

Bioorganic & Medicinal Chemistry Letters 12 (2002) 1047-1050

New Thiazane and Thiazolidine PNA Monomers: Synthesis, Incorporation into PNAs and Hybridization Studies

Sarah Bregant, Fabienne Burlina* and Gérard Chassaing

Laboratoire de Chimie Organique Biologique, Université P. et M. Curie, CNRS-UMR 7613, 4 place Jussieu, 75252 Paris Cedex 05, France

Received 20 December 2001; accepted 28 January 2002

Abstract—New constrained PNA monomers containing a substituted thiazolidine or a thiazane ring were synthesized and incorporated in the center of a 9-mer homothymine PNA. The PNA/DNA hybrids stability was studied by UV-melting experiments which showed that the presence of the modified unit destabilizes the PNA/DNA triplexes. © 2002 Elsevier Science Ltd. All rights reserved.

Since their introduction in 1991 by Nielsen et al.,¹ peptide nucleic acids (PNAs) have reenergized the area of antisense and antigene strategies and have found applications as tools in molecular biology and genetic diagnostics. PNAs are DNA mimics in which the nucleobases are attached via a methylene carbonyl linker to a polyamide backbone composed of N-(2-aminoethyl)-glycine (aeg) units (Fig. 1). These polymers are resistant to cellular enzymes and bind to DNA and RNA with higher sequence specificity and affinity than non-modified oligonucleotides.²

Many chemical modifications have been proposed to improve the PNAs hybridization properties. Some of these imply the rigidification of the PNA backbone to favor the structure observed in the PNA/DNA or the PNA/RNA complexes.³ We have recently reported the synthesis of the constrained units U1 and U2 containing a thiazolidine ring which restrains the fluctuation domain of the γ and δ torsion angles (Fig. 1, U1: γ and $\delta = 120^{\circ} \pm 30$, U2: $\gamma = -120^{\circ} \pm 30$, $\delta = 120^{\circ} \pm 30$). The presence of these units in the center of a PNA was shown to destabilize the PNA/DNA triplex.⁴ In order to further explore the influence of γ and δ values on the PNA hybridization properties we have designed the new units U3 and U4 (Fig. 1). The anti and syn U3 units give γ and δ angles having opposite signs compared to the one obtained for U1 and U2, respectively, due to the

inversion of configuration of the C-4 center. The presence of the *gem*-dimethyl at position C-5 of the thiazolidine ring is expected to reduce the γ and δ fluctuation domains. The racemic *syn* thiazane U4 unit in the chair conformation leads to γ and δ values of 180°. In contrast, for the racemic *anti* thiazane U4 unit, four (γ , δ) sets are expected considering the two chair conformations of both enantiomers (180°, ±60°) or (±60°, 180°). We report here the synthesis of the new units U3 and U4, their incorporation in a PNA and the hybridization studies with DNA. We have also

Figure 1. Structure of the different PNA units (T=thymine, Boc=*t*-butyloxycarbonyl). The atom numbering and the torsion angle nomenclature used here are indicated (γ : C-2'–C-2–N–C-4; δ : C-2–N–C-4-C-4').

0960-894X/02/\$ - see front matter \odot 2002 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(02)00076-8

^{*}Corresponding author. Tel.: +33-1442-73115; fax: +33-1442-73843; e-mail: burlina@ccr.jussieu.fr

Scheme 1. (i) EtOH, H_2O ; (ii) BTSA, CH_2Cl_2 , $ClCH_2COCl$, pyridine; (iii) CH_2N_2 , Et_2O ; (iv) thymine, K_2CO_3 , DMF; (v) LiOH, dioxane/H₂O; (vi) TFA/CH₂Cl₂; (vii) Et₃N, CH₂Cl₂.

examined the influence of the thiazolidine and thiazane sulfur oxidation on the PNA/DNA hybrid stability.

