Hexakis(2,4,6-tri*iso*propylphenyl)*cyclo*tristannoxane – a Molecular Diorganotin Oxide with Kinetically Inert Sn–O Bonds¹⁾ # Jens Beckmann, Klaus Jurkschat*, Stephanie Rabe, and Markus Schürmann Dortmund, Lehrstuhl für Anorganische Chemie II der Universität Received March 27th, 2001. **Abstract.** The single-crystal X-ray structure analysis of hexakis(2,4,6-tri*iso*propylphenyl)*cyclo*tristannoxane, *cyclo*-[(2,4,6-*i*-Pr₃-C₆H₂)₂SnO]₃ (1), is reported and reveals this compound to contain an almost planar six-membered ring. Redistribution reactions of 1 with *cyclo*-(*t*-Bu₂SnO)₃ and *t*-Bu₂SiCl₂, respectively, failed and indicate an unusual kinetic inertness of the Sn–O bonds in 1 as compared to related mo- lecular diorganotin oxides containing less bulkier substituents. The redistribution reaction of *cyclo-(t-Bu₂SnO)₃* with *cyclo-(t-Bu₂SnS)₂* leads to an equilibrium involving the trimeric diorganotin oxysulphides *cyclo-t-Bu₂Sn(OSnt-Bu₂)₂S* (2a) and *cyclo-t-Bu₂Sn(SSnt-Bu₂)₂O* (2b). **Keywords:** Tin; Oxide; Sulphide; X-ray structure; NMR # Hexakis(2,4,6-tri*iso*propylphenyl)*cyclo*tristannoxan – Ein molekulares Diorganozinnoxid mit kinetisch stabilen Sn–O Bindungen¹⁾ **Inhaltsübersicht.** Es wird die Einkristallröntgenstrukturanalyse von Hexakis(2,4,6-tri*iso*propylphenyl)*cyclo*tristannoxan *cyclo*-[(2,4,6-*i*-Pr₃-C₆H₂)₂SnO]₃ (1) vorgestellt. Die Verbindung liegt als nahezu planarer sechsgliedriger Ring vor. Das Diorganozinnoxid 1 reagiert nicht mit *cyclo*-(*t*-Bu₂SnO)₃ bzw. *t*-Bu₂SiCl₂, was auf die ungewöhnliche kinetische Stabilität der Sn–O Bindungen in 1 im Vergleich zu ähnlichen molekularen Diorganozinnoxiden mit sterisch weniger anspruchsvollen Substituenten hinweist. Die Redistributionsreaktion von *cyclo-(t-*Bu₂SnO)₃ mit *cyclo-(t-*Bu₂SnS)₂ führt zu einem Gleichgewicht mit den trimeren Diorganozinnoxysulphiden *cyclo-t-*Bu₂Sn(OSn*t-*Bu₂)₂S (**2a**) and *cyclo-t-*Bu₂Sn(SSn*t-*Bu₂)₂O (**2b**). ### Introduction Diorganotin oxides (R₂SnO)_n have been known for many years [1]. Depending on the steric demand of the organic substituents they are either polymeric (**I**, R = Me, Et, Bu, Vinyl, Ph) [1] or trimeric (**II**, R = CH₂SiMe₃, [2] *t*-Bu, [3, 4] Me₂EtC, [4] (Me₃Si)₃C/Me, [5] 2,6-Me₂-C₆H₃, [6] 2,6-Et₂-C₆H₃, [7] 2,4,6-(CF₃)₃-C₆H₂) [8]. While the six-membered ring structure of the latter compounds, (**II**), was established by X-ray diffraction studies, the polymeric nature of the former group, (**I**), was deduced from their virtual insolubility in common organic solvents, ¹¹⁹Sn Mößbauer, [9, 10] and ¹¹⁹Sn MAS NMR spectroscopy [11] revealing the presence of pentacoordinated tin atoms within these compounds (Chart 1). Furthermore, one example of a dimeric diorganotin oxide containing extremely bulky substituents is known, namely *cyclo*-{[(Me₃Si)₂CH]₂SnO}₂, (III) (Chart 1) [12]. Bis(2,4,6-tri*iso*propylphenyl)tin oxide was prepared by hydrolysis of (2,4,6-*i*-Pr–C₆H₂)₂SnBr₂ under basic conditions [13–17] and it was reported to be a trimer, * Prof. Dr. K. Jurkschat Lehrstuhl für Anorg. Chemie II der Universität D-44221 Dortmund E-mail: Kjur@platon.chemie.uni-dortmund.de cyclo-[(2,4,6-i-Pr-C₆H₂)₂SnO]₃ [16]. Furthermore, it was claimed to appear from the oxidation of (2,4,6-i-Pr-C₆H₂)₂Sn as a kinetically labile dimer, cyclo-[(2,4,6-i-Pr-C₆H₂)₂SnO]₂, which at room temperature rearranges into the thermodynamically more stable trimer within 24 h to a degree of more than 90% [15]. However, no experimental details on the preparation as well as the rearrangement step were given and spectroscopic data are available neither for the dimer nor the trimer [13–17]. In addition to bis(2,4,6-tri*iso* propylphenyl)tin oxide, the closely related sulphide, cyclo-[(2,4,6-i-Pr-C₆H₂)₂-SnS]₂ [18, 19] and oxysulphide cyclo-O[(2,4,6-i-Pr-C₆H₂)₂Sn]₂S [19] were reported, which both represent four-membered rings in the solid state. Various redistribution reactions of diorganotin chalcogenides, $(R_2SnX)_n$, (R = alkyl, aryl; X = O, S, Se, Te; n = 2, 3) have demonstrated that the Sn–X bonds are kinetically labile and that reactions involving cleavage of these bonds are fast and proceed under mild conditions [20–23]. In a recent conference