Date: 07-08-12 18:22:46

Pages: 5

Activation of Si-Si Bonds for Copper(I)-Catalyzed Conjugate Silylation

Laura Iannazzo^[a] and Gary A. Molander*^[a]

Keywords: Silanes / Copper / Nucleophilic addition / Alkenes / Silicon

Several alkyl- and vinylsilanes were prepared through the copper(I)-catalyzed conjugate silylation of α , β -unsaturated compounds. Optimal reaction conditions were first investigated to realize the conjugate addition of a nucleophilic silicon species to poorly electrophilic acceptors such as phenylvinyl sulfone by cleavage of the Si–Si bond of a disilane

reagent. The scope of this reaction was extended to various electrophiles bearing different electron-withdrawing groups and afforded the desired substituted alkyl- and vinylsilanes. Among the wide range of commercially available disilanes, the reactivities of alkyl-, aryl-, and ethoxydisilane were also examined.

Introduction

New methods for the preparation of organosilicon compounds have received increased attention owing to the applications of organosilicon compounds as reagents in organic synthesis and their interesting properties in functional materials.^[1] Among the different methods, the metal-mediated conjugate addition of nucleophilic silicon is particularly attractive, because it leads to the formation of functionalized β -silyl carbonyl compounds.^[2] Although the use of commercially available disilanes has been studied, the generation of nucleophilic silicon by activation of a Si–Si bond^[3] from disilanes is limited to Pd-^[4] and Cu-catalyzed^[5] conjugate silylation of enones and enals. More recently, Scheidt reported an extension of this method to α,β -unsaturated esters, but that study was restricted to the case of highly electrophilic alkylidene malonates.^[6] This limitation can be overcome by the use of silylboranes such as Suginome's dimethylphenylsilylpinacolatoboron.^[7] Very recently, Santos successfully applied this strategy to various α,β -unsaturated compounds.^[8] However, despite the efficiency of the activation of the Si–B bond^[9] by transition metals (Cu, Rh)^[10,11] or N-heterocyclic carbenes,^[12] this approach suffers from a lack of atom economy,^[13] as these reagents required an additional step for their synthesis.^[7]

In connection with our recent efforts on the development of Cu-catalyzed 1,4-additions^[14] and on the use of organo-

Scheme 1. General route to β -silyl carbonyl compounds by 1,4-addition.

[a] Roy and Diana Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104-6323, USA
Fax: +1-215-573-7165
E-mail: gmolandr@sas.upenn.edu
Homepage: http://www.chem.upenn.edu/chem/research/fa-
culty.php?id=28

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201200767.

silicon reagents,^[15] we report herein a general method for the conjugate silylation of various α , β -unsaturated compounds using disilanes (Scheme 1).

Results and Discussion

The catalytic system was first optimized on the model reaction of commercially available diphenyltetramethyldi-

Pages: 5

SHORT COMMUNICATION

silane (1a) with phenylvinyl sulfone in the presence of Cu¹ salts (5 mol-%) followed by an acidic workup. After screening the copper sources with the use of cataCXiumA as the ligand in DMF at 100 °C (Table 1, Entries 1-3), (CuOTf)₂. $C_6H_6^{[16]}$ appeared as the most efficient salt, yielding 2a in 38% yield, whereas CuI gave a lower yield of 33%. Surprisingly, no reaction occurred with CuCl. Subsequently, a wide range of ligands (phosphanyl and amino ligands, Figure 1) was explored (Table 1, Entries 4-9). CyJohnPhos and phenanthroline provided similar results, affording desired silylated compound 2a in 52 and 53% yield, respectively. Given the low price of phenanthroline, it was selected as the ligand of choice. Finally, the influence of the solvent was found to be crucial to activate the disilane,^[5] and we were delighted to observe that, among the aprotic polar solvents tested, N,N'-dimethyl-N,N'-propylene urea (DMPU; Table 1, Entry 12) dramatically improved the yield of the reaction, providing 2a in 80% yield.