The PNA unit U3 was prepared following the synthetic route outlined in Scheme 1. Condensation of N-Bocglycine aldehyde 1^5 with D-penicillamine was performed at room temperature in a mixture of ethanol/water (1:1) to give the thiazolidine-4-carboxylic acid 2. After solvent removal and drying over P₂O₅ for 48 h, it was directly isolated without purification. Thiazolidine 2 was treated with N,O-bis(trimethylsilyl)acetamide (BTSA) to ensure its solubility in dichloromethane and reacted with chloroacetyl chloride in the presence of pyridine at -78 °C. Treatment with diazomethane in ether gave a mixture of two diastereomers 3a and 3b which were separated by flash chromatography and found to be present in a 60:40 ratio (51% yield starting from 1).⁶ The respective stereochemistry of 3a and 3bcould not be determined by nuclear Overhauser effect (NOE) experiments. Indeed, no NOE was observed between protons H-2 and H-4. Furthermore, the complexity of the ¹H NMR spectra, due to peaks overlap and exchange magnetization transfer between the *cis*/ trans amide bond isomers, prevented any clear interpretation of the other NOE observed. To circumvent the problem associated with the amide bond rotation, **3a** and **3b** were respectively converted into the bicyclic compounds 4a (73%) and 4b (80%) by Boc removal and triethylamine treatment of the resulting free amino compound.⁷ In both cases, a single constrained product was formed. For both compounds 4a and 4b, no NOE was observed between protons H-2 and H-4. Thus, the determination of the stereochemistry of 4a and 4b was based on the analysis of the heteronuclear ¹³C-¹H couplings and NOE involving the methyl groups. In the ¹³C spectrum of compound 4b recorded without proton decoupling, the two non-equivalent methyl groups exhibited different multiplicities: quadruplet of quintuplet (qqt) for the deshielded signal (CH_3a), quadruplet of quadruplet for the shielded one (CH_3b) . This indicated that the coupling constant ${}^{3}J_{H-4,CH,b}$ is close to 0 Hz showing the anti relationship between H-4 and CH₃b (torsion angle H-4-C-4-C-5-CH_{3b} close to 90° according to Karplus curves).8 Furthermore, a NOE was observed between CH₃a and H-2 revealing their syn relationship. From these data, the syn relationship between H-2 and H-4 was assigned for compound 4b and by deduction for compound 3b. In contrast, the

stereospecific assignment of the methyl groups of compound 4a could not be deduced from the heteronuclear ¹³C⁻¹H couplings since the two ¹³C methyl groups signals exhibited the same multiplicity (qqt). However, NOE experiments were in agreement with an *anti* relationship between H-2 and H-4 for bicycle 4a (the methyl group which gave a strong NOE with H-4 gave none with H-2). Thus the anti stereochemistry was assigned to 3a. Compounds 3a and 3b were separately reacted with thymine in the presence of potassium carbonate in dimethylformamide at room temperature to give in each case a single coupling compound in 60% yield. The last step toward the synthesis of the PNA units involved the saponification of the methyl ester function by treatment with lithium hydroxide in a mixture of water/dioxane (2:3). The syn unit U3 was formed quantitatively.⁹ In contrast, the saponification of the anti compound led to a mixture of two diastereomers having the expected mass and another side product which prevented the isolation of the anti compound in a sufficient scale to allow incorporation into a PNA.

The racemic **U4** unit was synthesized starting from homocysteine thiolactone chlorohydrate (Scheme 2). After ring opening in the presence of sodium hydroxide and condensation with *N*-Boc-glycine aldehyde **1**, the thiazane **5** was obtained as a single diastereomer (45%yield, two steps). This compound was treated successively with chloroacetyl chloride in the presence of BTSA and diazomethane to give the chloro derivative **6** as a single diastereomer (62%, two steps).^{6,10} The analysis of the coupling constants in its ¹H NMR spectra showed that the thiazane ring adopts a twist conformation and the interpretation of the NOE experiments indicated the *syn* stereochemical relationship between

Scheme 2. (i) NaOH, H₂O; (ii) *N*-Boc-glycine aldehyde, EtOH, H₂O; (iii) BTSA, CH₂Cl₂, ClCH₂COCl, pyridine; (iv) CH₂N₂, Et₂O; (v) thymine, K₂CO₃, DMF; (vi) LiOH, dioxane/H₂O.

the C-2 and C-4 substituents. Thymine was alkylated by thiazane **6** and the resulting coupling compound was subjected to a saponification to give the *syn* unit **U4** in good yield.¹¹ The corresponding *anti* unit could not be obtained by this synthetic route.