contribution it was pointed out that certain trimeric diaryltin sulphides, $cyclo-(R_2SnS)_3$ (R = Ph, o-Tol, m-Tol, p-Tol), ¹⁾ This work contains parts of the Ph.D. theses of J. B. and S. R., Dortmund University 1999. I, R groups are obmitted Chart 1 can be reversibly converted to their corresponding dimers, (R₂SnS)₂, by simply heating them in a high-boiling solvent [21, 22]. One possible explanation for this observation is the assumption of an equilibrium between these oligomers, with the position of this equilibrium being controlled by the entropy term of the Gibbs-Helmholtz equation. Herein, we revisit the synthesis of bis(2,4,6-tri*iso*-propylphenyl)tin oxide (1) and describe the single-crystal X-ray structure analysis of the trimer. Variable temperature ¹¹⁹Sn NMR spectroscopic studies show no evidence for dimers or other related species. Instead, a remarkable kinetic inertness of the Sn–O bonds is observed in reactions with *cyclo*-(*t*-Bu₂SnO)₃ and *t*-Bu₂SiCl₂. Moreover, the redistribution reaction between *cyclo*-(*t*-Bu₂SnO)₃ and *cyclo*-(*t*-Bu₂SnS)₂, which gives rise to an equilibrium of the former with the oxysulphides, *cyclo*-*t*-Bu₂Sn(OSn*t*-Bu₂)₂S and *cyclo*-*t*-Bu₂Sn(SSn*t*-Bu₂)₂O, suggests that the fully characterized oxysulphide *cyclo*-O[(2,4,6-*i*-Pr-C₆H₂)₂Sn]₂S [19] is also kinetically stabilized rather than being the thermodynamically favored alternative to a mixture of the former with *cyclo*-[(2,4,6-*i*-Pr-C₆H₂)₂SnS]₂ and cyclo-[(2,4,6-i-Pr-C₆H₂)₂SnO]₂, or cyclo-[(2,4,6-i-Pr-C₆H₂)₂SnO]₃. Diorganotin oxides, such as *cyclo-(t-Bu₂SnO)₃*, find synthetic applications as convenient proton free oxide sources as was recently demonstrated in reactions with spacer-bridged diorganotin dihalides [24], diphenyl-dichlorosilane [25], diphenyldichlorogermane, and phenylboron dichloride [26], respectively, and therefore a thorough knowledge of the reactivity of this class of compounds is highly desirable. #### **Results and Discussion** The hydrolysis of $(2,4,6-i-Pr_3-C_6H_2)_2SnBr_2$ with aqueous sodium hydroxide in toluene afforded *cyclo-*[$(2,4,6-i-Pr_3-C_6H_2)_2SnO$]₃ (1) in good yield (Eq. (1)). The diorganotin oxide **1** is a colorless high-melting crystalline solid. The molecular structure is shown in Figure 1. Selected bond lengths and angles are listed in Table 1. Crystal data are given in Table 2. The molecular structure consists of an almost planar central Sn_3O_3 ring with the largest deviation from the plane being 0.0115 Å. Notably, two tin atoms, Sn(2) and Sn(2 a), are crystallographically equivalent while the third one, Sn(1), is independent. However, the ¹¹⁹Sn MAS NMR spectrum showed only one signal at **Fig. 1** General view (SHELXTL-PLUS) of a molecule of **1** showing 30% probability displacement ellipsoids and the atom numbering. **Table 1** Selected Bond Lengths/Å and Angles/° for 1^{a)} | Sn(1)-O(1) | 1.956(2) | Sn(1)-O(1 a) | 1.956(2) | |---------------------|----------|--------------------------|----------| | Sn(2)-O(1) | 1.970(2) | Sn(2)-O(2) | 1.969(1) | | Sn(2 a) - O(2) | 1.969(1) | Sn(1)-C(1) | 2.150(4) | | Sn(1)-C(1 a) | 2.150(4) | Sn(2)-C(11) | 2.162(4) | | Sn(2)-C(21) | 2.160(4) | | | | | | | | | O(1)-Sn(1)-O(1 a) | 105.1(1) | O(1)-Sn(1)-C(1) | 104.1(1) | | O(1 a)-Sn(1)-C(1) | 117.3(2) | O(1)-Sn(1)-C(1 a) | 117.3(2) | | O(1 a)-Sn(1)-C(1 a) | 104.1(1) | C(1)- $Sn(1)$ - $C(1 a)$ | 109.5(2) | | O(1)-Sn(2)- $O(2)$ | 103.6(1) | O(1)-Sn(2)-C(11) | 115.2(2) | | O(2)-Sn(2)-C(11) | 105.0(1) | O(1)-Sn(2)-C(21) | 101.4(1) | | O(2)-Sn(2)-C(21) | 115.9(1) | C(11)– $Sn(2)$ – $C(21)$ | 115.5(2) | | Sn(1)-O(1)-Sn(2) | 135.5(1) | Sn(2)-O(2)-Sn(2a) | 136.6(2) | | | | | | $^{^{}a)}$ Symmetry transformation used to generate equivalent atoms: a = -x + 1, y, -z + 0.5 Table 2 Crystallographic Data for 1 | Compound number | 1 | |------------------------------------------|-----------------------------------------------------------------| | Empirical formula | C ₉₀ H ₁₃₈ O ₃ Sn ₃ | | Formular weight | 1624.07 | | Crystal system | orthorhombic | | Space group | Pbcn | | Cell constants/Å and ° | | | a | 24.577(1) | | b | 14.748(1) | | c | 24.246(1) | | Volume/Å ³ | 8788.2(̀8)́ | | Z | 4 | | Density(calculated) (Mg/m ³) | 