,4} Like the purine nucleoside **2**, the pyrazolo[3,4-d]pyrimidine derivative **1** is fluorescent. It shows an emission maximum at 410 nm upon excitation at 316 nm. The maxima of the related nucleosides are: **2**, $\lambda_{em} = 377$ nm; $\lambda_{ex} = 311$ nm and **3**, $\lambda_{em} = 440$ nm; $\lambda_{ex} = 328$ nm. The spectra are shown in Figure 1. The Stokes shift is increased from the purine nucleoside **2** ($\Delta \lambda = 66$ nm) via the pyrazolo[3,4-d]pyrimidine nucleoside **1** ($\Delta \lambda = 94$ nm) to the pyrrolo[2,3-d]pyrimidine nucleoside **3** ($\Delta \lambda = 112$ nm). The quantum yields of compounds **2** and **3** were already determined ($\Phi = 0.23$).³ These values served as a standard for the calculation of the quantum yield of **1**. The samples were excitated at a wavelength which was obtained from the UV curve intersection. The quantum yield was determined by comparing the integrated areas of the fluorescence of **2** and **3**. This leads to a quantum yield of $\Phi = 0.28$ for compound **1**. Compared to the corresponding 2-amino nucleosides¹³ the quantum yields of the 2-oxo compounds **1**-**3** are significantly decreased.

Next, compounds 1 and 2 were converted into the diphenylcarbamoyl (DPC) derivatives 5 and 8^{6,8} to protect the 2-oxo function. The stability of the DPC group was determined UV-spectrophotometrically by hydrolysis in 25% aq. NH₃ solution at 40°C. The half-life of deprotection was found to be 20 min for 8 and 19.5 min for 5. Furthermore, the protecting group is stable in 5% dichloroacetic acid /CH₂Cl₂ (data not shown). As usual, the 4,4'-dimethoxytriphenylmethyl (DMT) group was introduced to protect the 5'-hydroxyl function.¹² In the case of 2 the overall yield of the last two reaction steps was only 29%. This yield was increased when the DMT group was introduced first, and 7 was treated with diphenylcarbamoyl chloride afterwards ($2 \rightarrow 9$ via 7, 75%).

Compound **5** was converted to the DMT-protected nucleoside **6** in 75% yield. Intermediate **7** was transformed into the H-phosphonate **10** (PCl₃/N-methylmorpholine/ 1H-1,2,4-triazole, 88% yield). The phosphoramidites **11** and **12** were obtained from the derivatives **6** and **9** under standard conditions (Scheme 3).¹³

The UV-maxima of the derivatives **5** and **8** ($\lambda_{max} = 268$ and 267 nm in MeOH) are hypsochromically shifted (~ 50 nm) over that of the parent nucleosides **1** (321 nm) and **2** (322 nm). According to the UV-maximum of the related 2-methoxy-9- β -D-

Fig.1. Fluorescence spectra of a) 2'-deoxyisoinosine (2), b) 8-aza-7-deaza-2'- deoxyisoinosine (1) and c) 7-deaza-2'-deoxyisoinosine (3), measured in water at 10^{-5} M concentration.

Scheme 3

	C(2) ^{b)}	C(4)	C(5)	C(6)	C(8)		C(1')	C(2')	C(3')	C(4')	C(5')
	$C(5)^{c}$	C(7a)	C(3a)	C(4)		C(3)	(
1	156.6 ^{f)}	159.2 ^{f)}	105.9	147.8		137.6	82.9	38.4	70.9	87.3	62.3
2	156.1	158.8	123.6	139.4	145.5		82.9	e)	70.9	87.9	61.7
5 ^{d)}	154.9	154.8	114.1	151.7		141.4	86.5	40.0	73.1	89.1	63.9
6 ^{d)}	153.6	154.7	114.0	151.8		142.2	86.7	38.9	73.4	86.7	64.7
7	155.9	159.0	123.6	139.5	145.7		82.4	e)	70.5	85.5	64.2
8	155.5	152.7	132.9	149.9	146.2		83.6	e)	70.6	88.2	61.6
9	155.6	152.7	132.9	149.7	146.1		83.3	e)	70.4	85.5	64.1
9 ^{d)}	156.3	152.7	129.8	150.1	144.0		84.0	40.9	72.2	86.2	64.2
10	155.6	152.8	133.0	150.0	145.9		83.7	e)	72.7	85.6	63.9
a) Measured in (D ₆)DMSO at 303 K. b) Purine numbering. c) Systematic numbering. d) Measured in CDCl ₂ , e) Superimposed by (D ₆)DMSO, f) Tentative.											

