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The mechanism of Pd-catalyzed enantioselective allylic
alkylation involves two steps which are of major importance
in the catalytic cycle.[1] First, the allylic substrate, usually in the

Scheme 2. Preferential formation of the product with S configuration. The
methyl groups at C11 and C32 are represented by black circles, and the Pd
atom by a gray circle.

nated between C1 and C3, which otherwise differ little in their
steric and electronic properties.
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form of the acetate or carbonate, is activated by a Pd0 complex
with the probable formation of a (h2-olefin)Pd0 intermediate,
which loses the anion to give a stable (h3-allyl)PdII cationic
intermediate. The second step involves the attack of the
nucleophile on this cation to form the olefin product, which is
bound h2 to the Pd0 center. The product is released in a
subsequent step. Although the nature of the transition state in
the second step and its role in determining the enantioselec-
tivity of the overall process[2] have been extensively inves-
tigated, studies on the activation of the allylic substrate by Pd0

are limited, since only one observation of enantioselective
discrimination of the substrate (i.e., kinetic chiral resolution)
by a Pd catalyst has been reported.[3] In most cases, rapid
equilibration of the enantiomers apparently takes place and
obscures any kinetic resolution process. It has even been
proposed that this step is completely nonselective, which
would be very surprising, since the reactions involved in the
first step can be regarded as the reverse of those in the
product-formation step, which can be highly enantioselective.
We previously found that Pd catalysts containing the (R,R)-
duxantphospholane ligands A and B give excellent product
enantioselectivities[4] in the allylic alkylation reaction. We
now report that kinetic resolution also occurs in the substrate-
activation step and propose a mechanism that involves a
favored rotational isomer.[4]

OAc
H3C CH3

OAc

O

X

PP

RR

rac-2rac-1

A: R = Me, X = S

B: R = H, X = C(CH3)2

We used rac-cyclohexenyl acetate (rac-1) and the rac-
dimethylpropenyl acetate rac-2 as substrates. In the reaction

of dimethyl malonate with 0.5 equivalents of [{Pd(h3-
C3H5)Cl}2], one equivalent of A, and 100 equivalents of rac-
1 in THF, (S)-1 reacted much faster than (R)-1 (Table 1). With
BSA as base in THF, after 66 % conversion to the (S)-
malonate product with about 90 % ee, the remaining acetate 1
had an R :S enantiomer ratio of 94:6 (88% ee (R), entry 1). We
found that kS/kR had a constant value of 7 and was
independent of the degree of conversion. The value of kS/kR

does not change on increasing the quantity of 1 (400 equiv,
entry 2), although the discrimination is somewhat temper-
ature-dependent (kS/kR� 8 at 0 8C, entry 3). With NaH as base
in THF (500 equiv 1, entry 4) a slightly lower ratio (kS/kR� 5)
is observed. However, for all reactions at 20 8C, the ee value of
the malonate product remained almost unchanged at 82 ±
87 % (S). Furthermore, the ee of the product is the same at
50 and 100 % conversion. Since (S)-1 and (R)-1 do not readily
interconvert, the product enantioselectivity is not derived
from the chirality of the substrate,[6] that is, no memory effect
occurs.[5] Thus, the same anti-anti-(h3-cyclohexenyl)Pd cation
is formed from both (S)-1 and (R)-1, and preferential attack[4]

of the malonate on one of the allylic carbon atoms results in
the observed enantioselectivity. Similar results were obtained
with B as ligand. In CH2Cl2 with BSA/KOAc, both the
reaction rate and kS/kR ratio of 2.4 (entry 5) were considerably
lower, but the enantiomeric excess of the product remained
unchanged.