1.227 | | Density(measured) (Mg/m ³) | 1.254(1) | | Absorption coeffizient/mm ⁻¹ | 0.890 | | Crystal size/mm ³ | $0.25 \times 0.15 \times 0.15$ | | Theta range for data collection | 3.46 to 25.03 | | Reflections collected | 114791 | | Independent reflections | $7742 [R_{int} = 0.076]$ | | Data/restraints/parameters | 7742/0/454 | | Goodness-of-fit on F ² | 0.756 | | R indices $[I > 2 \text{sigma}(I)]$ | R1 = 0.0346 | | | wR2 = 0.0458 | | R indices (all data) | R1 = 0.1344 | | | wR2 = 0.0552 | | Largest diff. peak and hole (e/ų) | 0.250/-0.257 | -128.6 ppm $(v_{1/2} \sim 350 \text{ Hz})$ rather than the expected two signals in a ratio of 2:1. The mean Sn-O and Sn-C bond distances amount to 1.963(2) and 2.156(4) Å, respectively, and are comparable with those of other trimeric diorganotin oxides [4-8]. As a result of the bulky 2,4,6-triisopropyl ligands, the tin atoms exhibit distorted tetrahedral geometries. The mean O-Sn-O angle in 1 amounts to 104.4(1)°, which is close to the corresponding angles in cyclot-Bu₂SnO)₃ (106.9(2)°), [4] cyclo-[(EtMe₂C)₂SnO]₃ $(106.1(6)^{\circ})$, [4] cyclo-[$(2,4-Me_2-C_6H_3)_2SnO]_3$ (101.4°), [6] cvclo-[(Me₃SiCH₂)₂SnO]₃ (103.2(2)°), [2] and cv $clo-\{[(Me_3Si)_3C]MeSnO\}_3 (104.7(3)^\circ) [5]$ whereas the corresponding O-Sn-O angle in the dimer cyclo- $\{[(Me_3Si)_2CH]_2SnO\}_2 (82.5(6)^\circ)$ [12] differs drastically. The mean C-Sn-C angle in 1 amounts to 112.5(2)° which is close to the corresponding angle in cyclo- $[(2,4-Me_2-C_6H_3)_2SnO]_3$ (114.8°) [6] but somewhat smaller than those values reported for cyclo $\begin{array}{llll} (t\text{-Bu}_2\text{SnO})_3 & (119.5(4)^\circ), & [4] & cyclo\text{-}[(\text{EtMe}_2\text{C})_2\text{SnO}]_3 \\ (118.(2)^\circ), & [4] & cyclo\text{-}[(\text{Me}_3\text{SiCH}_2)_2\text{SnO}]_3 & (118.3(2)^\circ), \\ [2] & cyclo\text{-}\{[(\text{Me}_3\text{Si})_3\text{C}]\text{MeSnO}\}_3 & (116.1(6)^\circ), & [5] & \text{and} & cyclo\text{-}\{[(\text{Me}_3\text{Si})_2\text{CH}]_2\text{SnO}\}_2 & (119.9(9)^\circ) & [12]. & \text{The} & \text{mean} \\ \text{Sn-O-Sn} & \text{angle} & \text{in} & \text{1} & \text{amounts} & \text{to} & 136.1(2)^\circ & \text{which} & \text{is} \\ \text{close} & \text{to} & \text{the} & \text{Sn-O-Sn} & \text{angles} & \text{reported} & \text{for} & cyclo\text{-}(t\text{-Bu}_2\text{SnO})_3 & (133.1(3)^\circ) & [4], & cyclo\text{-}[(\text{EtMe}_2\text{C})_2\text{SnO}]_3 \\ (134(1)^\circ), & [4] & \text{and} & cyclo\text{-}[(\text{Me}_3\text{Si})_3\text{C}]\text{MeSnO}\}_3 \\ (133.2(5)^\circ), & [5] & \text{but} & \text{bigger} & \text{than} & \text{the} & \text{angles} & \text{found} & \text{for} \\ cyclo\text{-}[(2,6\text{-Me}_2\text{-C}_6\text{H}_3)_2\text{SnO}]_3 & (120.8^\circ) & [6] & \text{and} & cyclo\text{-}[(\text{Me}_3\text{SiCH}_2)_2\text{SnO}]_3 & (122.4(2)^\circ) & [2]. \\ \end{array}$ The diaryltin oxide cyclo-[(2,4,6-i-Pr₃-C₆H₂)₂SnO]₃ (1) is highly soluble in common organic solvents. According to a molecular weight determination in chloroform, the six-membered ring structure is retained in solution. The ¹¹⁹Sn NMR spectrum (CDCl₃) of 1 shows one signal at -128.6 ppm being almost identical to the 119 Sn MAS NMR chemical shift mentioned above and very close to the ¹¹⁹Sn NMR chemical shift reported for cyclo-[(2,6-Et₂-C₆H₃)₂- $SnO]_3$ (-125.0 ppm) [7]. Interestingly, the ${}^2J({}^{119}Sn -$ O⁻¹¹⁷Sn) coupling of 501 Hz is significantly bigger as compared to the corresponding coupling in the closely related diaryltin oxide cyclo-[(2,6-Me₂-C₆H₃)₂SnO]₃ (320 Hz), [27] as well as in cyclo-(t-Bu₂SnO)₃ (369 Hz), [4] cyclo-[(Me₂EtC)₂SnO]₃ (394 Hz), [4] and cyclo-[(Me₃SiCH₂)₂SnO]₃ (335 Hz) [2]. This difference, especially in comparison with cyclo-[(2,6-Me₂-C₆H₃)₂SnO]₃ having an almost identical substituent pattern at tin, is likely to originate from the well established dependence of the ${}^{2}J({}^{119}\text{Sn-O-}{}^{117}\text{Sn})$ coupling from the Sn-O-Sn bond angle [27, 28] and suggests this angle in compound 1 and in cyclo-[(2,6-Me₂-C₆H₃)₂SnO]₃ to be even more different in solution than in the solid state. A ¹¹⁹Sn NMR spectrum ([D₈]toluene) of **1** at 80 °C shows no significant change to the one described before, i.e., there