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During the past four years, several groups have reported a
diverse array of interesting approaches to the development of
nonenzymatic acylation catalysts for the kinetic resolution of
alcohols, and certain classes of alcohols can now be resolved
with useful levels of stereoselection (selectivity factor s�
10).[1±3] Amines comprise a second important family of
substrates,[4] but, unfortunately, there has been no significant
progress in the development of nonenzymatic acylation
catalysts for their kinetic resolution, although some advances
have recently been made in the discovery of enantioselective
stoichiometric acylating reagents.[5] Here we describe the first
effective nonenzymatic acylation catalyst for the kinetic
resolution of amines [Eq. (1)],[6, 7] and we present preliminary
mechanistic data.
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In earlier studies, we established that planar-chiral DMAP
derivatives such as PPY* can serve as useful catalysts for
several different enantioselective acylation processes, includ-
ing the kinetic resolution of secondary alcohols (DMAP� 4-
dimethylaminopyridine).[8] Our initial efforts to extend this
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work to the acylation of amines were stymied by the
nucleophilicity of the amineÐit appears that, rather than
awaiting the intervention of the enantiopure catalyst, the
amine instead reacts directly with the acylating agent. As
illustrated in Table 1, a variety of common reagents acylate
(�)-1-phenylethylamine with essentially no stereoselection in
the presence of (ÿ)-PPY*.[9]

As a fortunate consequence of our studies of enantioselec-
tive rearrangement processes,[8c] we discovered an acylating
agent, an O-acylated azlactone, that reacts much more rapidly
with PPY* than with a primary amine. With this acylating
agent, we observed a significant level of stereoselection in the
kinetic resolution of (�)-1-phenylethylamine catalyzed by
enantiopure PPY* [Eq. (2)].[10]
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Optimization studies produced an enhancement in stereo-
selection, primarily as a result of the temperature dependence
of the selectivity. Thus, by conducting the reaction at ÿ50 8C
and adding the acylating agent in two batches, we can resolve
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Table 1. Reaction of (�)-1-phenylethylamine with common acylating
agents in the presence of (ÿ)-PPY*.
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(�)-1-phenylethylamine with a selectivity factor of 12 (Ta-
ble 2, entry 1).[11] Other primary amines can also be kinetically
resolved with good stereocontrol by PPY*. Higher selectivity
factors are obtained for amines in which the aromatic group
bears an ortho substituent (entries 2 and 3 vs. entry 1).

Electronic effects due to para substitution do not appear to
impact significantly on stereoselection (entries 4 and 5 vs.
entry 1), although enhanced selectivity is observed for a meta-
methoxy-substituted amine (entry 6). An increase in the size
of the alkyl group also leads to a modest increase in
stereoselection (entry 7 vs. entry 1). Entry 8 provides an
example of a kinetic resolution of a more highly functional-
ized amine that has been employed in studies of peptide-
based Src SH2 inhibitors.[12]

We believe that these kinetic resolutions proceed through
the pathway outlined in Scheme 1. Catalyst PPY* reacts
rapidly with the acylating agent, producing an ion pair
(step 1), which is the resting state of the catalytic cycle. In
the subsequent, stereochemistry-determining step, the me-
thoxycarbonyl group is transferred to the amine, thus furnish-
ing the carbamate and regenerating PPY* (step 2). Consistent
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Scheme 1. Proposed mechanism for acylations catalyzed by PPY*.

with this kinetic scheme is our observation that the rate of the
reaction is zero order in acylating agent and first order in
PPY* and in amine.[13]
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Table 2. Kinetic resolutions catalyzed by (ÿ)-PPY*.
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High-nuclearity metal ± cyanide clusters may ultimately
provide a vehicle for the design of new single-molecule
magnet molecules possessing an energy barrier for magnetic
moment reversal.[1] This contention is partly supported by
recent work in which an understanding of the factors
influencing superexchange interactions across a bridging
cyanide ligand has led to the synthesis of Prussian blue type
solids[2] with magnetic ordering temperatures as high as
373 K.[3] Typically, such solids are obtained from aqueous
assembly reactions between octahedral [M(H2O)6]x� and
[M'(CN)6]yÿ complexes. The synthesis of molecular clusters
with similarly adjustable magnetic properties is expected to
require inhibition of some reactive sites on the precursor
complexes through substitution of inert blocking ligands. For
example, the use of 1,4,7-triazacyclononane (tacn) as a face-
capping tridentate ligand on each metal complex can direct
the formation of [(tacn)8M4M'4(CN)12]z� clusters with core
structures consisting of a single cubic unit excised from the
Prussian blue type framework.[4, 5]