Table 1. ¹³C-NMR Chemical Shifts of 2'-Deoxyisoinosine and Derivatives ^a)

ribofuranosylpurine $(\lambda_{max} = 281 \text{ nm})^{14}$ the hypsochromic shift of the UV absorption demonstrates that the DPC group is attached to the 2-oxo position. Furthermore, compounds **5** and **8** were characterized by a 10-ppm downfield shift at C-6 and C-5 as well as ~6-ppm upfield shift at C-4 compared to nucleosides **1** and **2**. This was proven by ¹³C-NMR as well as gated-decoupled ¹³C-NMR spectra (Table 1).

Oligonucleotides

Synthesis and Characterization. Oligonucleotide synthesis was performed on solidphase following the standard protocol.⁷ The coupling efficiency of **11** and **12** was always higher than 95% (conductivity monitoring). The oligonucleotides were detritylated and purified on OPC cartridges¹⁶ as well as by HPLC with a reversed phase RP-18 column (protocol for purification see **Experimental Part**). The homogeneity was proven by ionexchange chromatography on a 4 X 50 mm NucleoPac PA-100 column (DIONEX, P/N 043018, USA). The composition of the oligonucleotides was analyzed by tandem hydrolysis with snake venom phosphodiesterase and alkaline phosphatase as described ⁵

Fig. 2. HPLC Profile of the reaction products obtained after enzymatic hydrolysis of the oligomers 18 (a) and 19 (b) with snake-venom phosphodiesterase and alkaline phosphatase in 1M Tris-HCl buffer (pH 8.0) at 37°C. Column : RP-18 (200 x 10 mm) ; gradient : 0 - 30 min in 0.1 M (Et₃NH)OAc (pH 7.0) - MeCN; 95 :5.

(See Fig.2, the peak of compound 2 was identified by UV absorption). From the modified oligonucleotides containing 1 or 2 MALDI-TOF spectra were taken (see Experimental Part).

Base Pair Stability. First, compounds 1 and 2 were introduced into non selfcomplementary duplexes with an anti-parallel chain orientation. The base pair stabilities of me⁵iC_d-(1) and me⁵iC-(2) (motif I and II, Scheme 4) were determined and compared with those of the dT-dA as well as dC-dI base pair. The duplexes 5'-d(TAG GTT AAT ATT) • 3'-d(ATC CAA TTA TAA) (13)•(14) (T_m = 38°C) and 5'-d(TAG GTT AAT ATT) • 3'-d(ATC CA4 TTA T4A) (17)•(18) (T_m = 35°C) served as standards. The replacement of a dT-dA by dC-dI base pair results in a small decrease of the duplex stability, while the incorporation of 1 or 2 opposite to me⁵iC_d leads to a significant decrease of the T_m-value. It is found that the average stability of the duplex is reduced by 4.5°C (0.85 kcal/mol) per me⁵iC_d-iI_d substitution and 3.5°C (0.65 kcal/mol) per me⁵iC_dc⁷z⁸iI_d modification. This observation is in contrast to the earlier observation describing an isoenergetic base pair of me⁵iC_d -iI_d and of dA-dT.⁸ Hybridization of **1** and **2** opposite to dT or dC results in a T_m-decrease of about 15°C (see Table 2), while mismatches are formed with dT or dC. The base pair me⁵iC_d-(**1**) (Scheme 4, motif I) is always more stable than the me⁵iC_d – (**2**) base pair (Scheme 4, motif II). It should be mentioned that the me⁵iC_d-iG_d¹⁷ base pair is more stable than that of dC-dG. Contrary to that, the me⁵iC_d-(**2**) base pair is less stable than the dC-dI pair. So, it is shown that the base pair stability decreases in the order me⁵iC_d-iG_d > dC-dG >> dT-dA > dC-dI >> me⁵iC_d-c⁷z⁸iI_d > me⁵iC_d-iI_d. The same tendency as observed for duplexes with two separated base pairs is found for those arranged in a consecutive manner, so that the nearest neighbor influence is minimized in these cases.

The duplex stability of non self-complementary duplexes with a parallel chain orientation was also investigated. In the parallel duplexes 5'-d(TAiGiGTTAATATT) • 5'-d(ATCCAATTATAA) and 5'-d(AiGTATTiGATTTA) • 5'-d(TCATAACTAAAT) the dT-dA base pair (bold marked) was substituted by dC-(1), dC-(2) pairs (motif III and IV, Scheme 4) as well with dT- (1) and dT-(2) pairs. The stability of the parent duplexes (33•34 and 35•36) is reduced by 8°C when two dC-iI_d were incorporated (29•39; 31•40), while for dC-c⁷z⁸iI_d the T_m is reduced by 7°C (29•37; 31•38). No melting is observed in the case of dT- c⁷z⁸iI_d or dT-iI_d replacement (see Table 3). Thus, it can be seen that c⁷z⁸iI_d or iI_d form a stable base pair with dC in the parallel stranded duplex as supposed by Scheme 4.