is no indication for the formation of a dimer. A further interesting feature of compound **1** in solution is the observation in its ¹³C NMR spectrum (CDCl₃) of six resonances for the aryl carbon atoms and nine resonances for the *iso*propyl carbon atoms, indicating rotation about the Sn–C_i bond to be slow on the NMR time scale. #### Redistribution Reactions The diorganotin oxides *cyclo*-[(Me₃SiCH₂)₂SnO]₃ and *cyclo*-(*t*-Bu₂SnO)₃ are known to undergo a redistribution reaction under mild conditions and to form an equilibrium with the mixed oxides *cyclo-t*-Bu₂Sn-[OSn(Me₃SiCH₂)₂]₂O and *cyclo*-(Me₃SiCH₂)₂Sn(OSn*t*-Bu₂)₂O [20]. The same holds for diorganotin sulphides *cyclo*-(R₂SnS)₃ and *cyclo*-(R₂SnS)₃ (R, R' = Me, Bu, Ph, *o*-Tol) which realize equilibria of the mixed suphides *cyclo*-R₂Sn(SSnR₂)₂S and *cyclo*-R₂Sn(SSnR₂)₂S [21, 22]. Furthermore, dimethyltin chalcogenides *cy*- clo-(Me₂SnX)₃ and cyclo-(Me₂SnY)₃ (X, Y = S, Se, Te) react with each other to give the mixed chalcogenides cyclo-Me₂Sn(XSnMe₂)₂Y and cyclo-Me₂Sn-(YSnMe₂)₂X in situ [23]. These redistribution reactions proceed under very mild conditions which can be attributed to the high kinetic lability of the Sn–X bonds (X = O, S, Se, Te). Surprisingly, equimolar amounts of 1 and cyclo-(t-Bu₂SnO)₃ do not react, even upon heating at reflux in [D₈]toluene for 6 d (Eq. (2)). The ¹¹⁹Sn NMR spectrum ([D₈]toluene) of the reaction mixture exclusively showed two signals at -84.5 ($^2J(^{119}$ Sn–O– 117 Sn) 369 Hz, cyclo-(t-Bu₂SnO)₃) and -128.4 ($^2J(^{119}$ Sn–O– 117 Sn) 501 Hz, cyclo-[(2,4,6-i-Pr₃–C₆H₂)₂SnO]₃ (1)), demonstrating the coexistence of the reactants in solution. $$[(2,4,6-i-Pr_3-C_6H_2)_2SnO]_3 + (t-Bu_2SnO)_3 \longrightarrow$$ no mixed oxides (2) The reaction of *cyclo*-(t-Bu₂SnO)₃ with various amounts of t-Bu₂SiCl₂ provided a number of cyclic and open-chain stannasiloxanes, such as *cyclo-t*-Bu₂Si(OSnt-Bu₂)₂O, *cyclo*-(t-Bu₂SiOSnt-Bu₂O)₂, and t-Bu₂Si(OSnt-Bu₂SnCl)₂ [25]. This reaction is irreversible with the thermodynamic driving force being the formation of energetically favored Si–O bonds. In contrast, the analogous reaction of **1** with t-Bu₂SiCl₂ in [D₈]toluene after 6 d heating at reflux failed. No reaction was observed even after prolonged heating of the pure reactants at 220 °C for 6 d. The ¹¹⁹Sn and ²⁹Si NMR spectra ([D₈]toluene) of the reaction mixtures exclusively showed signals for the starting materials at -128.4 ppm ($^2J(^{119}Sn-O-^{117}Sn)$ 501 Hz; **1**) and 35.6 ppm (t-Bu₂SiCl₂), respectively. The reaction of 1 with the sterically less crowded Ph₂SiCl₂ in [D₈]toluene resulted indeed in oxide transfer from the organotin oxide to the organosilicon species. After 30 min at 90 °C, the ¹¹⁹Sn NMR spectrum displayed resonances at -128.0 ppm $({}^{2}J({}^{119}Sn-O-{}^{117}Sn))$ 501 Hz, integral 84%) belonging to the organotin oxide 1 and at -66.6 ppm (integral 16%) assigned to $(2,4,6-i-Pr_3-C_6H_2)_2SnCl_2$. The ²⁹Si NMR spectrum of the same reaction mixture displayed a major resonance at 6.1 ppm (integral 88%; Ph₂SiCl₂) and two minor resonances at -21.8 (integral 4%) and -30.2 ppm (integral 7%). The oxide transfer is almost complete after 115 h at 90 °C. The ¹¹⁹Sn NMR spectrum displayed a major resonance at -66.6 ppm (integral 97%) belonging to the diorganotin dichloride and a minor resonance at -128.0 ppm (integral 3%) belonging to compound 1. The ²⁹Si NMR spectrum of this reaction mixture showed six major resonances at 6.0 ppm (integral 8%, Ph₂SiCl₂), -37.0 ppm (integral 17%), -37.3 ppm (integral 17%), -45.0 ppm (integral 30%), -45.2 ppm (integral 11%), and -45.6 ppm (integral 6%), and five minor resonances (total integral 11%) at -21.8 ppm, -35.2 ppm, -42.4 ppm (cyclo-(Ph₂SiO)₄, identity confirmed by addition of an authentic sample), -43.0 ppm, and -46.8 ppm. Most of these signals could not be assigned but they might belong to open-chain chlorosiloxanes such as Ph₂ClSiOSiClPh₂, Ph₂Si(OSiClPh₂)₂, O(SiPh₂OSiClPh₂)₂, and/or Ph₂Si(OSiPh₂OSiClPh₂)₂. It is interesting to note that along the reaction (i) no stannasiloxanes were detected and (ii) that only trace amounts of cyclo-(Ph₂SiO)₄ are formed. The inertness of cyclo-[2,4,6-i-Pr₃-C₆H₂)₂SnO]₃ (1) in