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Abstract—Spectral techniques have established the structure of muldamine from Veratrum californicum as
(228, 255)-22,26-epiminocholest-5-ene-38,16a-diol 16-acetate, instead of the C-nor-D-homo steroid structure
previously suggested. Its deacetyl derivative seems to be identical with teinemine, the configuration of which

at C-22 is therefore S and not R as previously reported.

INTRODUCTION

The isolation of muldamine, one of the three principal
benzene extractable alkaloids of the plant Veratrum
californicum was reported in 1968[1]. Structural in-
vestigation of muldamine by spectroscopic tech-
niques allowed provisional formulation[2] of the
structure as an 1la-acetoxy-3B3-hydroxy-A’ deriva-
tive of the veratramine skeleton (1a). A rein-
vestigation of the structure of muldamine and its
deacetyl derivative has shown that the structure pro-
posed earlier[2] is in error and that muldamine should
be represented as (228,258)-22,26-epiminocholest-5-
ene-38,16a-diol 16-acetate (2).

RESULTS

Muldamine was deacetylated to yield, after recrys-
tallization from aqueous ethanol, deacetylmuldamine,
mp 205-207°, [alp—38.7° (CHCL). Examination of
high resolution 'H and “C NMR spectral data were
inconsistent with structure 1b for deacetylmuldamine.
In particular, the 'HNMR spectrum of deacetyl-
muldamine contained two doublets due to C-methyl
groups instead of the three required by 1b, and the
BCNMR spectrum contained signals due to three
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quaternary carbon atoms rather than the two present
in structure 1b. In addition to the jervanine and
veratranine alkaloids, several other alkaloid types
have been isolated from Veratrum species[3], includ-
ing the 22,26-epiminocholestane alkaloids, a subgroup
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which appeared to be a good candidate for the correct
structures of muldamine and its deacetyl derivative.

Perusal of "C NMR data for a wide variety of
22,26-epiminocholestanes[4] indicated excellent
agreement between the observed values (Table 1) for
deacetylmuldamine and the A, B and part of the C
ring of dihydro-25-isoverazine A and the D, F and part
of the C ring of dihydro-25-isosolafloridine B.
Specifically, the chemical shifts for C-1 through C-12,
and C-19, differed by no greater than 850.4 for
deacetylmuldamine in comparison to dihydro-25-iso-
verazine A and the resonances for C-11 through C-27
(excepting C-19) by no greater than & 0.4 for deacetyl-
muldamine in comparison to dihydro-25-isosolaflori-
dine B. In fact, C-13 through C-27 (excepting C-19)
agreed within 80.2 for the latter two compounds.
These correlations indicated that the non A-ring
hydroxy group of deacetylmuldamine was at C-16 and
was a rather than B since similar compounds bearing
a 16B-hydroxy substituent show a resonance at
871[4] while 22,26-epiminocholestanes containing a
16a-hydroxy group show a signal at §75[4], regard-
less of the configuration at C-22. The resonance posi-
tions shown by C-23 and C-27 indicated[4] that the
C-27 methyl group of deacetylmuldamine is axial
rather than equatorial. On the basis of the “C,
'"HNMR and mass spectra (see Experimental), the
structure of deacetylmuldamine is established as
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Table 1. “C NMR chemical shifts* for muldamine (2) and
deacetylmuldamine (3)t

Carbon 2 3 Carbon 2 3
i 37.4 37.3 15 34.7 34.5
2 31.6 31.6 16 79.9 75.3
3 71.4 71.3 17 58.1 62.8
4 42.3 423 18 13.0 13.6
5 141.1 140.8 19 19.4 19.4
6 121.0 121.4 20 39.3 38.2
7 31.7 31.6 21 13.0 15.9
8 31.2 31.6 22 59.3 61.4
9 50.0 50.0 23 252 22.4

10 36.4 36.5 24 30.8 30.3
11 20.8 20.7 25 27.4 269
12 39.8 39.8 26 52.6 51.5
13 43.2 44.2 27 16.6 16.6
14 54.0 53.9

*Spectra recorded in CDCL; values in ppm downfield
from TMS.

tResonances were assigned with the aid of multiplicity
separation and SFORD techniques.
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(228,258)-22,26-epiminocholest-5-ene-38,16a-diol (3).
An X-ray crystallographic determination of 3 has
confirmed this structure [Wong, R. Y., unpublished].