Table 1. Optimization of the reaction conditions.

_SO₂F	Ph Ph(Me) ₂ Si—Si(Me) ₂ Ph	1) [Cu] (5 mol-%) ligand (7 mol-%) solvent, 100 °C overnight 1 2) PTSA H-O	hO ₂ S Si(l	Me) ₂ Ph
	1d	2) PT3A, T1 ₂ O	Zd	
Entry	[Cu]	Ligand	Solvent	Yield [%]
1	$(CuOTf)_2 \cdot C_6H_6$	cataCXiumA	DMF	38
2	CuI	cataCXiumA	DMF	33
3	CuCl	cataCXiumA	DMF	_[a]
4	(CuOTf) ₂ ·C ₆ H ₆	PBu ₃	DMF	40
5	(CuOTf)2·C6H6	SPhos	DMF	47
6	(CuOTf) ₂ ·C ₆ H ₆	CyJohnPhos	DMF	52
7	(CuOTf) ₂ ·C ₆ H ₆	2-ethylpyridine	DMF	47
8	$(CuOTf)_2 \cdot C_6H_6$	di- <i>tert</i> -butylbipyridir	e DMF	43
9	(CuOTf) ₂ ·C ₆ H ₆	phenanthroline	DMF	53
10	(CuOTf) ₂ ·C ₆ H ₆	phenanthroline	HMPA	54
11	$(CuOTf)_2 \cdot C_6H_6$	phenanthroline	DMI	40
12	$(CuOTf)_2 \cdot C_6H_6$	phenanthroline	DMPU	80

[a] No reaction.

Diphenyltetramethyldisilane (1a) was subjected to the previously optimized cleavage conditions by using Cu^I salts $[(CuOTf)_2 \cdot C_6H_6 (5 \text{ mol-}\%), \text{ phenanthroline } (7 \text{ mol-}\%), \text{ in }$ DMPU at 100 °C, overnight, followed by acidic workup using *p*-toluenesulfonic acid in water] to generate a nucleophilic silicon species, which was then trapped with several 1,4-acceptors such as sulfono, cyano, amido, and phosphonato groups (Table 2, Entries 1-4). Phenyl vinyl sulfone emerged as a very efficient acceptor for this reaction, as previously reported, yielding the corresponding silvlated product in 80% yield (Table 2, Entry 1). Acrylonitrile was also found to be a suitable partner for this transformation, affording desired 3a in 60% yield (Table 2, Entry 2). In the case of less electrophilic substrates such as amides and phosphonates, more limited results were obtained. A moderate yield of 38% was observed with unsaturated amide 4a (Table 2, Entry 3), and no reaction occurred with α , β unsaturated diethylvinylphosphonate 5a (Table 2, Entry 4).

Figure 1. Ligands utilized in optimization studies.

Table 2. Scope of the α , β -unsaturated substrates.

EWG + [F	1) (Cu ph Dh(Me)₂Si <u>]₂</u> 1a 2) PT	$\mu OTf)_2 \cdot C_6H_6 (5 mol-%)$ enanthroline (7 mol-%) /IPU, 100 °C, overnight SA, H ₂ O	G∕~ 2a⊣	∠Si(Me)₂Ph 5a
Entry	EWG	Product		Yield [%]
1	PhO ₂ S	PhO ₂ S Si(Me) ₂ Ph	2a	80
2	NC	NC Si(Me) ₂ Ph	3a	60
3	Me ₂ N(O)C	NC Si(Me) ₂ Ph	4a	38
4	(EtO) ₂ OP	-	5a	_[a]

[a] No reaction.