its reaction with t-Bu₂SiCl₂ can be interpreted in terms of an enhanced kinetic stability of the Sn–O bonds. The synthesis and complete characterization of the four-membered ring cyclo-O[(2,4,6-i-Pr₃-C₆H₂)₂-Sn]₂S [19] supports this interpretation as it is stable and does not rearrange to give cyclo-[2,4,6-i-Pr₃-C₆H₂)₂SnS]₂ [18, 19] and cyclo-[2,4,6-i-Pr₃-C₆H₂)₂SnO]₃ (1). Diorganotin oxysulphides other than cyclo-O[(2,4,6-i-Pr₃-C₆H₂)₂Sn]₂S are not known so far. However, the six-membered rings cyclo-t-Bu₂Sn(OSnt-Bu₂)₂S (**2 a**) and cyclo-t-Bu₂Sn(SSnt-Bu₂)₂O (**2 b**) were generated *in situ* by heating at reflux for 12 h a mixture in chloroform of cyclo-(t-Bu₂SnO)₃ and cyclo-(t-Bu₂SnS)₂ in a ratio of 2:3 (Eq. (3)). The $^{119}\rm{Sn}$ NMR spectrum (CHCl₃, D₂O-capillary) showed six signals belonging to $cyclo\text{-}(t\text{-Bu}_2\text{SnO})_3$ (δ –84.5, $^2J(^{119}\rm{Sn}\text{-O}\text{-}^{117}\rm{Sn})$ 365 Hz; integral 30%), $cyclo\text{-}(t\text{-Bu}_2\text{SnS})_2$ (δ 123.9, $^2J(^{119}\rm{Sn}\text{-S}\text{-}^{117}\rm{Sn})$ 112 Hz; integral 40%), $cyclo\text{-}t\text{-Bu}_2\text{Sn}(\text{OSn}t\text{-Bu}_2)_2\text{S}$ (**2 a**; δ 13.4, $^2J(^{119}\rm{Sn}\text{-O}\text{-}^{119/117}\rm{Sn})$ 520 Hz, δ –99.5, $^2J(^{119}\rm{Sn}\text{-O}\text{-}^{119/117}\rm{Sn})$; ratio 2:1; total integral 23%) and $cyclo\text{-}t\text{-Bu}_2\text{Sn}(\text{SSn}t\text{-Bu}_2)_2\text{O}$ (**2 b**; δ 86.2, $^2J(^{119}\rm{Sn}\text{-S}\text{-}^{119/117}\rm{Sn})$ 69 Hz, δ –6.0, $^2J(^{119}\rm{Sn}\text{-O}\text{-}^{119/117}\rm{Sn})$ 672 Hz, $^2J(^{119}\rm{Sn}\text{-S}\text{-}^{119/117}\rm{Sn})$ 65 Hz; ratio 1:2; total integral 7%). Further heating for 24 h did not change the integral ratio indicating that the reaction mixture had reached equilibrium. Slow evaporation of the solvent from the reaction mixture afforded a microcrystalline solid from which a $^{119}\rm{Sn}$ MAS NMR spectrum was recorded (Figure 2). It shows six center bands with ac- **Fig. 2** ¹¹⁹Sn MAS NMR spectrum (149.21 MHz) of a reaction mixture according Equation 4 (Spin frequency 9 KHz; 10000 transitions). Center bands are indicated by arrows. companying sets of spinning sidebands, which are unambiguously assigned to cvclo-(t-Bu₂SnO)₃ (δ -84.3; integral 28%), [29] $cyclo-(t-Bu_2SnS)_2$ (δ 126.1; integral 36%), cyclo-t-Bu₂Sn(OSnt-Bu₂)₂S (**2 a**; δ 14.7, -99.5; ratio 2:1; total integral 26%) and cyclo-t-Bu₂Sn- $(SSnt-Bu_2)_2O$ (**2 b**; δ 86.0, 5.6; ratio 1:2; total integral 10%). It is worth mentioning that the ¹¹⁹Sn MAS NMR chemical shift measured for *cyclo-(t-Bu₂SnS)₂* (δ 126.1) differs from that previously reported by Harris and Sebald (δ 119.4, 117.3) [30] which is tentatively attributed to the presence of different polymorphs. Indeed, monoclinic (α -form) and triclinic (β -form) modifications have been reported for (t-Bu₂SnS)₂ [31]. However, both ¹¹⁹Sn MAS chemical shifts are consistent with the respective value of cyclo-(t-Bu₂SnS)₂ in CDCl₃ solution (δ 124.1) [27]. The graphical integration of the signals was achieved by taking into account the intensity of the center bands and all spinning sidebands belonging to them. However, the integration has to be considered as an estimate because errors may arise from poor signal-to-noise ratio and disparate applying cross polarization. It is very likely that cyclo-(t-Bu₂SnO)₃, 2a, and 2b realize mixed crystals as the trimeric di-tert-butylelement oxides, cyclo- $(t-Bu_2MO)_3$ (M = Si, Ge, Sn), [3, 4, 32, 33] cyclo-t-Bu₂M- $(OSnt-Bu_2)_2O$ (M = Si, Ge), [2, 29] and di-tert-butylelement imines cyclo-(t-Bu₂MNH)₃ (M = Si, Sn) [34, 35] all crystallize in the trigonal space group R-3c. ## **Conclusion** Bis(2,4,6-tri*iso*propylphenyl)tin oxide, *cyclo*-[(2,4,6-*i*-Pr-C₆H₂)₂SnO]₃ (1), was prepared in high yield as a cyclic trimer by the hydrolysis of (2,4,6-*i*-Pr-C₆H₂)₂-SnBr₂ under basic conditions. The molecular structure of 1 shows no significant difference from those of other trimeric diorganotin oxides. The six-membered ring is retained in solution, and no evidence was found for the formation of a dimer, cyclo-[(2,4,6-i-Pr-C₆H₂)₂SnO]₂. Redistribution reactions with *cyclo*-(t-Bu₂SnO)₃ and t-Bu₂SiCl₂ failed and reveal an enhanced kinetic