Fluorescence Properties. Finally, the fluorescence properties of the oligomers 20 and 21 were analyzed. In a first experiment, the temperature-dependent spectra of the single strands were measured (Fig. 3). It should be mentioned, that the fluorescence intensity in the single strand or in the duplex is quenched by more than 95% compared to free nucleosides.¹¹A temperature-dependent decrease of the fluorescence is observed, which is nearly linear. This phenomenon is due to a higher collision quenching by increasing the temperature. In a second set of experiments the oligomers 20, 21 were hybridized with a double higher concentration of the oligomer 19 to ensure the complete hybridization.²⁰ When increasing the temperature, a sigmoidal melting profile was observed, leading to

Oligonucleotides		ΔG_{298}	Oligonucleotides		ΔG_{298}	
5'-d(TAGGTTAATATT) (13)	38	-8.4	5'-d(TAGGTGAATAGT) (15)	46	-10.3	
3'-d(ATCCAATTATAA) (14)			3'-d(ATCCACTTATCA) (16)			
5'-d(TAGGTCAATACT) (17)	35 ¹⁵	-7.8				
3'-d(ATCCA4TTAT4A) (18)						
5'-d(TAGGTiCAATAiCT) (19)	31	-7.1	5'-d(TAGGTiCAATAiCT) (19)	29	-6.7	
3'-d(ATCCA 1TTAT1A) (20)			3'-d(ATCCA2TTAT2A) (21)			
5'-d(TAGGTTAATATT) (13)	26	-6.2	5'-d(TAGGTTAATATT) (13)	24	-5.7	
3'-d(ATCCA1TTAT1A) (20)			3'-d(ATCCA2TTAT2A) (21)			
5'-d(TAGGTCAATACT) (17)	22	-5.2	5'-d(TAGGTCAATACT) (17)	19	-4.8	
3'-d(ATCCA1TTAT1A) (20)			3'-d(ATCCA2TTAT2A) (21)			
5'-d(TAAACTAATACT) (22)	39	-8.5	, , , , , , , , , , , , , , , , , , ,			
3'-d(ATTTGATTATGA) (23)						
5'-d(TA44CTAATACT) (24)	36 ¹⁵	-7.6			-	
3'-d(ATCCGATTATGA) (25)						
5'-d(TA11CTAATACT) (26)	31	-7.1	5'-d(TA22CTAATACT) (28)	30	-6.8	
3'-d(ATiCiCGATTATGA) (27)			3'-d(ATiCiCGATTATGA) (27)			
5'-d(TA11CTAATACT) (26)	24	-5.6	5'-d(TA22CTAATACT) (28)	22	-5.3	
3'-d(ATTTGATTATGA) (23)			3'-d(ATTTGATTATGA) (23)			
5'-d(TA11CTAATACT) (26)	23	-5.3	5'-d(TA22CTAATACT) (28)	22	-5.1	
3'-d(ATCCGATTATGA) (25)			3'-d(ATCCGATTATGA) (25)			
a) Measured in 0.1 M NaCl, 10 mM MgCl ₂ , 10 mM Na-cacodylate buffer, pH 7.0 at 260 nm with an elignmer concentration of $5 + 5 \mu M$ b) $d(G) = m^{5} (G - 2)^{2} doorw 5$						
methylisocytidine. c) Determination of ΔG_{298} was performed with Meltwin 3.0. ¹⁸						

Table 2. T_m-Values and Thermodynamic Data of Duplexes with aps-Orientation ^{a, b, c})

the T_m -values of the duplexes (19•20) and (19•21) which are almost identical to those determined by UV-measurements (Fig. 4).

The results obtained from the base pairing studies and the fluorescence properties of oligonucleotides containing 1 and 2 show that the latter are useful probes to study the