Interestingly, the designed conditions could be extended to the use of alkynes, leading to a new route for the preparation of vinylsilanes (Table 3).^[17] Hence, phenylbutynone allowed the formation of the corresponding silvlated compound 6a in 74% yield (Table 3, Entry 1). Less-reactive alkynyl esters also proved to be suitable partners, and methyl and ethyl propiolates afforded desired **6b** and **6c** in 51 and 41% yield, respectively (Table 3, Entries 2 and 3). A mixture of two inseparable isomers was obtained with a predominant E configuration, as determined by ¹H NMR spectroscopy. The same trend was observed for the other alkylsubstituted alkynes, which led to the formation of functionalized vinylsilanes 6d-g in moderate yields with various E/Z ratios (Table 3, Entries 4–7). Complete stereoselectivity in favor of the E isomer was only observed in the cases of phenyl-substituted alkynes, albeit in a reduced yield in the case of the propiolate (Table 3, Entries 1 and 8).

Date: 07-08-12 18:22:46

Activation of Si-Si Bonds for Copper(I)-Catalyzed Conjugate Silylation

Table 3. Scope of the alkynes.

		1) (CuOTf)₂·C ₆ H phenanthrolin DMPU, 100 °(₆ (5 mol-%) e (7 mol-%) C, overnight	Si(Me)₂Ph	
	EWG———R + Ph(Me	e) ₂ SI—SI(Me) ₂ Ph 2) PTSA, H ₂ O 1a		R 6a–h	
Entry	EWG- R	Product		Isomeric ratio $(E/Z)^{[a]}$	Yield [%]
1	Me(O)CPh	Me(O)C Ph	6a	100:0	74
2	MeO ₂ C-===	MeO ₂ C Si(Me) ₂ Ph	6b	90:10	51
3	EtO ₂ C-===	EtO ₂ C Si(Me) ₂ Ph	6c	87:13	41
4	MeO ₂ C- <u></u> Me	MeO ₂ C	6d	66:34	53 ^[b]
5	MeO ₂ CEt	MeO ₂ C Si(Me) ₂ Ph Et	6e	55:45	60
6	EtO ₂ C- <u></u> Me	EtO ₂ C Si(Me) ₂ Ph Me	6f	73:27	40
7	MeO ₂ C- <u></u> Pr	MeO ₂ C Pr	6g	63:37	31
8	MeO ₂ C- <u></u> Ph	MeO ₂ C Ph	6h	100:0	27

[a] Isomeric ratio determined by ¹H NMR spectroscopy. [b] Mixture of **6d** and silane (trace amounts).

Finally, owing to the ability of diphenyltetramethyldisilane (1a) to generate a nucleophilic silicon species in the 1,4 addition reactions, we decided to expand the scope of our method to other commercially available disilanes by using phenyl vinyl sulfone as the acceptor (Scheme 2). We started our investigation with hexamethyldisilane (1b), and expected alkylsilane 2b was detected in a low yield of 12%, probably because of the volatility of the disilane reagent. Tetraphenyldimethyldisilane (1c) emerged as a suitable partner for this transformation, leading to 2c in 60% yield. Unfortunately, the use of hexaphenyldisilane (1d) only led to a

SO₂Ph	R ₃ Si—SiR ₃	1) (CuOTf) ₂ ·C ₆ H ₆ (5 mol-%) phenantroline (7 mol-%) DMPU, 100 °C, overnight	PhO	o₂S∕∽_SiR₃
	1а–е	2) PTSA, H ₂ O		2- 2a–e
	1a : Ph(Me) ₂ S-Si(Me) ₂ Ph		2a	80%
1b : (Me) ₃ Si-Si(Me) ₃		2b	12%	
1c: (Ph) ₂ MeSi-SiMe(Ph) ₂			2c	60%
1d: (Ph) ₃ Si-Si(Ph) ₃		2d	complex mixture	
	1e: (OEt) ₃ Si	-Si(OEt) ₃	2e	no reaction

Scheme 2. Variation of disilanes.

complex mixture of unidentified products, and no reaction occurred with hexaethoxydisilane (1e), as the starting materials were recovered.

Conclusions

In summary, we have demonstrated that the copper-catalyzed conjugate silylation by using disilanes can be applied to a good range of α , β -unsaturated compounds. Various electrophiles bearing different electron-withdrawing groups were successfully used, and this method appears as a useful and direct route for the preparation of substituted alkyland vinylsilanes.

