View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Y. Iwata, Y. Tanaka, S. Kubosaki, T. Morita and Y. Yoshimi, *Chem. Commun.*, 2018, DOI: 10.1039/C7CC09140K.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

Journal Name

COMMUNICATION

Received 00th January 20xx, Accepted 00th January 20xx

A Strategy for Generating Aryl Radicals from Arylborates by Using Organic Photoredox Catalysis: Photo-Meerwein Type Arylations of Electron-Deficient Alkenes

a. Known method to generate arvl radicals

[Sn], [Cu], [Ag], [lr],

DOI: 10.1039/x0xx00000x

Y. Iwata, Y. Tanaka, S. Kubosaki, T. Morita, Y. Yoshimi*

www.rsc.org/

Photoinduced reactions of arylboronic acids with electron deficient alkenes under mild organic photoredox catalysis conditions lead to formation of Meerwein arylation type adducts via generation of aryl radicals. Direct evidence for generation of aryl radicals in these photoreactions comes from the observation of TEMPO trapping.

Aryl radicals are useful reactive intermediates in reactions that introduce aryl groups.¹ Generation of aryl radicals typically requires the use of both stoichiometric amounts of toxic metals and/or sensitive substrates, such as aryl halides and aryl diazonium salts, as well as harsh reaction conditions (Scheme 1a).²⁻⁷ In particular, methodology for C-C bond formation by addition of aryl radicals to alkenes is limited to Meerwein arvlations using arvl diazonium salts 1 and CuCl (Scheme 1b).^{8,9} In this process, an aryl diazonium salt is reduced by Cu(I) to generate an aryl radical, which adds to an electron-deficient alkene giving a radical that is then oxidized by Cu(II) to produce a corresponding cation that serves as the precursor of the adduct 2. Although this reaction leads to C-C bond formation, diazonium salts bearing sensitive substituents can't be used as substrates and they are often dangerously explosive and toxic. Therefore, the development of a new approach to generate aryl radicals from stable precursors without the use of metals and under mild conditions is a desirable goal.

Recently, we described a general method for generating alkyl radicals from aliphatic carboxylates that involves decarboxylation of carboxy radicals produced using light and organic photoredox catalysts such as phenanthrene (Phen) and 1,4-dicyanobenzene (DCB).^{10,11} In addition, we observed that the generated alkyl radicals react with a variety of reagents to form products in high yields. Although this photoinduced decarboxylative radical generation protocol has synthetic advantages, it can't be employed to generate aryl radicals from benzoates under similar photoredox catalysis conditions. This finding encouraged us to conduct a screen to uncover

Scheme 1. Generating aryl radicals and Meerwein arylation.

suitable substrates for the generation of aryl radicals using the photoredox procedure. In this effort, we found that arylboronic acids and arylborates, which are stable, commercially available substances frequently used in Suzuki-Miyaura coupling reactions¹², are useful substrates for photochemical aryl radical generation (Scheme 1c). The results of the investigation that led to the development of a new method both for generating aryl radicals from aryl-boronic acids and -borates as part of C–C bond forming addition reactions with alkenes are described below.

In the initial phase of this study, we explored the photoredox promoted reaction of phenylboronic acid **3a** with acrylonitrile **4a**. This effort, in which the effects of **4a** concentration, and the nature of photocatalyst, solvent and base were assessed (Table S1–S3 (ESI)), demonstrated that adduct **5aa** formation occurs optimally when a room temperature aqueous acetonitrile solution (CH₃CN/H₂O=9:1 (v/v)) containing **3a** (20 mM), 5 equiv. of **4a** (100 mM), 1 equiv. of NaOH (20 mM), phenanthrene (Phen, 50 mol%, 10 mM), and 1,4-dicyanobenzene (DCB, 50 mol%, 10 mM) under argon is irradiated (100 W high-pressure mercury lamp, Pyrex vessels ($\lambda > 280$ nm), 15 × 180 mm) for 6 h. This process generates adduct **5aa** in 78% yield (Entry 1, Table 1) along with almost

^{a.} Department of Applied Chemistry and Biotechnology, Graduate School of

Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

⁺ Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx000

COMMUNICATION

Published on 10 January 2018. Downloaded by Fudan University on 10/01/2018 17:08:08.

