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Chiral Phosphoric Acid Catalyzed Asymmetric Addition of 
Naphthols to para-Quinone Methides 

Yuk Fai Wong,a Zhaobin Wang a and Jianwei Sun* a 

An asymmetric addition of naphthols to in-situ generated para-quinone methides catalyzed by a chiral phosphoric acid is 

described. A range of useful triarylmethanes can be generated from stable general para-hydroxybenzyl alcohols with good 

efficiency and enantioselectivity. 

Introduction 

For more than a century, para-quinone methides (p-QMs) have 

been a topic of extensive studies, not only because of their wide 

occurrence in natural products and biologically important 

molecules, but also due to their versatility as reactive 

intermediates in biologically processes and organic synthesis.1-3 

However, despite the long history of these studies, the 

exploitation of p-QMs for asymmetric synthesis has not been 

well-established. Indeed, highly efficient catalytic asymmetric 

reactions of p-QMs, typically nucleophilic 1,6-additions, have 

not been realized until very recently.4-5  

 In the past two years, a number of efficient catalytic systems, 

including metal catalysis and organocatalysis, have been 

developed for the addition of various nucleophiles to the δ 

position of p-QMs with excellent stereocontrol in the formation 

of C−C, C−B, and C−S bonds.4 Notably, a common feature of 

these methods is the direct use of presynthesized p-QM 

substrates (Scheme 1a). Due to their relative instability, the p-

QMs substrates employed in these reactions typically bear two 

bulky substituents (e.g., tBu) at the two α positions, which 

represents a major limitation of these reactions, although the 

bulky tBu substituent has been demonstrated to be removable 

afterwards. 

 Recently, we have reported a chiral phosphoric acid 

catalyzed efficient asymmetric 1,6-addition of pyrroles to a 

range of p-QMs generated in-situ from racemic tertiary p-

hydroxybenzyl alcohols.5 The reaction enjoys a broad substrate 

scope with various substitution patterns. Particular noteworthy 

is that no bulky substituents at the α positions are required 

owning to the compatible in-situ generation of p-QMs, thus 

obviating presynthesis of the unstable p-QMs. While all-carbon 

quaternary stereocenters from tertiary alcohols (via δ,δ-  

 

Scheme 1 Introduction to catalytic symmetric addition to para-quinone methides. 

disubstituted p-QMs) can be generated with excellent efficiency 

and enantioselectivity, unfortunately this protocol cannot be 

directly extended to form tertiary stereocenter with high 

enantioselectivity, i.e., it is not applicable to secondary alcohols 

(via δ-monosubstituted p-QMs).6 Thus, it represents a different 
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limitation. In continuation of our effort in this area, herein we 

report the formation of tertiary stereocenters from catalytic 

asymmetric 1,6-addition of δ-monosubstituted p-QMs in situ 

generated from secondary p-hydroxybenzyl alcohols with good 

to high enantioselectivity, thereby addressing both limitations 

in the previous methods (Scheme 1c). 

Results and discussion 

At the outset, we employed p-hydroxybenzyl alcohol 1a as a 

representative substrate as well as precursor to the 

corresponding p-QM electrophile. With chiral phosphoric acid 

catalysis,7-8 a brief survey of different nucleophiles indicated 

that 2-naphthols might be a family of promising nucleophiles 

with reasonable reactivity and tunable enantioselectivity.9 The 

wide utility of naphthol-containing chiral molecules also 

prompted us to further optimize this reaction.10 Careful 

evaluation of various chiral phosphoric acids indicated that the 

chiral backbone of the catalyst could affect both product yield 

and enantioselectivity (Table 1). Among these catalysts, the 

spirocyclic bis(indane)-derived chiral phosphoric acid C3 

catalyzed the reaction of 1a and 2a with the highest 

enantioselectivity, albeit in moderate yield (entry 8).11  

 

Table 1 Reaction condition optimization 

 
a Reaction scale: 1a (0.1 mmol), 2a (0.15 mmol), 4Å molecular sieves (20 mg), 

solvent (1 mL). b Yield was determined by 1H NMR of the crude reaction mixture 

using CH2Br2 as internal standard. Ee value was determined by HPLC with a chiral 

column. c Run for 72 h. d Run without 4Å molecular sieves. e Run with 80 mg of 

molecular sieves. 