aps- Watson-Crick base pair motif I: X = C, Y = Nmotif II: X = N, Y = C

ps-reverse Watson-Crick base pair motif III: X = C, Y = Nmotif IV: X = N, Y = C

Scheme 4

Oligonucleotides	T _m	ΔG_{298}	Oligonucleotides	T _m	ΔG_{298}		
5'-d(TAiGiGTCAATACT) (29)	39 ¹⁹	-8.8	5'-d(AiGTATTiGACCTA) (31)	44 ¹⁹	-10.3		
5'-d(ATCCAiGTTATiGA) (30)			5'-d(TCATAACT iGiG AT) (32)				
5'-d(TAiGiGTTAATATT) (33)	28	-5.8	5'-d(AiGTATTiGATTTA) (35)	28	-5.9		
5'-d(ATCCAATTATAA) (34)			5'-d(TCATAACTAAAT) (36)				
5'-d(TAiGiGTCAATACT) (29)	21	-4.8	5'-d(AiGTATTiGACCTA) (31)	20	-4.8		
5'-d(ATCCT1TTAT1A) (37)			5'-d(TCATAACT11AT) (38)				
5'-d(TAiGiGTCAATACT) (29)	22	-4.8	5'-d(AiGTATTiGACCTA) (31)	21	-4.8		
5'-d(ATCCT2TTAT2A) (39)		E	5'-d(TCATAACT 22 AT) (40)				
5'-d(TAiGiGTTAATATT) (33)	°)		5'-d(AiGTATTiGATTTA) (35)	°)			
5'-d(ATCCT1TTAT1A) (37)			5'-d(TCATAACT11AT) (38)	1			
5'-d(TAiGiGTTAATATT) (33)	°)	1	5'-d(AiGTATTiGA TT TA) (35)	°)			
5'-d(ATCCT2TTAT2A) (39)			5'-d(TCATAACT 22 AT) (40)				
a) Measured in 1 M NaCl, 10mM MgCl ₂ , 10 mM Na-cacodylate buffer, pH 7.0 at 260 nm with an oligomer concentration of $5 + 5\mu$ M. b) d(iC) = me ⁵ iC _d = 2'-deoxy-5-methylisocytidine. c) No melting.							

Table 3. T_m-Values and Thermodynamic Data of Duplexes with ps-Chain Orientation^{a,b})

Fig. 3. Temperature-dependent fluorescence of the single strand 20 (a) and 21 (b) measured at the wavelength as indicated in 0.1 M NaCl, 10 mM MgCl₂ and 10 mM Na-cacodylate at pH 7.0 with (0.4 A_{260} units in 1 ml).

Fig. 4. Temperature-dependent fluorescence of the duplex $19 \cdot 20$ (a) and $19 \cdot 21$ (b) measured at the wavelength as indicated in 0.1 M NaCl, 10 mM MgCl₂ and 10 mM Na-cacodylate at pH 7.0; the concentration of the oligomer 19 (0.8 A₂₆₀ units) was twice as high as that of 20 or 21.

physical properties of single-stranded and double-stranded DNA. As the fluorescence of the monomers is strongly quenched when they are present in oligonucleotides, the release of the fluorescent components, e.g. by exonucleases, can be utilized to detect small quantities of nucleic acids or to determine kinetic parameters of enzymes.

EXPERIMENTAL PART

General: TLC: Aluminum sheets coated with 0.2-mm layer of silica gel 60 F_{254} (*Merck*, Germany). Flash chromatography (FC) was carried out at 0.5 bar (silica gel 60 H (*Merk*, Germany). A *Uvicord S* (*LKB instruments*, Sweden) UV recorder was used for detection. Solvent systems for TLC and FC: CH₂Cl₂/MeOH 95:5 (A), CH₂Cl₂/MeOH 9:1 (B), CH₂Cl₂/MeOH 3:1 (C), CH₂Cl₂/MeOH 4:1 (D), iPrOH/ H₂O/NH₃ 7:2:1 (E), CH₂Cl₂/ acetone 98:2 (F), CH₂Cl₂/acetone 9:1 (G). UV Spectra: *Hitachi-150-20* spectrometer (*Hitachi*, Japan). M.p.: *Büchi-SMP-20* apparatus (*Büchi*, Switzerland). NMR Spectra: *Avance-DPX-250*, *Bruker-AC-250* and *AMX-500* spectrometer; δ values in ppm rel. to Me₄Si as internal standard (¹H- and ¹³C-) or to external phosphoric acid (³¹P). Fluorescence spectroscopy: F-4500 (*Hitachi*, Japan). Elemental analyses were performed by *Mikroanalytisches Laboratorium Beller*, Göttingen, Germany. MALDI-TOF spectra on a Bifex III, Scout MTP Instrument were provided by *Dr. T. Wenzel*, Bruker.

Synthesis and Purification of the Oligonucleotides 13 - 40. The synthesis was carried out on an automated DNA synthesizer (Applied Biosystems, Germany, model ABI 392-08 for phosphoramidite chemistry) in a 1 μ mol scale with 3'-phosphoramidites of $[(MeO)_2Tr]b^2G_d$, $[(MeO)_2Tr]bz^6A_d$, $[(MeO)_2Tr]bz^4C_d$ and $[(MeO)_2Tr]T_d$, together with the DPC-protected phosphoramidites of the compounds 11 and 12. The synthesis of 13 -**40** followed the regular protocol of the DNA synthesizer for phosphoramidites.¹³ After cleavage from the solid-support, the oligonucleotides were deprotected in 25% aq. NH3 (12 - 15 h at 60°C). The purification of the 5'-(dimethoxytrityl)-oligomers were performed by OPC cartridges¹⁶ as well as by reversed-phase HPLC (RP-18). The following solvent gradient was used (A, 0.1 M (Et₃NH)OAc (pH 7.0)/ MeCN 95:5; B, MeCN): 3 min 20% B in A, 12 min 15 – 40% B in A with a flow rate of 1.0 ml/min. To remove the 4,4'-dimethoxytrityl residues they were treated with 2.5% CHCl₂COOH/CH₂Cl₂ for 5 min at r.t. The detritylated oligomers were purified by reversed-phase HPLC with the gradient: 20 min 0 - 20% B in A with a flow rate of 1 ml/min. The oligomers were desalted on a short column (RP-18, silica gel) using H₂O for elution of the salt, while the oligomers were eluted with MeOH/H₂O 3:2. The oligomers were lyophilized on a Speed-Vac evaporator to yield colorless solids and stored frozen at -24°C.