DOI: 10.1039/C7CC09140K Journal Name

^aPhotoreactions of CH₃CN/H₂O=9:1 containing **3** (20 mM), **4a** (100 mM), Phen (10 mM), and DCB (10 mM) for 6 h at room temperature under an Ar atmosphere. ^b[Phen]=5 mM, [DCB]=5 mM, irradiation time 12 h. ^c[**3a**]=5 mM, [**4a**]=25 mM, [Phen]=2 mM, [DCA]=2 mM, 28 W blue LED, and irradiation time 12 h. ^dIn the absence of NaOH.

quantitatively recovered Phen and DCB. Photoreactions using lower concentrations of Phen (5 mM) and DCB (5 mM) and employing longer irradiation times (12 h) were found to produce 5aa in only moderate yield (64%, Entry 2). Blue LED (28 W) derived visible light induced reaction of 3a (5 mM) with 5 equiv. of 4a (25 mM) using Phen (2 mM) and 9,10dicyanoanthracene (DCA, 2 mM) for 12 h also led to formation of 5aa in a slightly decreased yield (43%, Entry 3). In the absence of light, NaOH, Phen or DCB, or both Phen and DCB, 5aa is not generated. These observations indicate that both a photoredox catalytic system and the borate, formed by reaction of 3a with NaOH, are essential for the reaction to take place. Finally, an examination of reactions of borates such as **3b–e**, which can potentially serve as phenyl radical precursors, under the same photochemical conditions showed that 5aa is produced. Specifically, we observed that photoreactions of PhBpin 3b and triphenylborane 3c with 4a in the presence of 1 equiv. of NaOH (Entries 4 and 5), as well as those of borates 3d and **3e** in the absence of NaOH (Entries 6,7) take place to form 5aa in lower yields.

In an effort aimed at elucidating the boronic acid scope of the new process, photoreactions of variously substituted arylboronic acids 3f-w with 4a were investigated (Table 2). In cases of arylboronic acids 3f-j,l,p,q,t,v, CH₃CN/H₂O=7:3 instead of CH₃CN/H₂O=9:1 solution was used, and reaction of 3t required heating at 50 °C because of the low solubility of this substrate. When the corresponding ArBpin substrates are used in the place of arylboronic acids 3g,h,r, yields of the respective adducts 5ga and 5ha,ra are higher, a likely result of the increased solubilities of the Bpin derivatives. The photoreactions of arylboronic acids 3f-i bearing electrondonating groups at para-position react efficiently to yield the corresponding adducts 5fa-ia in high yields. An exception to this trend is the reaction of 3j, which forms 5ja in a low yield because of the occurrence of a secondary photoreaction of photoproduct 5ja. The yield of 5ja can be enhanced by carrying

⁶CH₃CN/H₂O=7:3, [NaOH]=40 mM. ^dCH₃CN/H₂O=7:3 at 50 °C.

out the reaction for a shorter time (3 h). Reactions of sterically hindered ortho-methylaetd arylboronic acids 3k,l take place to form the respective adducts 5ka, la in lower yields, whereas the halogenated arylboronic acids **3n-o** undergo efficient photoredox catalyzed reactions generating the corresponding adducts 5na-oa in high yields. Moreover, photoreaction of 3p bearing unprotected carboxylic acid group in the presence of 2 equiv. of NaOH undergoes this reaction to yield adduct 5pa in a moderate yield. In contrast to the high efficiencies of arylation reactions with electron-donating group substituted systems, those of para-electron-withdrawing group (CONH₂, CN, and CF₃) substituted arylboronic acids, **3q-s** occur in significantly decreased yields. This is likely a consequence of the lower rates of addition of electron-deficient aryl radicals to electron-deficient alkenes, which competes with reduction of the aryl radicals by hydrogen atom transfer from CH₃CN (see below). In fact, in the case of 3p, reduction product (benzoic acid) was obtained in 15% yield along with adduct 5pa. Biphenyl-, naphthyl-, phenanthyl- and benzofuryl-boronic acids 3t-w were found to participate in moderately yielding photoreactions that produce the respective adducts 5ta-wa, while N-Boc-2-pyrrolyl- and 2-furyl-boronic acids are not substrates for this process. The combined results show that a variety of arylboronic acids participate in C-C bond forming, photoredox catalyzed addition reactions with 4a in yields that

^a[biphenyl]=10 mM, [DCN]=10 mM, [4a]=20 mM.

