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Abstract—The structure–activity relationship of the anti-malarial substance 3 having a 6-carbomethoxymethyl-3-methoxy-
1,2-dioxane structure was studied. The ester portion of the peroxide 3, showing little in vivo efficacy in malaria-infected mice in spite
of the potent in vitro activity, was hydrolyzed in serum to afford an inactive free acid 4. The amide analogues (8 and 9) robust to
mouse serum were disclosed to exhibit in vivo anti-malarial potency.
# 2003 Elsevier Ltd. All rights reserved.
Today, malaria is one of the most deadly diseases on
earth and the leading cause of sickness and death in the
developing world. Annually, an estimated 300 million
cases of malaria occur throughout the world. Mortality
associated with the disease is estimated at over one mil-
lion per year.1 About 40% of the world population live
in malaria endemic countries. Due to the spreading
resistance to the conventional anti-malarials, there is an
urgent demand to search for new anti-malarial princi-
ples.2 In this context, we have been engaged in explora-
tion for new anti-malarial candidates originating in
natural resources.3,4

Previously, methyl esters (1 and 2) of spongean per-
oxides,5 peroxyplakoric acids, were shown to display
potent in vivo anti-malarial activity. Furthermore, the
facile construction of their core skeleton was estab-
lished, and the new, readily accessible anti-malarial
peroxide 3 with higher selectivity index than that of 1
and 2 was found.6 However, the promising candidate 3
was shown to exert little in vivo potency because of
lability in mouse serum. On the basis of the analysis for
the metabolized portion in 3, the acquirement of stabil-
ity in serum resulted in the discovery of new anti-
malarial peroxides 8 and 9 with in vivo potency. This
paper deals with the in vivo anti-malarial peroxides uti-
lizing 1 and 2 as scaffolds (Fig. 1).
When the peroxide 3 was examined by an in vivo system
using a mouse model, 3 showed little anti-malarial
potency. This undesired finding indicated that the ester
function in 3 may be metabolized in serum. Therefore,
stability of 3 in mouse serum was examined.7 Treat-
ment of 3 with fresh mouse serum afforded the corre-
sponding carboxylic acid 4 in 85% yield involving
complete disappearance of 3 within 1.5 h. The car-
boxylic acid 4 was almost stable after 24 h exposure to
mouse serum, while the anti-malarial activity (IC50

>1.2 mM) of 4 was significantly reduced. The malaria
parasite converts toxic-free heme to nontoxic hemozoin
by oxidative polymerization. In a mechanistic study of
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the action of anti-malarial peroxides, the formation of
the heme-peroxide adducts was proposed to inhibit this
detoxication pathway.8 The formation of the heme-
peroxide adducts was shown to take place through the
production of a radical species in the food vacuole, an
acidic organelle characteristic of Plasmodium falci-
parum.9 Thus, the poor accumulation of the carboxylic
acid 4 into the food vacuole was presumed to be a
cause of the reduced anti-malarial activity. Taking the
stability against esterase in serum and their neutral
property into account, the amide analogues were
designed.

Preparation of the amide analogues was conducted as
illustrated in Scheme 1. Alkaline hydrolysis of 3 with
LiOH in DMSO conclusively provided an epoxy car-
boxylic acid 5 by concomitant cleavage of the dioxane
ring quantitatively. On the other hand, the treatment of 3
with commercially available esterase from porcine liver
in a phosphate buffer (pH 7.4) furnished 4 in 89% yield.
Conversion from the carboxylic acid 4 to amides analo-
gues was carried out via an activated pentafluorophenyl
ester.10 The carboxylic acid 4 was coupled with penta-
fluorophenol in the presence of N-ethyl-N0-3-dimethyl-
aminopropylcarbodiimide hydrochloride (EDCI.HCl) in
pyridine to give an ester 6 in 84% yield. In the first
instance, the monoethyl and diethyl amides (8 and 11)11

were prepared in order to evaluate their stability in
mouse serum. Treatment of 6 with EtNH2

.HCl or
Et2NH in pyridine afforded the corresponding amide in
96 and 63% yields, respectively. As a result of assess-
ment for stability in mouse serum, both analogues were
shown to be free from metabolism for 5 h (Fig. 2). This
encouraging biological property directed us to synthe-
size several amide analogues. In expectation of potency
in a mouse model, we further designed three analogues
(7, 9, 10) under the guidance of appropriate clogPs.12,13

ClogP is a parameter correlated to the permeability of
drugs, and is thus believed to be an important index in
predicting biological activity in animal models. In gen-
eral, clogP values larger than 4 tend to reduce in vivo
pharmacological efficacy significantly regardless of a
Scheme 1. Reagents and conditions: (a) LiOH.H2O, DMSO-d, quant; (b) esterase (from porcine liver), phosphate buffer (0.2M, pH 7.4), 89%;
(c) pentafluorophenol, EDCI.HCl, pyridine, 84%; (d) MeNH2

.HCl, pyridine, 92% for 7; EtNH2
.HCl, pyridine, 96% for 8; PrNH2, pyridine, 98%

for 9; Me2NH.HCl, pyridine, 93% for 10; Et2NH, pyridine, 63% for 11.
Figure 2. Stability of ester and amides in mouse serum.
Table 1. Anti-malarial activity of amide analogues
Compd
 R1
 R2
 cLogP
 IC50 (mM)
 Selectivity index
 ED50 (mg/kg)
 T/Ca
P. falciparum
 KB 3-1
 P. berghei
7
 H
 Me
 2.06
 0.52
 5.2
 10
 n.d.b
 118

8
 H
 Et
 2.59
 0.54
 14
 25
 11
 125

9
 H
 Pr
 3.12
 0.31
 12
 39
 9.3
 138

10
 Me
 Me
 2.45
 0.31
 4.0
 13
 13
 95

11
 Et
 Et
 3.15
 0.49
 13
 27
 20
 118

3
 2.17
 0.12
 43
 360
 >30
 81

Artemisinin
 5.0
 145
aDose 3, 7–11: 10mg/kg; artemisinin: 5mg/kg. T/C is the quotient of the survival days of the treated animals (T) and those of the control animals
(C). T/C values of >120 are considered to be active.
bSome mice died by treatment with 30mg/kg of 7, then ED50 could not be determined.
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good in vitro biological score. The analogues (7, 9, 10)
were synthesized from 6 in the same fashion as the pre-
paration of 8 and 11 (Scheme 1) and all the analogues
were evaluated for anti-malarial activity in vitro.14 The
resulting biological outcome is summarized in Table 1.
Although all of the amide analogues reduced in vitro
inhibitory activity for proliferation of P. falciparum as
compared with 3, selectivity indices of more than 10
were observed in all compounds. Hence, anti-malarial
potency was tested by a conventional 4-day suppressive
test using mice infected by P. berghei in regard to all the
analogues.15 Among them, the monoethyl and mono-
propyl analogues (8 and 916) showed in vivo anti-
malarial potency T=C > 120ð Þ by intraperitoneal
administration.

In conclusion, we have developed new anti-malarial
peroxides 8 and 9 with in vivo potency by modifying the
ester portion of 3 to the amide function robust to mouse
serum. Further biological potency of 8 and 9 by use of a
complete-cure model with higher dosages is under
investigation.
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