Nucleoside Composition Analysis. The analyses were performed as described.⁴ Extinction coefficients of the nucleoside constituents: ε_{260} : dA 15400, dT 8800, dG 11700, dC 7600, iG_d 7400, m⁵iC_d 6300. Snake-venom phosphodiesterase (EC 3.1.4.1.,

Oligomer	M^+ (calc.)	M ⁺ (found)
5'-d(A1TATT1ACCTA) (20)	3613	3613
5'-d(A2TATT2ACCTA) (21)	3613	3613
5'-d(TA11CTAATACT) (26)	3613	3614
5'-d(TA22CTAATACT) (28)	3613	3613
5'-d(ATCCT1TTAT1A) (37)	3613	3613
5'-d(ATCCT2TTAT2A) (39)	3613	3614
5'-d(TCATAACT11AT) (38)	3613	3613
5'-d(TCATAACT22AT) (40)	3613	3614

Table 4. Molecular Masses M⁺ of Oligonucleotides Determinedby MALDI-TOF Mass Spectroscopy

Crotallus durissus) and alkaline phosphatase (EC 3.1.3.1., *E. coli*) were generous gifts from *Roche Diagnostics GmbH*, Germany.

Determination of T_m-Values and Thermodynamic Data. Absorbance *vs.* temperature profiles were measured on a *Cary-1/1E* UV/VIS spectrometer (*Varian*, Australia) equipped with a Cary thermoelectrical controller. The T_m-values were determined in the reference cell with a Pt-100 resistor, and the thermodynamic data were calculated using the Meltwin 3.0 program¹⁸.

1-(2-Deoxy-B-D-erythro-pentofuranosyl)-1,5-dihydro-6H-pyrazolo[3,4-

d]pyrimidin-6-one, (8-aza-7-deaza-2'-deoxyisoinosine) (1). To a solution of 6-amino-(2-deoxy- β -D-erythro-pentofuranosyl)-1H-pyrazolo[3,4-d]pyrimidine ¹¹ (100 mg, 0.4 mmol) and NaNO₂ (125 mg, 1.81 mmol) in H₂O, AcOH (183 µl) was added dropwise at 50°C under stirring. Stirring was continued for 5 min, then the pH was adjusted to 8.0 (25% aq. NH₃). The solution was applied to a *Serdolit AD-4* column (4 x 20 cm, resin 0.1 - 0.2 mm; *Serva*, Germany). The column was washed with H₂O (300 ml), and the reaction product was eluted with H₂O/i-PrOH (9:1), the solvent was evaporated to give a colorless amorphous powder (70 mg, 69%). TLC (E): R_f 0.5. UV (MeOH): 242 (4700), 275 (4200), 322 (3900). ¹H-NMR (D₆-DMSO): 2.20 (m, 1H-C(2')); 2.69 (m, 1H-C(2')); 3.38 - 3.49 (m, 2H-C(5')); 3.78 (m, 1H-C(4')); 4.37 (m, 1H-C(3')); 4.92 (t, J = 5.6 Hz, OH-(5')) 5.37 (d, J = 4.5 Hz, OH-C(3')); 6.35 (t, J = 6.5, H-C(1')); 8.06 (s, 1H-C(7)); 8.72 (s, 1H-C(6)). Anal. calc. for $C_{10}H_{12}N_4O_4$ (252.2): C 47.62, H 4.80, N 22.21; found: C 47.48, H 4.78, N 22.01.