Scheme 2. Photoreactions of alkyl- and alkenyl-boronic acids 6 with 4a

depend on the electronic nature of arene ring substituents.

The reactivity of alkyl- and alkenyl-boronic acids 6a-c with 4a under the photoredox catalyzed conditions was examined. The results show that these reactions take place to form the corresponding adducts 7aa-ca in moderate to high yields (Scheme 2). The photoreaction of cyclohexylboronic acid 6b with 1 equiv. of 4a (20 mM) using biphenyl (10 mM) and 1,4dicyanonaphthalene (DCN, 10 mM) in place of Phen and DCB occurs in a slightly higher yield (67%).

To determine the alkene scope of the process, we explored reactions of 3a using 3 equiv. of the alkenes, crotononitrile 4b, ethyl acrylate 4c, t-butyl acrylate 4d, acrylamide 4e, and styrene 4f under the same conditions. All of these photoredox promoted reactions lead to low yielding formation of the corresponding adducts 5ab-af along with oligomeric materials (Table 3). In the case of styrene, a higher yield of adduct 5af formation occurs when 5 equiv. of styrene is used. Finally, photoreactions of the alkyl- and alkenyl-boronic acid 6b,c with 1 equiv. of *t*-butyl acrylate **4d** produce adducts **7bd**, **cd** in only moderate vields.

To gain information about the participation of aryl radicals as intermediates in the mechanistic pathway for the photoredox catalyzed addition reaction, TEMPO radical trapping was performed (Scheme 3). Reaction of 3a in the absence of 4a and presence of 1.2 equiv. of TEMPO under the optimal conditions described above was found to produce the O-phenyl-TEMPO coupling product 8 (34%). Also, reaction in the presence of 4a and TEMPO generates products arising from TEMPO trapping of both the initially formed phenyl radical trapping (8) and the radical generated by addition of the phenyl radical to 4a (9) in

Table 3. Scope of alkene 4 in the photoreaction of 3a, 6b, and 6c

This journal is C The Royal Society of Chemistry 20xx

11:65% (d-content = 86%)

Scheme 4. Deuterium labeling study of the photoreaction of 3p in D₂O/CH₃CN and H₂O/CD₃CN

11% and 57% respective yields. These results clearly indicate that aryl radicals are generated from arylboronic acids under the photoredox catalysis conditions and also that these radicals undergo radical addition to alkenes.

Additional mechanistic insight into this process comes from the results of deuterium labeling experiments. Specifically, we observed that irradiation of solutions of 3p, Phen, DCB and 2 equiv. of NaOH in CH₃CN/D₂O=7:3 results in the generation of benzoic acid 10 containing less than 1% of deuterium (Scheme 5). In contrast, this process carried out in CD₃CN/H₂O=7:3 solution results in formation of *m*-deuteriobenzoic acid 11 with an approximately 86% d-content (Scheme 4). These findings indicate that, in the absence of an electron deficient alkene, the aryl radical intermediate abstracts a hydrogen atom from CH₃CN to form a reduced product.

Based on the results emanating from this study, it is possible to suggest that the photoredox catalyzed reactions take place via the mechanistic pathway depicted in Scheme 5. In this route, photoinduced electron transfer takes place between the excited state of Phen (Phen*), generated by direct light absorption, and DCB to form the radical cation of Phen and the radical anion of DCB. The radical cation of Phen then oxidizes the arylborate, formed by the reaction of 3 with NaOH. This step is thermodynamically favorable because the oxidation potential of a borates (tetraphenylborate +0.22 V vs. SCE in CH₃CN)¹³ should be lower than that of Phen (+1.50 V vs. SCE in CH₃CN).¹⁴ The homolysis of B-Ar bond of ArB(OH)₃ radical **12** smoothly takes place.^{15,16} The aryl radical produced in this manner then adds to the electron-deficient alkene 4 to form radical that subsequently participates in back electron transfer with the radical anion of DCB to form a carbanion, which undergoes protonation to yield adduct 5. The quantum yield of

Page 3 of 5

Scheme 5. A plausible mechanism in the photoreaction of 3 and 4.