The constrained units U1 to U4 were introduced in the center of a 9-mer homothymine aegPNA to give PNA 1 to 4 (Table 1). The reference PNA containing only aegT units (Fig. 1) was also synthesized. Lysine was introduced at the C-terminus of the PNAs to reduce their self-aggregation.¹ PNAs were assembled as described previously⁴ on a 5 µmol scale applying with minor modifications the in situ neutralization protocol for Boc solid phase peptide chemistry.¹² Cleavage of the PNAs from the resin was performed by standard HF procedure and the PNAs were purified by reverse phase HPLC and characterized by MALDI-TOF mass spectroscopy.¹³ Sulfur mono-oxidation of the constrained units was performed directly on the purified polymers (PNA 1 to 4) by treatment with sodium periodate (10 equiv) in water at room temperature (48 h) to give PNA 10x to 40x (Table 1).¹³ Although a single peak was always observed during preparative or analytical HPLC, the presence of the two sulfoxide epimers is not excluded.

It was observed that unlike the reference PNA the modified PNAs do not exhibit any tendency to self-aggregation during storage or manipulation. As previously reported for peptide sequences,¹⁴ the presence of

Table 1. Melting (T_m) and half re-association (T_{as}) temperatures of the PNA/DNA complexes^a

PNA ^b	$T_{\rm m}~{\rm PNA/dA_{10}}$	$T_{\rm as}~{\rm PNA/dA_{10}}$	$T_{\rm m} {\rm PNA/dA_4TA_4}$
ref	66	58.5	54
1	49	40	39
1ox	48	46	39
2	42	33	27
2ox	41	36.5	27
3	41	25	29
3ox	39	22	25
4	42	29	30
4ox	41	31	31

^aTemperatures are given in °C with estimated deviations of ± 1 °C. ^bPNAs sequences: PNA **ref**=H-(aegT)₉-Lys-NH2, PNA **n**=H-(aegT)₄-U**n**-(aegT)₄-Lys-NH₂, U**n** being one of the modified units presented in Figure 1. The corresponding oxidized PNAs are named PNA **nox**.

Figure 2. UV-melting curves of the PNA ox/DNA complexes.

a thiazolidine motif in the PNA probably improves its solubility, as the thiazane also does. The PNAs were hybridized to the complementary DNA sequence dA_{10} or the mismatched sequence dA_4TA_4 and the thermal stabilities of the PNA/DNA hybrids were estimated by UV-melting experiments (Table 1).¹⁵ A 2:1 ratio of PNA/DNA was used as homopyrimidine PNAs form PNA₂/DNA triplexes² and we observed previously that the incorporation of a single thiazolidine unit in the PNA does not prevent the triplex formation.⁴ Welldefined heating (Fig. 2) and cooling curves were obtained for all the modified PNA/DNA hybrids indicating that the presence of the modified unit does not prevent the cooperative dissociation and association of the complexes. However, the thermal stabilities of the modified complexes were significantly reduced compared to that of the reference triplex PNA ref/dA₁₀ (Table 1). The anti unit U1 appeared to be better accommodated in the triplex than the different syn units which led to similar $T_{\rm m}$ values (17 °C reduction of the $T_{\rm m}$ with PNA 1, 24–25 °C reduction with PNAs 2 to 4). The thiazane ring of the synthetic intermediate 6 was shown by NMR studies to adopt a twist conformation. This unexpected result prompted us to perform molecular mechanic calculations on the syn racemic U4 unit. The twist conformation was found to be the most stable leading to the (γ, δ) torsion angle sets $(-90^{\circ} \pm 10,$ $130^{\circ} \pm 10$) and $(90^{\circ} \pm 10, -130^{\circ} \pm 10)$. These angle values are close to those obtained with the syn thiazolidine units which could explain the similar T_m values observed for PNA 2 to 4. The sulfur oxidation of the modified units did not improve the thermal stabilities of the hybrids. However, for PNA 1 and to a lesser extent PNA 2, the hysteresis between the heating and cooling curves was reduced $(T_m - T_{as} = 2 \degree C \text{ for PNA 1ox instead})$ of 9 °C for PNA 1 or 7.5 °C for PNA ref) suggesting that the triplex formation is accelerated. Finally, hybridization of the modified PNAs to the mismatched DNA sequence resulted in $T_{\rm m}$ reductions ranging from 9 to $15 \,^{\circ}C$ (12 $^{\circ}C$ for PNA ref). As a conclusion, the presence of the modified units was shown to destabilize the PNA/ DNA hybrids but maintain a base-pairing selectivity. Furthermore, it was observed that incorporation of the thiazolidine or thiazane units reduces PNA aggregation.