However, to produce the exceptionally large spin states
desiredÐalong with magnetic anisotropyÐfor increasing the
spin reversal barrier in single-molecule magnets, it is neces-
sary to develop methods for constructing larger cluster

geometries in which more metal centers can be magnetically
coupled.[6] A simple strategy for achieving higher nuclearities
involves the use of a blocking ligand on just one of the
reaction components, thereby permitting cluster growth to
propagate further before a closed structure forms. Accord-
ingly, the reaction between [Ni(H2O)6]2� and [(Me3tacn)-
Cr(CN)3] (Me3tacn�N,N',N''-trimethyl-1,4,7-triazacyclono-
nane) in aqueous solution generates [(Me3tacn)8-
Cr8Ni6(CN)24]12�, a 14-metal cluster featuring a cube of eight
Cr3� ions with each square face spanned by a [Ni(CN)4]2ÿ

unit.[7] In further pursuing reactions of this type, we have
discovered two new cluster geometries, including a 19-metal
species that represents the largest metal ± cyanide cluster
reported to date.

Reaction of NiI2 with [(Me3tacn)Cr(CN)3] in aqueous
solution does not lead to the face-centered cubic [(Me3tacn)8-
Cr8Ni6(CN)24]12� cluster obtained with chloride, bromide,
nitrate, or perchlorate as counteranions.[7] Instead, crystallo-
graphic analysis[8] of a red-brown crystal isolated from the
reaction mixture revealed a product of composition 1,

[(Me3tacn)8Cr8Ni5(CN)24]I10 ´ 27H2O 1

featuring the open-cage cluster depicted in Figure 1. The core
structure of this [(Me3tacn)8Cr8Ni5(CN)24]10� cluster most
notably differs from the complete face-centered cubic geom-
etry by having a Ni2� ion missing from one of the cube faces.

Figure 1. Structure of the [(Me3tacn)8Cr8Ni5(CN)24]10� cluster and associ-
ated Iÿ anions, as observed in 1. Black, cross-hatched, shaded, white, and
hatched spheres represent Cr, Ni, C, N and I atoms, respectively; H atoms
are omitted for clarity. The cluster has maximal point group symmetry C2v.
Selected mean interatomic distances [�] and angles [8]: Cr-NCN 2.05(6), Cr-
C 2.04(5), Ni-C 1.86(2), C-NCN 1.14(3), Ni ´´ ´ Iouter 2.91(3), Ni ´´ ´ Iinner 3.09(3);
NCN-Cr-NCN 87(2), NCN-Cr-C 93(3), Cr-N-CCN 170(4), Cr-C-N 172(4), C-Ni-
C 89(1), Ni-C-N 177(1).

As with [(Me3tacn)8Cr8Ni6(CN)24]12�,[7] the thermal energy
delivered in the course of forming the cluster is apparently
sufficient to reorient the cyanide ligands from the CrIII-C-N
connectivity of the reactant complex to the more stable CrIII-
N-C-NiII bridging arrangement. This, rather than the reverse
bridging cyanide orientation, was clearly favored in the crystal

(13.5 mg, 0.0420 mmol) in CHCl3 (0.15 mL) was added by syringe.
After 4 hours, additional O-acylated azlactone (13.5 mg,
0.0420 mmol) in CHCl3 (0.15 mL) was added. After 24 hours (total),
the carbamate was isolated by flash chromatography (25 % EtOAc/
hexanes) (7.3 mg; HPLC analysis: 79% ee). For ee analysis, the
unreacted amine was acylated (NEt3, Ac2O, CH2Cl2, RT) and then
purified by flash chromatography (EtOAc) to furnish the amide
(11.4 mg; GC analysis: 42 % ee). These ee values correspond to a
selectivity factor s of 13 at 35 % conversion.

[12] G. P. Luke, D. A. Holt, Tetrahedron: Asymmetry 1999, 10, 4393 ± 4403.
[13] A study of stereoselectivity as a function of catalyst ee is consistent

with the presence of one catalyst molecule in the stereochemistry-
determining step of the process.
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