this photoinduced radical addition of 3a to 4a is about 0.2. In contrast to the analogous photoreaction of alkyl carboxylic acids that take place via decarboxylation to produce alkyl radicals, reactions of the arylborates require the use of 5 rather 1 equiv. of an alkene. The difference is a likely consequence of the higher reactivity of aryl radicals, which can abstract a hydrogen atom from CH₃CN to produce a reduced product 10. The back transfer from the radical anion of DCB to the resulting cyanomethyl radical 13 generates cyanomethyl anion followed by the protonation to reproduce CH₃CN as reported by us.¹⁷ Thus, the competitive radical reduction and addition processes are existed in the photoreaction, and the high rate of the radical addition to alkene requires the high concentration (100 mM) of alkene. Unfortunately, the use of a high alkene concentration (> 100 mM) makes oligomerization more efficient, and requires the high concentrations of photocatalyst for preventing oligomerization.¹¹

In conclusion, the results of this effort show that aryl-boronic acids and -borates undergo photoredox catalyzed addition reactions with electron deficient alkenes via a pathway involving the intermediacy of aryl radicals. The process represents a new type of Meerwein arylation, in which stable arylboronic acids serve as substrates. Also, the process takes place using alkyl- and alkenyl-boronic acids. A variety of arylboronic acids and borates, and alkenes are acceptable substrates for this photoreaction. The process represents a new synthetic method for introducing aryl groups. Further investigations of the applicability of this methodology in synthetic organic chemistry are underway.

This work was supported by the Japan Society for the Promotion of Science (JSPS), Grant-in-Aid no. 17K05779, for scientific research.

Conflicts of interest

Published on 10 January 2018. Downloaded by Fudan University on 10/01/2018 17:08:08.

There are no conflicts to declare.

Notes and references

 (a) S. G. Hammer, M. R. Heinrich, In *Comprehensive Organic Synthesis II* (Second Edition); Elsevier: Amsterdam, 2014; pp 495–516. (b) X. Wang, A. Studer, *Acc. Chem. Res.* 2017, **50**, 1712–1724. (c) A.-F. Voica, A. Mendoza, W. R. Gutekunst, J. O. Fraga, P. S. Baran, *Nat. Chem.* 2012, **4**, 629–635. (d) D. H. R. Barton, B. Lacher, S. Z. Zard, *Tetrahedron Lett.* 1985, **26**, 5939–5942. (e) M. R. Heinrich, *Chem. - Eur. J.* 2009, **15**, 820–833. (f) J. Hofmann, M. R. Heinrich, *Tetrahedron Lett.*, 2016, **57**, 4334–4340.