References and Notes

1. Nielsen, P. E.; Egholm, M.; Berg, R. H.; Buchardt, O. Science **1991**, 254, 1497.

Reviews: (a) Nielsen, P. E. Acc. Chem. Res. 1999, 32, 624.
(b) Ray, A.; Nordén, B. FASEB 2000, 14, 1041.

3. (a) Review: Ganesh, K. N.; Nielsen, P. E. Current Org. Chem. 2000, 4, 931. (b) Püschl, A.; Boesen, T.; Tedeschi, T.; Dahl, O.; Nielsen, P. E. J. Chem. Soc., Perkin Trans. 1 2001, 2757 and refs 3 and 4 cited therein. (c) Meena; Kumar, V. A.; Ganesh, K. N. Nucleosides, Nucleotides & Nucleic Acids 2001, 20, 1193. (d) Lonkar, P. S.; Kumar, V. A.; Ganesh, K. N. Nucleosides, Nucleotides & Nucleic Acids 2001, 20, 1197. (e) Li, Y.; Jin, T.; Liu, K. Nucleosides, Nucleotides & Nucleic Acids 2001, 20, 1705. (f) Slaitas, A.; Yeheskiely, E. Nucleosides, Nucleotides & Nucleic Acids 2001, 20, 1377.

4. Bregant, S.; Burlina, F.; Vaissermann, J.; Chassaing, G. Eur. J. Org. Chem. 2001, 3285.

5. Dueholm, K. L.; Egholm, M.; Buchardt, O. Organic Preparations and Procedures Int. 1993, 25, 457.

6. General procedure for the acylation reaction: To the carboxylic acid derivative suspended in dry CH_2Cl_2 , BTSA (1 equiv) was added dropwise under argon. The reaction mixture was stirred at rt until complete dissolution then cooled to -78 °C, pyridine (1.5 equiv) and chloroacetyl chloride (1 equiv) were added successively. After 30 min, CH_2Cl_2 was added. The organic layer was washed twice with a 10% citric acid aqueous solution and brine, dried over MgSO₄ and concentrated. The resulting residue was dissolved in ether before careful addition of freshly prepared diazomethane. When the starting material was consumed, argon was bubbled through the solution in order to remove diazomethane excess. The reaction mixture was concentrated under vacuum and the residue was purified by flash chromatography on silica gel (EtOAc/cyclohexane).