6-(**N**,**N**-**Diphenylcarbamoyl)oxy-1-(2-deoxy-β-D-erythro-pentofuranosyl)-1Hpyrazolo[3,4-d]pyrimidine (5).** Compound 1 (100 mg, 0.4 mmol) was dried by coevaporation with dry pyridine (3 x 10 ml) and was suspended in dry pyridine (2 ml). Then, i-Pr₂EtN (100 µl) was added under stirring, and the mixture was cooled in an ice bath. Diphenylcarbamoyl chloride (140 mg, 0.6 mmol) was added, and stirring was continued for 3 h. The dark reaction mixture was poured into 5% aq. NaHCO₃ (10 ml) and extracted with CH₂Cl₂ (3 x 20 ml). The combined organic extracts were dried (anhydrous Na₂SO₄), filtered and concentrated to dryness. The residue was submitted to FC (silica gel, column 2 x 15 cm, eluant F followed by G), and the fractions of the main zone were collected and evaporated to give a colorless foam (110 mg, 61 %). TLC (B): R_f 0.3. UV (MeOH): 224 (16500); 268 (7900). ¹H-NMR (CDCl₃): 2.51 (m, 1H-C(2')); 2.91 (m, 1H-C(2')); 3.78 - 3.86 (m, 2H-C(5')); 4.16 (m, 1H-C(4')); 4.78 (m, H-C(3')); 4.93 (t, J = 5.5 Hz, OH-(5')); 5.31(d, J = 4.2 Hz, OH-(3')); 6.87 (t, J = 7.4 Hz, H-C(1')); 7.24-7.50 (m, aromatic H); 8.18 (s, H-C(7)); 9.10 (s, H-C(6)). Anal. calc. for C₂₃H₂₁N₅O₅ (447.4): C 61.74, H 4.73, N 15.65; found: C 61.79, H 4.78, N 15.62.

2-(N,N-Diphenylcarbamoyl)oxy-9-(2-deoxy-ß-D-erythro-pentofuranosyl)-9Hpurine (8). As described for compound **5**, with compound **2**¹ (100 mg, 0.4 mmol), diphenylcarbamoyl chloride (140 mg, 0.6 mmol) and i-Pr₂EtN (100 µl) in anh. pyridine (2 ml). The mixture was stirred for 3 h at r.t, and after FC (silica gel, 2 x 15 cm, eluant A) a colorless foam (130 mg, 73%) was isolated. TLC (B): R_f 0.4. UV (MeOH): 224 (16300); 267 (7900). ¹H-NMR (D₆-DMSO): 2.37, 2.71 (2m, 2H-C(2')); 3.50 – 3.67 (m, 2H-C(5')); 3.88 (m, H-C(4')); 4.43 (m, H-C(3')); 4.95 (t, J = 5.43 Hz, OH-(5')); 5.36(d, J = 4.19 Hz, OH-(3')); 6.41 (t, J = 6.57 Hz, H-C(1')); 7.3-7.5 (m, aromatic H); 8.82 (s, H-C(8)); 9.11 (s, H-C(6)). Anal. calc. for C₂₃H₂₁N₅O₅ (447.4): C 61.74, H 4.73, N 15.65; found: C 61.89, H 4.88, N 15.50. **6-(N,N-Diphenylcarbamoyl)oxy-1-[2-deoxy-5-O-(4,4'-dimethoxytrityl)-ß-Derythro-pentofuranosyl]-1H-pyrazolo[3,4-d]pyrimidine (6).** Compound **5** (110 mg, 0.25 mmol) was dried by co-evaporation with dry pyridine (3 x 10 ml), suspended in dry pyridine (0.5 ml) and treated with (MeO)₂TrCl (92 mg, 0.27 mmol) under stirring for 1.5 h at r.t. After addition of MeOH (2 ml), the reaction mixture was treated with 5% aq. NaHCO₃ (20 ml) and extracted with CH₂Cl₂ (3 x 20 ml) and then washed with water. The combined organic layers were dried (Na₂SO₄), filtered and evaporated. The residue was dissolved in CH₂Cl₂ and submitted to FC (silica gel column 2.5 x 10 cm, eluant F). The content of the main zone was isolated after evaporation, yielding a colorless foam (140 mg, 75%). TLC (F): R_f = 0.4. UV (MeOH): 237 (27500), 264 (10800), 272 (10800). ¹H-NMR (CDCl₃): 2.49 (m, 1H-C(2')); 2.99 (m, 1H-C(2')); 3.25 – 3.32 (m, 2H-C(5')); 3.78 (s, 2CH₃O); 4.07 (m, H-C(4')); 4.87 (m, H-C(3')); 5.46 (d, J = 4.1 Hz, OH-(3')); 6.79 (t, J = 6.1 Hz, H-C(1')); 7.20-7.46 (m, aromatic H); 8.06 (s, H-C(7)); 9.05 (s, H-C(6)). Anal. calc. for C₄₄H₃₉N₅O₇ (749.81): C 70.48, H 5.24, N 9.34; found: C 70.59, H 5.29, N 9.38.

2-(N,N-Diphenylcarbamoyl)oxy-9-[2-deoxy-5-O-(4,4'-dimethoxytrityl)- β -Derythro-pentofuranosyl]-9H-purine (9). Method A: As described for 6, with compound 8 (100 mg, 0.22 mmol), (MeO)₂TrCl (90 mg, 0.27 mmol) in pyridine (3 ml). The solution was stirred overnight at r.t. and then diluted with 2 ml MeOH. After FC (silica gel, 2 x 8 cm, eluant A containing traces of Et₃N) from the main zone a colorless foam (66 mg, 40%) was isolated.