inertness of the Sn-O bonds in 1 as compared to other trimeric diorganotin oxides such as cyclo-(t-Bu₂SnO)₃ which is attributed to the high shielding capacity of the 2,4,6-isopropylphenyl ligands [36]. The reaction of 1 with Ph₂SiCl₂ proceeds under oxygen transfer to give a mixture of open-chain chlorosiloxanes, but only traces of cyclo-diphenylsiloxanes. This is in contrast to the reaction in chloroform of (t-Bu₂SnO)₃ with Ph₂SiCl₂ which proceeds at lower temperature and gives cyclo-(Ph₂SiO)_n (n = 3, 4) as major products [25]. # **Experimental Part** All operations were performed under a nitrogen atmosphere using standard Schlenk techniques. Solvents were dried according to standard procedures and freshly distilled prior to use. $(2,4,6-i-Pr-C_6H_2)_2SnBr_2$, [37] $cyclo-(t-Bu_2SnO)_3$, [4] and cyclo-(t-Bu₂SnS)₂ [31] were prepared according to literature procedures. t-Bu₂SiCl₂ was commercially obtained (Fluka) and used as supplied. Solution 1H , $^{13}C\{^1H\}$, $^{29}Si\{^1H\}$, and $^{119}Sn\{^1H\}$ NMR spectra were recorded on a Bruker DRX 400 instrument at 400.13 (¹H), 100.31 (¹³C), 79.49 (²⁹Si), and 149.20 MHz (¹¹⁹Sn). ¹¹⁹Sn(¹H) MAS NMR spectra were obtained from a Bruker MSL 400 spectrometer at 149.20 MHz using cross polarization and high power proton decoupling. Three different spinning speeds were applied in order to assign unambiguously the center bands. c-Hex₄Sn was used as a second reference (δ -97.35 ppm against Me₄Sn). The elemental analysis was determined on an instrument from Carlo Erba Strumentazione (Model 1106). The molecular weight was measured on a Knauer osmometer. Synthesis of Hexakis(2,4,6-triisopropylphenyl)cyclotristannoxane (1). A solution of NaOH (0.85 g, 21.2 mmol) in water (20 mL) was slowly added to a solution of (2,4,6-i-Pr-C₆H₂)₂SnBr₂ (7.25 g, 10.5 mmol) in refluxing toluene (300 mL). After 3 h the mixture was allowed to cool to 40 °C, then the layers were separated, and the organic layer was dried over sodium sulphate. The solvent was reduced to approx. 100 mL. The crude product that crystallized after 12 h at -10 °C was recrystallized from chloroform/hexane to give 4.6 g (8.5 mmol, 81%) of colorless crystals of 1, mp. >360 °C. Anal. Calcd for $C_{90}H_{138}O_3Sn_3$ (1624.3): C, 66.6; H, 8.6. Found: C, 66.6; H, 9.2%. ^{1}H NMR (CDCl₃): $\delta = 6.89~(^{4}J(^{117/119}\text{Sn}^{-1}\text{H})~30~\text{Hz},~\text{phenyl proton}),~6.86~(^{4}J(^{117/119}\text{Sn}^{-1}\text{H})~28~\text{Hz},~\text{phenyl proton}),~3.72~(\text{sept, 1 H, }^{3}J(^{1}\text{H}^{-1}\text{H})~7~\text{Hz},~\text{Me}_{2}\text{C}H),~3.01~(\text{sept, 1 H, }^{3}J(^{1}\text{H}^{-1}\text{H})~7~\text{Hz},~\text{Me}_{2}\text{C}H),~2.78~(\text{sept, 1 H, }^{3}J(^{1}\text{H}^{-1}\text{H})~7~\text{Hz},~\text{Me}_{2}\text{C}H),~1.17~(\text{d, 3 H, }^{3}J(^{1}\text{H}^{-1}\text{H})~7~\text{Hz},~\text{Me}_{2}\text{C}H),~1.17~(\text{d, 3 H, }^{3}J(^{1}\text{H}^{-1}\text{H})~7~\text{Hz},~\text{Me}_{2}\text{C}H),~0.92~(\text{d, 6 H, }^{3}J(^{1}\text{H}^{-1}\text{H})~7~\text{Hz},~\text{Me}_{2}\text{C}H),~0.30~(\text{d, 3 H, }^{3}J(^{1}\text{H}^{-1}\text{H})~7~\text{Hz},~\text{Me}_{2}\text{C}H),~0.30~(\text{d, 3 H, }^{3}J(^{1}\text{H}^{-1}\text{H})~7~\text{Hz},~\text{Me}_{2}\text{C}H),~0.30~(\text{d, 3 H, }^{3}J(^{1}\text{S}^{-117/119}\text{Sn})~5~\text{Hz},~\text{Co}),~153.9~(\text{s, }^{2}J(^{13}\text{C}^{-117/119}\text{Sn})~5~\text{S}~\text{Hz},~\text{Co}),~149.8~(\text{s, Cp}),~143.0~(\text{s, }^{1}J(^{13}\text{C}^{-119}\text{Sn})~809~\text{Hz},~\text{Ci}),~121.9~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~6~\text{Hz},~\text{Cm}),~121.0~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~6~\text{Hz},~\text{Cm}),~121.0~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~6~\text{Hz},~\text{Cm}),~37.4~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~4~\text{Hz},~\text{Me}_{2}\text{C}\text{H}),~3.9~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~4~\text{Hz},~\text{Me}_{2}\text{C}\text{H}),~3.2~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~4~\text{Hz},~\text{Me}_{2}\text{C}\text{H}),~3.2~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~4~\text{Hz},~\text{Me}_{2}\text{C}\text{H}),~3.2~