- For the use of aryl halides as a reactant, see: (a) D. P. Curran, D. Kim, H. T. Liu, W. Shen, J. Am. Chem. Soc. 1988, 110, 5900–5902. (b) S. Yanagisawa, K. Ueda, T. Taniguchi, K. Itami, Org. Lett., 2008, 10, 4673–4676. (c) E. Shirakawa, K. Itoh, T. Higashino, T. Hayashi, J. Am. Chem. Soc. 2010, 132, 15537–15539. (d) C. L. Sun, H. Li, D. G. Yu, M. Yu, X. Zhou, X. Y. Lu, K. Huang, S. F. Zheng, B. J. Li, Z. J. Shi, Nat. Chem. 2010, 2, 1044–1049.
- For the use of aryl carboxylic acids as a reactant, see: (a) J.
 Kan, S. Huang, J. Lin, M. Zhang, W. Su, *Angew. Chem., Int. Ed.* 2015, 54, 2199–2203. (b) S. Seo, M.; Slater, M. F. Greaney,
 Org. Lett. 2012, 14, 2650–2653. (c) G. J. P. Perry, J. M.
 Quibell, A. Panigrahi, I. Larrosa, *J. Am. Chem. Soc.* 2017, 139, 11527–11536.
- For the use of aryl boronic acids as a reactant, see: (a) A. S. Demir, H. Findik, *Tetrahedron* 2008, 64, 6196–6201. (b) Y. Fujiwara, V. Domingo, I. B. Seiple, R. Gianatassio, M. Del Bel, P. S. Baran, *J. Am. Chem. Soc.* 2011, 133, 3292–3295. (c) A. Dickschat A. Studer, *Org. Lett.* 2010, 12, 3972–3974. (d) G. Yan, M. Yang, X. Wu, *Org. Biomol. Chem.*, 2013, 11, 7999–8008.
- 5 For the use of aryl triflates as a reactant, see: W. Liu, X. Yang, Y. Gao, C.-J. Li, *J. Am. Chem. Soc.* 2017, **139**, 8621–8627.
- For the use of aryl diazonium salts as a reactant, see: (a) C.
 Galli, *Chem. Rev.* 1988, 88, 765–792. (b) D. P. Hari, P. Schroll,
 B. König, *J. Am. Chem. Soc.* 2012, 134, 2958–2961.
- For review of the use of aryl diazonium salts with photoredox catalyst such as Ir, Ru, and eosin Y, see: (a) I. Ghosh, L. Marzo, A. Das, R. Shaikh, B. König, Acc. Chem. Res. 2016, 49, 1566–1577. (b) M. Majek, A. J. Wangelin, Acc. Chem. Res. 2016, 49, 2316–2327.
- 8 (a) H. Meerwein, E. Buchner, K. van Emsterk, *J. Prakt. Chem.* 1939, **152**, 237–266. (b) C. S. Rondestvedt, *Org. React.* 1976, 225–259. (c) C. Molinaro, J. Mowat, F. Gosselin, P. D. O'Shea, J.-F. Marcoux, R. Angelaud, I. W. Davies, *J. Org. Chem.* 2007, **72**, 1856–1858.
- 9 For the use of aryl diazonium salts without Cu(I) in Meerwein arylation, see: (a) D. P. Hari, B. König, Angew. Chem., Int. Ed. 2013, **52**, 4734–4743. (b) M. Hartmann, Y. Li, A. Studer, J. Am. Chem. Soc. 2012, **134**, 16516–16519.
- 10 For review, see; Y. Yoshimi, J. Photochem. Photobiol. A 2017, **342**, 116–130.
- (a) Y. Yoshimi,T. Itou, M. Hatanaka, *Chem. Commun.* 2007, 5244–5246. (b) T. Itou, Y. Yoshimi, T. Morita, Y. Tokunaga, M. Hatanaka, *Tetrahedron* 2009, **65**, 263–269. (c) Y. Yoshimi, M. Masuda, T. Mizunashi, K. Nishikawa, K. Maeda, N. Koshida, T. Itou, T. Morita, M. Hatanaka, *Org. Lett.* 2009, **11**, 4652–4655. (d) K. Nishikawa, Y. Yoshimi, K. Maeda, T. Morita, I. Takahashi, T. Itou, S. Inagaki, M. Hatanaka, *J. Org. Chem.* 2013, **78**, 582–589.
- 12 N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483.
- 13 H. M. Tuononen, M. Parvez, R. Roesler, *Chem. Commun.* 2007, 4522–4524.
- 14 Y. Yoshimi, S. Hayashi, K. Nishikawa, Y. Haga, K. Maeda, T. Morita, T. Itou, Y. Okada, M. Hatanaka, *Molecules* 2010, **15**, 2623–2630.
- 15 Triphenylborane reacts with *t*-butoxy radical to form *t*-BuOBPh₃ radical followed by the homolysis of B-Ph bond to provide phenyl radical, see: D. Grilier, K. U. Ingold, L. K. Patterson, J. C. Scaiano, R. D. Small Jr, J. Am. Chem. Soc. 1979, **101**, 3780–3785.
- 16 Photoreaction of alkyltriphenylborate with dicyanoarene provided the alkyl radical, see: G. B. Schuster, J. Y. Lan, J. Am. Chem. Soc. 1985, 107, 6710–6711.
- 17 Y. Kumagai, T. Naoe, K. Nishikawa, K. Osaka, T. Morita, Y. Yoshimi, *Aust. J. Chem.* 2015, **68**, 1668–1671.
- M. Yamawaki, A. Ukai, Y. Kamiya, S. Sugihara, M. Sakai, Y. Yoshimi, ACS Macro Lett. 2017, 6, 381–385.

This journal is © The Royal Society of Chemistry 20xx

DOI: 10.1039/C7CC09140K

Journal Name

Generation of a variety of aryl radicals from arylboronic acids by using metal-free photoredox catalysis under mild conditions

ChemComm Accepted Manuscript