High enantiodiscrimination and product enantioselectivity
were also obtained with rac-2, for which in principle several
(h3-allyl)Pd cationic intermediates are possible. Figure 1
shows the composition of the reaction mixture as a function
of time for the reaction of dimethyl malonate with rac-2
(100 equiv), BSA/KOAc, and 1 % B in THF at 20 8C. After
3 min 80 % conversion to the malonate product has occurred,
and the residual 2 has an ee of 92 % (R), which corresponds to
a kS/kR ratio of about 5. The decrease in concentraion of both
(S)-2 and (R)-2 is first order with respect to substrate
concentration. The half-lives of (S)-2 and (R)-2 in the first
two to three half-lives of the reaction at 20 8C are approx-
imately 30 s and 2 min, respectively. Similar values were
obtained at 0 8C (t1/2((S)-2)� 7 min, t1/2((R)-2)� 1 h, kS/kR�
6). As in the reaction of rac-1, the ee value of the malonate
product from rac-2 is the same at 50 and 100 % conversion
(ee� 82 %). Therefore, the S and the R substrates must yield
the same intermediate (h3-allyl)Pd species, or if several

Table 1. Results of the kinetic chiral resolution.

Entry Ligand Substrate Substrate/cat. Solvent Base T t Conversion[b] ee[b] kS/kR
[c]

[8C] [%] [%]

1 A rac-1 100 THF BSA[a] 20 15 min 66 88 7.2
2 A rac-1 400 THF BSA 20 24 h 65 87 7.2
3 A rac-1 100 THF BSA 0 30 min 54 70 8.1
4 A rac-1 500 THF NaH 20 5 min 53 55 4.9
5 A rac-1 100 CH2Cl2 BSA 20 35 min 87 77 2.4
6 B rac-2 100 THF BSA 20 3 min 80 92 4.3
7 B rac-2 100 THF BSA 0 45 min 66 82 5.8
8 A rac-2 100 CH2Cl2 BSA 0 2 h 72 0 1.0

[a] BSA�N,O-bis(trimethylsily)acetamide. [b] Conversion and enantiomeric excess were determined by gas chromatography on a chiral stationary phase
(b-cyclodextrin capillary column, 30 m� 0.25 mm, SGE 25QC2). For both substrates, the R enantiomer reacts more slowly, as was determined by comparing
the optical rotations with literature values.[13, 14] [c] kS/kR� ln[(1ÿC/100)(1ÿ ee/100)]/ln[(1ÿC/100)(1�ee/100)] (C� conversion; ee� enantiomeric excess
of the recovered substrate).[3]
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Figure 1. Fraction x of (R) and (S)-2 in the Pd-catalyzed allylic alkylation
(determined by gas chromatography on a b-cyclodextrin capillary column,
30 m� 0.25 mm, SGE 25QC2).

intermediates are involved, they must be equilibrated by fast
exchange.

The cationic (h3-dimethylpropenyl)Pd complex was isolat-
ed as the SbFÿ6 salt after the reaction of 2 with the Pd catalyst
with B as ligand. The 1H, 13C, and 31P NOESY NMR data at
243 K in CD2Cl2 show the presence of an equilibrium mixture
predominantly of the exo and endo forms of the syn,anti-(h3-
allyl)Pd diastereomers[7] in a ratio of about 6:1.

Our conclusions are illustrated in Scheme 1 for 2 as
substrate.[7] The interacting methyl groups on the phospho-
lane[8] ligand are depicted as ªbarriers a and b.

1) The initial complexation of 2 (R�Me) leads to four
possible (h2-olefin)Pd complexes.

2) The selective conversion of these complexes into the (h3-
allyl)Pd cations by oxidative addition results in the kinetic
chiral resolution of 2. Since interconversion of the (h3-allyl)Pd

cations is rapid under catalytic conditions, the reverse of this
step must be sufficiently slow[6] in THF to allow kinetic
resolution to occur.

3) If an antiperiplanar configuration[9] is assumed for
oxidative addition and the preferential rotation (PR) model[4]

with an early transition state is applied, we see that formation
of two of the (h3-allyl Pd) cations is disallowed, since
clockwise rotation in the intermediates OS2 and OR2 is
impeded by the the methyl group a.[8]

4) The kinetic resolution data show that the conversion of
OS1 into the syn,anti-(h3-dimethylpropenyl)Pd cation is more
rapid than that of OR1 into the syn,syn form.