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~4~\text{Hz},~\text{Me}_{2}\text{C}\text{H}),~3.2~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~4~\text{Hz},~\text{Me}_{2}\text{C}\text{H}),~3.2~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~4~\text{Hz},~\text{Me}_{2}\text{C}\text{H}),~3.2~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~4~\text{Hz},~\text{Me}_{2}\text{C}\text{H}),~3.2~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~3.2~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~4~\text{Hz},~\text{Hz})~3.2~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~3.2~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~3.2~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~3.2~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~3.2~(\text{s, }^{3}J(^{13}\text{C}^{-117/119}\text{Sn})~3.2~(\text{s, }^{3}J$ (s, Me_2 CH), 25.1 (s, Me_2 CH), 24.4 (s, Me_2 CH), 24.0 (s, Me_2 CH), 23.9 (s, Me_2 CH); 19 Sn[1 H} NMR (CDCl₃): $\delta = -128.4$ (s, 1 J(119 Sn- 13 C_i) 806 Hz, 2 J(119 Sn- 117 Sn) 501 Hz, 2 J(119 Sn- 13 C_o) 51 Hz, 3 J(119 Sn- 13 C_m) 69 Hz); 119 Sn[1 H} MAS NMR: $\delta = -128.6$. Molecular weight determination (10 mg · ml $^{-1}$, CHCl $_3$): 1674 g · mol $^{-1}$. Attempted reaction of 1 with cyclo-(t-Bu₂SnO)₃. A solution of 1 (54.1 mg, 0.033 mmol) and (t-Bu₂SnO)₃ (24.9 mg, 0.033 mmol) in [D₈]toluene (300 μ L) was heated at reflux for 6 d. A ¹¹⁹Sn NMR spectrum was recorded which is discussed in the text. Attempted reaction of 1 with t-Bu₂SiCl₂. (i) A solution of 1 (54.1 mg, 0.033 mmol) and t-Bu₂SiCl₂ (21.3 mg, 0.1 mmol) in [D₈]toluene (300 μ L) was heated at reflux for 6 d, and, (ii) a neat mixture of 1 (108.2 mg, 0.066 mmol) and t-Bu₂SiCl₂ (42.6 mg, 0.2 mmol) was heated 6 d at 220 °C, then [D₈]-toluene (300 μ L) was added. ¹¹⁹Sn and ²⁹Si NMR spectra were recorded which are discussed in the text. **Reaction of 1 with Ph₂SiCl₂.** A solution of **1** (319 mg, 0.588 mmol) and Ph₂SiCl₂ (149 mg, 0.588 mmol) in $[D_8]$ -toluene (300 μ L) was kept at 90 °C. ²⁹Si and ¹¹⁹Sn NMR spectra were recorded after 30 min, 91 h, and 115 h. **Reaction of** *cyclo-(t-Bu₂SnO)₃* with *cyclo-(t-Bu₂SnS)₂*. A mixture of *cyclo-(t-Bu₂SnO)₃* (249 mg, 0.33 mmol) and *cyclo-(t-Bu₂SnS)₂* (265 mg, 0.5 mmol) in CHCl₃ (5 mL) was heated to reflux for 12 h. A ¹¹⁹Sn NMR (CHCl₃; D₂O-capillary) spectrum was recorded which is discussed in the text. Then, the solvent was slowly evaported on exposure to air leaving a colorless microcrystalline solid. A ¹¹⁹Sn MAS NMR spectrum was recorded which is discussed in the text. # X-ray Crystal Structure Determination of 1 Intensity data for the colorless crystals were collected on a Nonius KappaCCD diffractometer with graphite-monochromated MoK α (0.71069 Å) radiation at 291 K. The data collection covered almost the whole sphere of reciprocal space with 360 frames via ω -rotation ($\Delta/\omega = 1^{\circ}$) at two times 20 s per frame. The crystal-to-detector distance was 2.7 cm. Crystal decay was monitored by repeating the initial frames at the end of data collection. The data were not corrected for absorption effects. Analysis of the duplicate reflections revealed no indication of any decay. The structures were solved by direct methods SHELXS97 [38] and successive difference Fourier syntheses. Refinement applied full-matrix least-squares methods SHELXL97 [39]. The H atoms were placed in geometrically calculated positions using a riding model and refined with common isotropic temperature factors for different C-H types (C-H_{prim.} 0.96 Å, C-H_{tert.} $0.98 \text{ Å U}_{iso} 0.260(3); \text{ C-H}_{aryl} 0.93 \text{ Å, U}_{iso} 0.053(5) \text{ Å}^2).$ A disordered iso-propyl group was found with occupancies of 0.5 (C(28'), C(28"), C(28 a), C(28 b)). Atomic scattering factors for neutral atoms and real and imaginary dispersion terms were taken from International Tables for X-ray Crystallography [40]. The figures were created by SHELXTL [41]. Selected bond distances and angles are listed in Table 1. Crystallographic data are given in Table 2. Crystallographic data (excluding structure factors) for the structures in this paper have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication no CCDC 1566301 (1). Copies of the data can be ob- tained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: + 44-(0)12 23-33 60 33 or e-mail: deposit@ccdc.cam.ac.uk). # References - [1] R. K. Ingham, S. D. Rosenberg, H. Gilman, *Chem. Rev.