This structure is identical to one proposed by
Kaneko et al.[5] for isoteinemine. However, the
physical constants (mp, [a], and '"H NMR spectrum)
obtained for 3 agreed with those reported[5] for the
compound named teinemine. In particular, the
'HNMR resonance of the C-27 methyl doublet at
80.97 in 3, which is similar to that of related alkaloids
containing an axial C-27 methyl group such as
hapepunine [6], anrakorinine[6] and (228, 25S5)-22,26-
epimino-Sa-cholestane-38,16«-diol[7], reflects the
axial orientation of the C-27 methyl group. Alter-
natively, the signal for the C-27 methyl doublet at
50.83 in the alkaloid named isoteinemine [5] suggests
an equatorial orientation for this group, similar to
resonances reported for equatorial C-27 methyl
groups in solaphyllidine[8)], solaverbascine[9] and
(22R,25S) - 22,26 - epimino - Sa - cholestane - 38,16a -
diol[7]. Thus, we conclude that deacetylmuldamine
and teinemine are the same compound and may be
represented as 3.

The position of the O-acetyl group in muldamine
was determined by inspection of >*C NMR data since
the signal due to C-16 in 3 at §75.3 shifted downfield
to 879.9 in the acetyl derivative 2 while the C-3
resonance was essentially identical for the two al-
kaloids. Muldamine is therefore (22S,255)-22,26-
epiminocholest-5-ene-38,16a-diol 16-acetate (2).
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Acetylation of 2 yielded O,N -diacetylmuldamine
4@)[2] which upon crystallization from aqueous
ethanol gave crystals, mp 147.0-147.5°, in good
agreement with the value of 147-148.5° reported[5]
for O,0,N -triacetylteinemine. '"H NMR data for 4 in
deuterochloroform was nearly identical to that
published [5] for O,O,N -triacetylteinemine. Doubling
of several of the signals in the ""C NMR spectrum of 4
was observed, a finding similar to that reported earlier
for '"H NMR resonances for the acetyl derivatives of
other Veratrum alkaloids[10]. Presumably the ad-
ditional NMR signals result from the presence of more
than one conformer, either due to F ring inversion or
restricted rotation about the bond between C-20 and
C-22[10].

"*C NMR data of deacetylmuldamine are consistent
with the piperidine ring positioned as shown in 3 with
the amino group intramolecularly hydrogen bonded to
the C-16 hydroxy group while the downfield shift of
C-23 and C-24 in the "“C NMR spectrum of mul-
damine, similar to that observed for solasodine rela-
tive to tomatidine[11], suggests a structure for mul-
damine, as in 2, where the amino group is oriented
away from the C-16 acetyl group, a moiety which
does not permit hydrogen bonding. The 82.9 upfield
shift of the C-21 resonance of 2 relative to 3 suggests
a strong y-interaction between this carbon atom and
the amino group and provides further evidence for a
change in position of the F ring relative to the C-20,
C-22 bond upon acetylation of the C-16 hydroxy
group.

In order to determine if the C-22 epimer of
deacetylmuldamine could be formed as an artifact
during the acidic hydrolysis of the crude mixture of
Veratrum alkaloids[S], 2 was subjected to hydrolysis
in methanolic hydrochloric acid. No evidence was
obtained for the formation of the C-22 epimer of 3
under these conditions.