Further solvent screening indicated that cyclopentyl methyl 

ether (CPME) is a superior solvent with respect to 

enantioselectivity (entry 9), but the yield was decreased (see 

the Supporting Information for more details). A longer reaction 

time (72 h) could slightly improve the yield and 

enantioselectivity (entry 10). It is worth noting that the use of 

4Å molecular sieves is essential to these results. The reaction in 

the absence of molecular sieves proceeded with disappointingly 

low efficiency, even with an elongated reaction time (11% yield, 

entry 11). We reasoned that the molecular sieves might 

facilitate the generation of the p-QM intermediate by efficient 

removal of the water generated in this step, thereby promoting 

the subsequent C−C bond formation. With this in mind, we next 

increased the loading of molecular sieves, which to our delight 

resulted in both enhanced efficiency and excellent 

enantioselectivity (93% yield, 90% ee, entry 12). 

 With the optimized conditions, the substrate scope of the 

reaction was examined (Table 2). A range of secondary alcohols 

bearing different substituents, including electron-donating and 

electron-withdrawing groups, all smoothly participated in the 

intermolecular C−C formation process with good to excellent 

efficiency and enantioselectivity. A thiophene-incorporated 

product could also be formed without accident (3i). A range of 

2-naphthols are all suitable nucleophiles for the desired 

products 3j-l. The mild conditions are compatible with a variety 

of functional groups, including aryl halides, ethers, thioethers, 

and silyl-protected alcohols. Notably, in addition to 2-naphthols, 

the reaction with 1-naphthol as nucleophile also produced the 

corresponding 1,6-conjugate addition product 3m in good yield, 

although the enantioselectivity is moderate. Unfortunately, the 

use 2-aminonaphthalene as the nucleophile resulted in no 1,6-

conjugate addition product formation, presumably due to the 

high basicity of 2-aminonaphthalene that is enough to 

deactivate the acid catalyst.  Phenol exhibited low reactivity as 

nucleophile, although C−C bond formation with its para-

position could be observed. Phenols substituted at the para-

position could react with the ortho-position, but with low 

enantioselectivity. Finally, it is worth noting that this process 

represents a new organocatalytic strategy for the synthesis of 

triarylmethanes, a family of useful molecules that often have 

applications as natural products and biologically important 

molecules as well as functional materials.12  

 As shown in Figure 1, a transition state was proposed to 

rationalize the role of the catalyst. We believe that the chiral 

phosphoric acid plays a bifunctional role to activate both the 

para-quinone methide electrophile and the naphthol 

nucleophile by hydrogen bonding. This tight transition state 

with the C−C bond-formation taking place in a pseudo-

intramolecular mode is in agreement with the observed good 

reactivity and stereocontrol, particularly considering that the 

reactive center (the δ position) is relatively remote to the 

activation site (carbonyl oxygen) of the p-QM. 
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Figure 1 Possible transition state 

 Furthermore, to demonstrate the potential utility of the 

enantioenriched naphthol-containing triaryl molecules, we 

carried out a derivatization reaction of the representative 

product 3a (Scheme 2). In the presence of PhI(OAc)2, 3a 

underwent smooth oxidative cyclization to form the spirocyclic 

Table 2 Reaction scopea 

 

a The yield provided is isolated yield. Reaction conditions: 1 (0.2 mmol), 2 (0.3 

mmol), 4Å MS (160 mg), (S)-C3 (5.7 mg, 10 mol%), CPME (2 mL), r.t., 72 h. 

cyclohexadienone 4. Notably, no erosion in enantiomeric excess 

was observed in the cyclization. Further functionalizations of 

compound 4 can also be easily envisioned to synthesize other 

chiral polycyclic molecules. 

 

Scheme 2 Product derivatization.  

Conclusions 

In summary, we have developed an efficient organocatalytic 

enantioselective intermolecular addition of naphthols to in-situ 

generated para-quinone methides. The reaction addressed 

limitations of existing catalytic asymmetric reactions of para-

quinone methides, the majority of which directly use the 

presynthesized unstable para-quinone substrates typically 

bearing bulky α-substituents. Our strategy features compatible 

acid-catalyzed in-situ generation of para-quinone methides, 

thereby obviating the use of bulky substituents and significantly 

expanding the substrate scope. The generation of tertiary chiral 

stereocenter in the useful triarylmethane products is also 

complementary to our previous method for all-carbon 

quaternary stereocenter formation with pyrrole addition. 

Overall, it is a new addition to the under-developed asymmetric 

reactions of general para-quinone methides. Extension of this 

catalytic systems to other useful nucleophiles are underway in 

our laboratory. 
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