* **1960**, *60*, 459. - [2] J. Beckmann, Ph. D. thesis, Dortmund University, 1999. - [3] H. Puff, W. Schuh, R. Sievers, R. Zimmer, Angew. Chem. 1981, 93, 622; Angew. Chem. Int. Ed. Engl. 1981, 20, 591. - [4] H. Puff, W. Schuh, R. Sievers, W. Wald, R. Zimmer, J. Organomet. Chem. 1984, 260, 271. - [5] V. K. Belskii, N. N. Zemlyanskii, I. V. Borisova, N. D. Kolosova, I. P. Beletskaya, J. Organomet. Chem. 1983, 254, 189. - [6] U. Weber, W. Winter, H. B. Stegmann, Z. Naturforsch. 1982, 37 b, 1316. - [7] S. Masamune, L. R. Sita, D. J. Williams, J. Am. Chem. Soc. 1983, 105, 630. - [8] J. F. Van der Maelen Uria, M. Belay, F. T. Edelmann, G. M. Sheldrick, *Acta Crystallogr.* **1994**, *C 50*, 403. - [9] P. G. Harrison, R. C. Phillips, E. W. Thornton, J. Chem. Soc., Chem. Commun. 1977, 603. - [10] L. H. Lohmann, J. Organomet. Chem. 1965, 4, 382. - [11] R. K. Harris, A. Sebald, *J. Organomet. Chem.* **1987**, *331*, - [12] M. A. Edelman, P. B. Hitchcock, M. F. Lappert, J. Chem. Soc., Chem. Commun. 1990, 1116. - [13] G. Anselme, H. Ranaivonjatovo, J. Escudie, C. Couret, J. Satge, *Organometallics* 1992, 11, 2748. - [14] H. Ranaivonjatovo, J. Escudie, C. Couret, J. Satge, J. Chem. Soc., Chem. Commun. 1992, 1047. - [15] T. Tsumuraya, S. A. Batcheller, S. Masamune, Angew. Chem. 1991, 103, 916; Angew. Chem. Int. Ed. Engl. 1991, 30, 902. - [16] S. Masamune, L. R. Sita, J. Am. Chem. Soc. 1985, 107, 6390 - [17] C. J. Cardin, D. J. Cardin, M. M. Devereux, M. A. Convery, J. Chem. Soc., Chem. Commun. 1990, 1461. - [18] A. Schäfer, M. Weidenbruch, W. Saak, S. Pohl, H. Marsmann, Angew. Chem. 1991, 103, 978; Angew. Chem. Int. Ed. Engl. 1991, 30, 962. - [19] P. Brown, M. F. Mahon, K. C. Molloy, J. Chem. Soc., Chem. Commun. 1989, 1621. - [20] J. Beckmann, K. Jurkschat, U. Kaltenbrunner, S. Rabe, M. Schürmann, D. Dakternieks, A. Duthie, D. Müller, Organometallics 2000, 19, 4887. - [21] M. Dräger, K. Kozic, B. Mathiasch, W. Steinle, 9th International Conference on the Coordination and Organometallic Chemistry of Germanium, Tin, and Lead, 1998, P2. - [22] M. Dräger, H. Stenger, G. Menges, W. Steinle, 9th International Conference on the Coordination and Organometallic Chemistry of Germanium, Tin, and Lead, 1998, O10. - [23] B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 1985, 16, 73. - [24] D. Dakternieks, K. Jurkschat, D. Schollmeyer, H. Wu, Organometallics 1994, 13, 4121. - [25] J. Beckmann, B. Mahieu, W. Nigge, D. Schollmeyer, M. Schürmann, K. Jurkschat, *Organometallics* 1998, 17, 5697. - [26] I. Pavel, F. Cervantes-Lee, K. H. Pannell, Phosphorus, Sulfur Silicon 1999, 150–151, 223. - [27] T. P. Lockhart, H. Puff, W. Schuh, H. Reuter, T. N. Mitchell, J. Organomet. Chem. 1989, 366, 61. - [28] S. Kerschl, B. Wrackmeyer, D. Männig, H. Nöth, R. Staudigl, Z. Naturforsch. 1987, 42 b, 387. - [29] J. Beckmann, K. Jurkschat, B. Mahieu, M. Schürmann, Main Group Met. Chem. 1998, 21, 113. - [30] R. K. Harris, A. Sebald, Magn. Reson. Chem. 1989, 27, 81. - [31] H. Puff, G. Bertram, B. Ebeling, M. Franken, R. Gattermayer, R. Hundt, W. Schuh, R. Zimmer, J. Organomet. Chem. 1989, 379, 235. - [32] W. Clegg, Acta Crystallogr. 1982, B 38, 1648. - [33] H. Puff, S. Franken, W. Schuh, W. Schwab, J. Organomet. Chem. 1983, 244, C41. - [34] W. Clegg, G. M. Sheldrick, D. Stalke, Acta Crystallogr. 1984, C 40, 433. - [35] H. Puff, D. Haenssgen, N. Beckermann, A. Roloff, W. Schuh, J. Organomet. Chem. 1989, 373, 37. - [36] H. K. Sharma, F. Cervantes-Lee, J. S. Mahmoud, K. H. Pannell, *Organometallics* **1999**, *18*, 399. - [37] R. Kandri, H. Ranaivonjatovo, J. Escudie, A. Kerbal, Phosphorus, Sulfur Silicon 1997, 126, 157. - [38] G. M. Sheldrick, Acta Crystallogr. 1990, A 46, 467. - [39] G. M. Sheldrick, University of Göttingen 1997. - [40] Dordrecht: Kluwer Academic Publishers, V. C. *International Tables for Crystallography* **1992**. - [41] G. M. Sheldrick, SHELXTL. Release 5.1 Software Reference Manual, Bruker AXS, Inc., Madison, Wisconsin, USA 1997.