DISCUSSION

The biosynthesis of Solanum alkaloids has been
postulated to proceed via the C-22 epimer (5) of
deacetylmuldamine, which is presumably formed
upon reduction of etioline (6)[12]. The occurrence of
muldamine in V. californicum[l] and in V.
grandiflorum [5] (teinemine) is not inconsistent with
this proposal. Although an exhaustive extraction was
not performed, the root and rhizome of V. califor-
nicum may contain up to 0.3-0.4% of muldamine
[Keeler, R. F., unpublished]. In accordance with the
relatively large amounts isolated{l, 5], 2, which is of
incorrect stereochemistry at C-22 to yield solanidine,
could serve as a storage or end product of a particular
pathway. In vivo oxidation of 3, derived from 2 or as
an intermediate in the formation of 2, could yield 6 or
its isomer 7 which upon reduction would produce the
(22R,258)-epiminocholestene, 5. This compound has
the proper C-22 stereochemistry to cyclize to solani-
dine, which then might undergo ring contraction to
yield the jerveratrum alkaloids in a manner postulated
by Kaneko et al. [13].

The alkaloid (mp 217°), isomeric to teinemine,
which was isolated from V. grandiflorum in small
amounts by Kaneko et al. [5] could be the 22R,25S
compound (5). Our studies showing that acidic
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hydrolysis of muldamine per se does not appear to
produce the C-22 epimer (5) of deacetylmuldamine
indicates that § would not be produced as an artifact
under the conditions used to hydrolyze[5] crude al-
kaloid glycoside. Further experiments to definitely
establish the presence of 5 in Veratrum are war-
ranted.

The revised structure of muldamine, lacking a rigid
furanopiperidine system and a basic imino group ac-
cessible to the a-face of the steroid, is in accord with
its reported lack of teratogenic activity in sheep[14]
and low teratogenic activity in hamsters[15]. More
recently, Nes et al.[16] have shown that muldamine
inhibits growth and cholesterol induced sexual
reproduction in Phytophthora cactorum, an obser-
vation which suggests a protective function for 2 in
V. californicum.

EXPERIMENTAL

Mps were uncorr. 'H and “CNMR spectra were
measured at 100 and 25.03 MHz, respectively. The § values
are expressed in ppm downfield from TMS int. standard.
EIMS (70eV) and CIMS (100 eV) were measured on the
direct probe inlet using iso-butane as reagent gas for the
latter.

Deacetylmuldamine (3). Deacetylation of muldamine was
conducted according to Keeler’s procedure [2] yielding, after
recrystallization from aq. EtOH, 3, mp 205-207° (lit. [2]
201-203°), [a]y —38.7° (CHCly; ¢ 1.11). Kaneko et al
report[S] mp 204-209° and [«]® —35.8° (CHCIs) for teine-
mine. '"HNMR (CDCly): §0.713H, s, H-18), 0.97(3H, d,
J =5.5Hz, H-27), 1.00(3H, s, H-19), 1.03(3H, d, J = 5.5 Hz,
H-21), 3.47(1H, m, H-3), 4.04(1H, m, H-16), 5.34(1H, m,
H-6). (CsDsN): 0.73(3H, s, H-18), 1.04(3H, d, H-21), 1.04(3H,
d, H-27), 1.06(3H, s, H-19), 3.78(1H, m, H-3), 4.22(1H, m,
H-16), 4.842H, m, 3 and 16-OH), 5.42(1H, m, H-6), 6.12(1H,
m, N-H). EIMS, m/z (rel. int.): 415 [M]* (0.2), 150(2),
140(5), 99(7), 98 [CcH ;N1 (100). CIMS, m/z (rel. int).: 416
[M+H]*(28), 398 [M+H-H,01'(18), 380 [M+H-
2H,01'(7), 140(6), 138[C,H 01" (3), 126 [CsH sNT*(5), 99(7),
98(100).