Experimental Section

Procedure for Silylation: Cu(OTf)₂·C₆H₆ (0.025 mmol, 12.5 mg) and phenanthroline (0.035 mmol, 6.3 mg) were placed in a Biotage microwave vial under an atmosphere of argon and DMPU (1 mL) was added. After stirring for 5 min at room temperature, the α , β -unsaturated compound (0.5 mmol) and disilane (0.6 mmol) were added, and the reaction mixture was heated conventionally to

SHORT COMMUNICATION

100 °C overnight. After cooling to room temperature, water (100 μ L) and *p*-toluenesulfonic acid (5 mg) were added, and the reaction mixture was stirred for 30 min. Then, the crude mixture was dissolved in Et₂O and washed several times with H₂O, dried (Na₂SO₄), concentrated in vacuo, and purified by flash column chromatography (hexanes/EtOAc).

Supporting Information (see footnote on the first page of this article): General considerations, characterization data, and copies of the ¹H NMR and ¹³C NMR spectra.

Acknowledgments

This research was supported by the National Institutes of Health (GM R01 081376). We acknowledge Dr. Rakesh Kohli (University of Pennsylvania) for obtaining HRMS data. We also thank Dr. Nicolas Fleury-Brégeot (University of Pennsylvania) for his kind assistance during the preparation of this manuscript.

- a) W. P. Weber in Silicon Reagents for Organic Synthesis, Springer, Berlin, 1983, pp. 79–227; b) E. W. Colvin in Silicon Reagents in Organic Synthesis, Academic Press, London, 1988, pp. 51–55; c) I. Fleming, A. Barbero, D. Walter, Chem. Rev. 1997, 97, 2063–2192.
- [2] E. Hartmann, D. J. Vyas, M. Oestreich, *Chem. Commun.* 2011, 47, 7917–7932.
- [3] a) For activation of the Si–Si bond by transition metal complexes, see: H. K. Sharman, K. H. Pannell, *Chem. Rev.* 1995, 95, 1351–1374; b) H. Ito, Y. Horita, M. Sawamura, *Adv. Synth. Catal.* 2012, 354, 813–817.
- [4] a) T. Hayashi, Y. Matsumoto, Y. Ito, J. Am. Chem. Soc. 1988, 110, 5579–5581; b) Y. Matsumoto, T. Hayashi, Y. Ito, Tetrahedron 1994, 50, 335–346; c) S. Ogoshi, S. Tomiyasu, M. Morita, H. Kurosawa, J. Am. Chem. Soc. 2002, 124, 11598–11599.
- [5] H. Ito, T. Ishizuka, J.-I. Tateiwa, M. Sonoda, A. Hosomi, J. Am. Chem. Soc. 1998, 120, 11196–11197.
- [6] C. T. Clark, J. F. Lake, K. A. Scheidt, J. Am. Chem. Soc. 2004, 126, 84–85.
- [7] M. Suginome, T. Matsuda, Y. Ito, *Organometallics* 2000, 19, 4647–4649.
- [8] J. A. Calderone, W. L. Santos, Org. Lett. 2012, 14, 2090-2093.