<u>Method B:</u> A solution of **7**⁵ (300 mg, 0.54 mmol) and i-Pr₂EtN (150 µl) in dry pyridine (5 ml) was cooled in an ice bath. Diphenylcarbamoyl chloride (153 mg, 0.66 mmol) was added, and the solution was stirred for 1 h. The reaction mixture which became dark was poured into 5% aq. NaHCO₃ (20 ml), extracted with CH₂Cl₂ (3 x 20 ml), and the extract was washed with water. The combined organic layers were dried (Na₂SO₄) filtered and evaporated. The residue was submitted to FC (silica gel column 3 x 9 cm, eluant A containing traces of Et₃N). From the main zone a colorless foam (345 mg, 85 %) was obtained. The analytical data of this sample are identical with those of compound **7** prepared from compound **6**. TLC (B): R_f = 0.6. ¹H-NMR (D₆-DMSO): 2.38, 2.82 (2m,

2H-C(2')); 3.15 (m, 2H-C(5')); 3.67 (s, 2CH₃O); 3.98 (m, H-C(4')); 4.47 (m, H-C(3')); 5.43 (d, J = 4.6 Hz, OH-(3')); 6.43 (t, J = 6.1 Hz, H-C(1')); 6.7-7.4 (m, aromatic H); 9.70 (s, H-C(8)); 9.12 (s, H-C(6)). Anal. calc. for $C_{44}H_{39}N_5O_7$ (749.81): C 70.48, H 5.24, N 9.34; found: C 70.64, H 5.33, N 9.30.

2-(N,N-Diphenylcarbamoyl)oxy-9-[2-deoxy-5-O-(4,4'-dimethoxytrityl)-B-Derythro-pentofuranosyl]-9H-purine 3'-H-phosphonate triethylammonium salt (10). To a solution of PCl₃ (350 μ l, 4.0 mmol) and N-methylmorpholine (4.46 ml, 47 mmol) in CH₂Cl₂ (25 ml), 1,2,4-triazole (930 mg, 13 mmol) was added at r.t. under stirring. After 30 min the mixture was cooled to 0°C and a solution of compound 7 (620 mg, 0.83 mmol) in CH_2Cl_2 (25 ml) was slowly added. After stirring had continued for 30 min at r.t., the reaction mixture was poured into 1 M (Et₃N)HCO₃ (50 ml), shaken and separated. The aqueous layer was extracted with CH₂Cl₂ (3 x 50 ml). The combined organic extracts were dried (Na₂SO₄), filtered and evaporated. The residue was dissolved in CH₂Cl₂ and submitted to FC (silica gel column 3 x 9 cm, CH₂Cl₂/MeOH/Et₃N 88:10:2), the fraction of the main zone was collected and evaporated to dryness. The residue was dissolved in CH₂Cl₂ (100 ml) and washed with 0.1 M (Et₃NH)HCO₃ (5 x 20 ml). The organic layer was dried (Na₂SO₄), filtered and evaporated to give a colorless foam (670 mg, 88%). TLC (silica gel, CH₂Cl₂/MeOH/Et₃N 88:10:2): $R_f = 0.3$. ¹H-NMR $(D_6$ -DMSO): 1.12 (t, J = 7.23 Hz, 3CH₃); 2.55, (m, H-C(2')); 2.98 (q, J = 7.26 Hz, 3CH₂); 3.18 (m, 2H-C(5')); 3.68 (s, 2CH₃O); 4.18 (m, H-C(4')); 4.84 (m, H-C(3')); 6.67 (d, J (P,H) = 588 Hz, PH; 6.43 (t, J = 6.50 Hz H-C(1')); 6.7-7.5 (m, aromatic H); 8.70 (s, H-C(8)); 9.13 (s, H-C(6)). ³¹P-NMR (D₆-DMSO): 1.25 (¹J (P,H) = 589 Hz, ³J (P,H-C(3')) = 8.98 Hz). Anal. Calc. for C₅₀H₅₅N₆O₉P (915.01): C 65.63, H 6.06, N 9.18; found: C 65.56, H 6.13, N 9.31.