Muldamine (2). A sample of 2 obtained by C¢Hg extrac-
tion of V. californicum Durand[1] was used throughout this
study. 'H NMR (CDCly): §0.73 (3H, s, H-18), 0.97 (3H, d,
H-27), 1.00(3H, s, H-19), 1.04(3H, d, H-21), 2.07(3H, s, OAc),
3.48(1H, m, H-3), 4.93(1H, m, H-16), 5.32(1H, m, H-6).
(CsDsN): 0.69(3H, s, H-18), 1.04(3H, s, H-19), 1.10(3H, d,
J =7.5Hz, H-27), 1.16(3H, d, J = 7.0 Hz, H-21), 2.13(3H, s,
OAc), 3.78(1H, m, H-3), 5.16(1H, m, H-16), 5.36(m, 1H, H-6),
6.09(1H, m, N-H). EIMS, m/z (rel. int): 457[M]*(0.4),
396[M — H,0 — Acl*(4), 150(10), 99(20), 98(100). CIMS, m/z
(rel. int.): 459(14), 458{M + H1*(37), 456[M — H]"(7), 441(9),
440[M + H — H,017(23), 398(10), 382(5), 380[M—OAc~—~
H,0T"(5), 301(5), 98(100).

O,N-Diacetylmuldamine (4). Acetylation of muldamine
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was performed according to Keeler's procedure[2] yielding
the derivative which upon crystallization from aq. EtOH
gave crystals, mp 147.0-147.5°, [a]} - 76.2° (CHCl;; ¢ 0.88).
Kaneko et al. report[5] mp 147-148.5° for O,0,N-teinemine
triacetate. '"H NMR (CDCl,): §0.84 (3H, s, H-18), 0.86(3H, d,
J =6.8Hz, H-21), 0.93(3H, d, J = 4.5 Hz, H-27), 1.00(3H, s,
H-19), 2.01(3H, s, ~OAc), 2.04(3H, s, -OAc), 2.08(3H, s,
-NHAc), 4.57(1H, m, H-3), 5.17(1H, m, H-16), 5.36(1H, m,
H-6). *C NMR(CDCly): §13.4(C-18), 14.5(C-21), 15.5, 15.8(C-
27), 19.2(C-19), 20.4(C-11), 21.4(C-3COMe), 21.8(C-16
COMe), 22.2(NCOMe), 26.1(C-23), 27.7(C-2), 27.8(C-25),
30.5, 30.8(C-24), 31.5(C-8), 31.9(C-7), 33.3(C-15), 36.6(C-10),
36.9(C-1), 38.0(C-4), 39.3(C-20), 39.5(C-12), 43.7, 43.9(C-13),
50.0(C-9), 54.1, 54.3(C-14), 55.7(C-26), 56.8(C-17), 57.2(C-22),
73.8(C-3), 77.5(C-16), 122.1(C-6), 139.7, 139.8(C-5), 168.9,
169.0(C-16 CO), 170.4(C-3 CO), 171.2(NCO). EIMS, m/z (rel.
int.): 497[M ~H — Ac]*(1), 141(24), 140[CsH,NO]*(100),
98(64). CIMS, m/z (rel. int.): 542[M+H]'(17), 483(10),
482[M — OAc]'(19), 283(15), 182(8), 141(12), 140(100), 139(13),
117(10), 103(32), 101(13), 98(52).

Acidic hydrolysis of muldamine. Two ml 1N HCl was
added to 120 mg of 2 dissolved in 20 ml MeOH and the
resulting soln heated under reflux for 6 hr. After evapn of
the MeOH, the residue was redissolved in H,O and the soln
made basic with 50% aq NaOH. Extraction of the aq. soln
with Et,0x3 and overnight drying of the extracts over
Na,SO, gave, after evapn of the Et;0, 100 mg of a mixture
of alkaloids. This material (60 mg) was purified by prep.
TLC on Si gel MeOH-CHCls, 1:4) yielding 32 mg (R, ~0.2)
deacetylmuldamine (3), 5 mg (R; ~ 0.5) starting material (2)
and 2mg (R;~0.8) of an unidentified alkaloid whose
"H NMR spectrum did not agree with that reported[S] for
the C-22 epimer of 3.
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