- [9] For a summary of Si-B chemistry, see: T. Ohmura, M. Suginome, Bull. Chem. Soc. Jpn. 2009, 82, 29–49.
- [10] Copper-mediated silicon addition: a) A. Welle, J. Petrignet, B. Tinant, J. Wouters, O. Riant, *Chem. Eur. J.* 2010, *16*, 10980–10983; b) H. Y. Harb, K. D. Collins, J. V. Garcia Altur, S. Bowker, L. Campbell, D. J. Procter, *Org. Lett.* 2010, *12*, 5446–5449; c) I. Ibrahem, S. Santoro, F. Himo, A. Cordova, *Adv. Synth. Catal.* 2011, *353*, 245–252.
- [11] Rhodium-mediated silicon addition: a) C. Walter, G. Auer, M. Oestreich, Angew. Chem. 2006, 118, 5803; Angew. Chem. Int. Ed. 2006, 45, 5675–5677; b) C. Walter, M. Oestreich, Angew. Chem. 2008, 120, 3878; Angew. Chem. Int. Ed. 2008, 47, 3818–3820; c) C. Walter, R. Frohlich, M. Oestreich, Tetrahedron 2009, 65, 5513–5520; d) E. Hartmann, M. Oestreich, Angew. Chem. Int. Ed. 2010, 49, 6195–6198; e) A. Weickgenannt, M. Oestreich, Chem. Eur. J. 2010, 16, 402–412 and references cited therein.
- [12] K. A. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 2898– 2900.
- [13] B. M. Trost, Science 1991, 254, 1471–1477.
- [14] G. A. Molander, S. A. McKee, Org. Lett. 2011, 13, 4684-4687.
- [15] G. A. Molander, L. Iannazzo, J. Org. Chem. 2011, 76, 9182– 9187.
- [16] T. Cohen, R. J. Ruffner, D. W. Shull, E. R. Fogel, J. R. Falck, Org. Synth. 1980, 59, 202–210.
- [17] Other ways to prepare vinylsilanes: a) A. Barbero, F. J. Pulido, Acc. Chem. Res. 2004, 37, 817-825; b) B. Marciniec, Coord. Chem. Rev. 2005, 249, 2374-2390; c) B. M. Trost, Z. T. Ball, J. Am. Chem. Soc. 2005, 127, 17644-17655; d) H. Ohmiya, H. Yorimitsu, K. Oshima, Org. Lett. 2006, 8, 3093-3096; e) K. Hirano, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2007, 129, 6094-6095; f) S. Hayashi, K. Hirano, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2007, 129, 12650-12651; g) G. Berthon-Gelloz, J. M. Schumers, G. De Bo, I. E. Markó, J. Org. Chem. 2008, 73, 4190-4197; h) S. Nakamura, M. Yonehara, M. Uchiyama, Chem. Eur. J. 2008, 14, 1068-1078; i) K. Murakami, H. Yorimitsu, K. Oshima, J. Org. Chem. 2009, 74, 1415-1417; j) Y. Jiang, O. Blacque, T. Fox, C. M. Frech, H. Berke, Chem. Eur. J. 2009, 15, 2121-2128; k) B. Lu, J. R. Falck, J. Org. Chem. 2010, 75, 1701-1705; 1) D. A. Rooke, E. M. Ferreira, J. Am. Chem. Soc. 2010, 132, 11926-11928; m) D. S. W. Lim, E. A. Anderson, Org. Lett. 2011, 13, 4806-4809; n) J. R. McAtee, S. E. S. Martin, D. T. Ahneman, K. A. Johnson, D. A. Watson, Angew. Chem. Int. Ed. 2012, 51, 3663-3667.

Received: June 8, 2012 Published Online: ■

4

Date: 07-08-12 18:22:46

Pages: 5

SiR3

Activation of Si-Si Bonds for Copper(I)-Catalyzed Conjugate Silylation

Eurjoean Journal of Organic Chemistry

Conjugate Addition

1) (CuOTf)₂·C₆H₆ (5 mol-%) phenantroline (7 mol-%) DMPU, 100 °C, overnight EWG----- + R₃Si-SiR₃

2) PTSA, H₂O

Alkyl- and vinylsilanes were prepared through copper(I)-catalyzed conjugate addition through activation of Si–Si bonds. Electrophilic substrates such as activated alkenes containing sulfono, cyano, and amido groups were used as acceptors for this transformation, and ester-substituted alkynes also emerged as suitable partners, leading to a new method for the generation of vinylsilanes.

EWG

L. Iannazzo, G. A. Molander* 1-5

Activation of Si–Si Bonds for Copper(I)-

Keywords: Silanes / Copper / Nucleophilic addition / Alkenes / Silicon