5) Since the syn,anti-(h3-dimethylpropenyl)Pd cations are
the most stable isomers and undergo rapid exchange under
catalytic conditions the syn,syn form originating from OR1

would be expected to isomerize rapidly into these isomers.[10]

6) The first-order dependence of the rate of the overall
reaction on the substrate concentration implies that the rate-
determining step for the entire catalytic cycle under these
conditions is either the coordination of the allyl acetate to the
Pd0 center or, more probably, the oxidative addition of the
allylic substrate to Pd0, which would necessitate that the
complexation of allyl acetate to Pd0 is weak and readily
reversible.

7) The enantiomeric excess of the product results from two
effects:

a) The dominance of the syn,anti-(h3-allyl)Pd diastereomer
in solution, which results from the spatial arrangement of
barriers a and b in the ground state; the kinetic accessibility of
this cation by isomerization of other allyl cations must be
greater[11, 12] than the probability of the subsequent nucleo-
philic attack.

b) The selective attack of the nucleophile on the C1 atom
of this cation, which is predicted to follow the PR mechanism
with a late transition state[4] and avoids unfavorable rotational
interactions with barrier a.

The PR model therefore plays a role in both the substrate-
activation and product-formation steps. If the key and lock
analogy is applied to this catalytic system, to obtain high

enantioselectivity the key must not
only be of the correct shape (7 a) but
will also be most effective if it can be
turned only in one direction (7 b).
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Scheme 1. Mechanistic considerations for the kinetic chiral resolution in the Pd-catalyzed allylic
alkylation of 2. The methyl groups a and b of the chiral ligands are represented by black circles, and the
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Catalytic Enantioselective Aza Diels ± Alder
Reactions of Imino Dienophiles
Sulan Yao, Mogens Johannsen,* Rita G. Hazell, and
Karl Anker Jùrgensen*

The asymmetric catalytic hetero Diels ± Alder class of
reactions has attracted considerable interest due to the
importance of the products formed.[1] The asymmetric oxa
Diels ± Alder reactions of aldehydes[2] and ketones[3] catalyzed
by chiral Lewis acid catalysts can be performed with a high
degree of stereoselectivity, whereas methods are still lacking
for the corresponding catalytic enantioselective aza Diels ±
Alder reaction.[4±6] The asymmetric aza Diels ± Alder reaction
provides an effective route to optically active piperidine and
tetrahydroquinoline heterocycles, as well as other compounds
of fundamental importance.[1]

Yamamoto et al. have recently developed an enantioselec-
tive aza Diels ± Alder reaction of aldimines with Danishef-
sky�s diene using a stoichiometric amount of a chiral boron
complex.[4] To our knowledge, the first catalytic enantioselec-
tive aza Diels ± Alder reaction with a chiral zirconium
complex as the catalyst was elegantly achieved by Kobayashi
et al. for reactions of aldimines derived from 1-naphthalde-
hyde and 2-aminophenol, for example.[5] The highest enantio-
meric excess (ee) obtained was 93 % with 20 mol % of the
chiral zirconium catalyst.

Here we present a catalytic enantioselective aza Diels ±
Alder reaction of imines derived from ethyl glyoxylate with
activated dienes. The optically active aza Diels ± Alder
adducts formed contain an ester functionality in the a-
position to the nitrogen atom in the ring and an a,b-
unsaturated ketone fragment. These adducts make attractive
precursors for a variety of synthetic targets, such as a
straightforward and very efficient route to optically active,
nonnatural a-amino acids of the piperidine type.

Recently highly enantioselective hetero Diels ± Alder and
ene reactions of a-carbonyl esters and a-dicarbonyl com-
pounds have been developed.[2, 3] These results prompted us to
investigate whether the corresponding a-imino carbonyl
compounds could be substrates in an enantioselective aza
Diels ± Alder reaction. We anticipated that the imino nitrogen
atom and the oxygen atom would coordinate to the chiral
Lewis acid complex to form a fixed chiral environment around
the aldimino group.

The potential of the a-imino carbonyl compounds 1 a ± d as
possible substrates for the aza Diels ± Alder reaction with
Danishefsky�s diene (2 a) [Eq. (1); Tos�H3CC6H4SO2;
TMS�Me3Si] was investigated. Different chiral ligands, such
as the 2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl (BINAP)
ligands 3 a, b and the bisoxazoline ligands 4 a ± c, have, in
combination with various Lewis acid complexes and under
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