6-(N,N-Diphenylcarbamoyl)oxy-1-[2-deoxy-5-O-(4,4'-dimethoxytrityl)- β -Derythro-pentofuranosyl]-1H-pyrazolo[3,4-d]pyrimidine 3'-[(2-Cyanoethyl)-N,Ndiisopropylphosphoramidite] (11). To a soln. of compound 6 (130 mg, 0.17 mmol) and i-Pr₂EtN (85 µl, 0.61 mmol) in anh. THF (1 ml), chloro(2-cyanoethoxy)-(diisopropylamino)-phosphane (46 µl, 0.21 mmol) was added at r.t. After stirring for 30 min, the mixture was diluted with $CH_2Cl_2/MeOH$ (10 ml) and quenched by adding 5% aq. NaHCO₃ soln. (5 ml). The aq. layer was extracted with CH_2Cl_2 (3 x 20 ml), the combined organic extracts were dried (anhydrous Na₂SO₄), filtered and evaporated to dryness. The residue was applied to FC (silica gel 2.5 x 10 cm, $CH_2Cl_2/EtOAc$ 85:15). From the main zone a colorless foam (110 mg, 68%) was obtained. TLC ($CH_2Cl_2/EtOAc$ 85:15) R_f 0.9. ³¹P-NMR ($CDCl_3$): 149.76, 149.92.

2-(N,N-Diphenylcarbamoyl)oxy-9-[2-deoxy-5-O-(4,4'-dimethoxytrityl)- B-Derythro-pentofuranosyl]-9H-purine 3'-[(2-Cyanoethyl)-N,N-diisopropyl-

phosphoramidite] (12). As described for 11, with 9 (175 mg, 0.23 mmol), i-Pr₂EtN (160 μ l, 0.92 mmol), chloro(2-cyanoethoxy)(diisopropyl-amino)phosphane (110 μ l, 0.49 mmol) in anh. CH₂Cl₂ (3 ml) at r.t. After stirring for 30 min, the mixture was diluted with CH₂Cl₂ (10 ml). After FC (silica gel, 10 x 2.5 cm, CH₂Cl₂/EtOAc/Et₃N 47.5:47.5:5) a colorless foam (100 mg, 46%) was isolated. TLC (silica gel, CH₂Cl₂/EtOAc) R_f 0.9. ³¹P-NMR ((D₆)DMSO): 149.75, 149.71.

Acknowledgements

We thank Dr. H. Rosemeyer and Mr. Y. He for measurement of the NMR spectra and Dr. T. Wenzel for the MALDI-TOF spectra. Financial support by the *Deutsche Forschungs-gemeinschaft* is gratefully acknowledged.

REFERENCES

- 1. Seela, F.; Chen, Y.; Bindig, U.; Kazimierczuk, Z. *Helv. Chim. Acta* **1994**, 77, 194-202.
- 2. Beaussire, J. J.; Pochet, S. Nucleosides Nucleotides 1995, 14, 805-808.
- 3. Seela, F.; Chen, Y.; Sauer, M. Nucleosides Nucleotides 1998, 17, 39-52.
- 4. Seela, F.; Chen, Y. Nucleosides Nucleotides 1995, 14, 863-866.
- Seela, F.; Chen, Y.; Melenewski, A.; Rosemeyer, H.; Wei, C. Acta Biochimica Polonica 1996, 43, 45-52.
- Kamimura, T.; Tsuchiya, M.; Koura, K.; Sekine, M.; Hata, T. *Tetrahedron* Lett. 1983, 24, 2775-2278.
- 7. Seela, F.; Chen, Y. Nucleic Acids Res. 1995, 23, 2499-2505.
- 8. Beaussire, J. J.; Pochet, S., Tetrahedron 1998, 54, 13547-13556.
- 9. Beaussire, J. J.; Pochet, S., Nucleosides Nucleotides 1999, 18, 403-410.
- 10. Seela, F.; Steker, H. J. Chem. Soc. Perkin Trans. I 1985, 2573-2576.

- 11. Seela, F.; Becher, G. Helv. Chim. Acta 2000, 83, 928-942...
- 12. Schaller, H.; Weimann, G.; Lerch, B.; Khorana, H. G. J. Am. Chem. Soc. 1963, 85, 3821-3827.
- 13 Beaucage, S. L.; Caruthers, M. Tetrahedron Lett. 1981, 22, 1859-1862.
- 14. Schaeffer, H.J.; Thomas, H. J. J. Am. Chem Soc. 1958, 80, 4896-4899.
- 15. Seela, F.; Mittelbach, C. Nucleosides Nucleotides 1999, 18, 525-441.
- 16. Applied Biosystems, Oligonucleotide Purification Cartridges.
- 17. Horn, T.; Chang, C. A.; Collins, M. L. Tetrahedron Lett. 1995, 36, 2033-2036.
- 18. McDowell, J. A.; Turner, D. H. Biochemisty 1996, 35, 14077-14089.
- Seela, F.; Wei, C.; Becher, G.; Zulauf, M.; Leonard, P. Bioorg. & Med. Chem. Lett. 2000, 10, 289-292.
- Ha, T.; Enderle, T.; Ogletree, D. F.; Chemila, D. S.; Selvin, P. R.; Weiss, S. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 6264-6269.