7. Bicyclic compounds 4a: ¹H NMR (400 MHz, CDCl₃) δ 5.40 (dd, 1H, ${}^{3}J = 10.2$, 4.0 Hz, H-2), 4.74 (s, 1H, H-4), 3.75 (s, 3H, OCH₃), 3.66, 3.49 (2d, 2H, ${}^{2}J$ = 18.2 Hz, NHCH₂CO), 3.43 (dd, 1H, ${}^{2}J=13.4$ Hz, ${}^{3}J=4.0$ Hz, NHCHH), (dd, 1H, $^{2}J = 13.4$ Hz, $^{3}J = 10.2$ Hz, NHCHH), 1.60, 1.45 (2s, 6H, C(CH₃)₂). ¹³C NMR (100.61 MHz, CDCl₃) δ 169.0, 169.0 (COCH₃, NCOCH₂), 71.0 (C-4), 62.3 (C-2), 52.4 (OCH₃), 51.5 (C(CH₃)₂), 48.5 (NHCH₂CO), 48.4 (NHCH₂), 30.1, 26.6 (C(CH₃)₂). 4b: ¹H NMR (400 MHz, CDCl₃) δ 5.02 (dd, 1H, ${}^{3}J$ = 10.1, 3.0 Hz, H-2), 4.35 (s, 1H, H-4), 3.72 (s, 3H, OCH₃), 3.61, 3.52 (2d, 2H, ²J=17.8 Hz, NHCH₂CO), 3.43 (dd, 1H, $^{2}J=12.7$ Hz, $^{3}J=3.0$ Hz, NHCHH), (dd, 1H, $^{2}J=12.7$ Hz, ³J = 10.1 Hz, NHCHH), 1.59, 1.37 (2s, 6H, C(CH₃)₂). ¹³C NMR (100.61 MHz, CDCl₃) δ 169.4, 167.4 (COCH₃, NCOCH₂), 71.8 (C-4), 62.0 (C-2), 52.2 (OCH₃), 51.0 (C(CH₃)₂), 48.1 (NHCH₂CO), 47.3 (NHCH₂), 31.5, 23.8 (C(CH₃)₂).

8. Karplus, M. J. Chem. Phys. 1959, 30, 11.

9. *syn* PNA unit U3: ¹H NMR (400 MHz, DMSO- d_6) δ 11.37, 11.31 (2s, 1H, NH T), 7.63, 7.33 (2m, 1H, NHBoc), 7.47, 7.39 (2s, 1H, CH T), 5.44 (dd, 0.5H, ${}^{3}J$ =6.2, <1 Hz, H-2), 5.37 (m, 0.5H, H-2), 4.80, 4.71 (2d, 2H, ${}^{2}J$ =16.4 Hz, T-CH₂), 4.65 (s, 0.5H, H-4), 4.58, 4.23 (2d, 2H, ${}^{2}J$ =16.4 Hz, T-CH₂), 4.65 (s, 0.5H, H-4), 3.85–3.30 (m, 2H, NHCH₂), 1.76, 1.74 (2s, 3H, CH₃ T), 1.50–1.40 (4s, 6H, C(CH₃)₂), 1.38, 1.35 (2s, 9H, CH₃ Boc). ¹³C NMR (100.61 MHz, DMSO- d_6) 170.6, 170.3, 166.4, 166.1, 164.4, 164.4, 156.0, 155.8, 151.0, 151.0 (CO T, COOH,

TCH₂CO, CO Boc), 142.2, 142.2 (CH T), 108.2, 108.0 (CCH₃ T), 78.2, 77.4 (C(CH₃)₃), 72.8, 72.0 (C-4), 63.3, 61.8 (C-2), 52.7, 51.4 (C(CH₃)₂) 49.0, 48.3 (T-CH₂), 46.7, 42.9 (NHCH₂), 32.7, 32.7, 25.7, 25.7 (C(CH₃)₂), 28.3, 28.2 (C(CH₃)₃), 11.9, 11.9 (CH₃ T).

10. Thiazane **6**: ¹H NMR (400 MHz, CDCl₃) δ 5.70 (m, 1H, N*H*Boc), 5.25 (t, 1H, ³*J*=6.2 Hz, H-4), 4.84 (dd, 1H, ³*J*=9.8, 5.5 Hz, H-2), 4.29, 4.11 (2d, 2H, ²*J*=13.3 Hz, ClC*H*₂), 3.72 (s, 3H, CH₃O), 3.53, 3.19 (2m, 2H, NHC*H*₂), 2.81 (m, 1H, ³*J*=9.9, 3.3 Hz, ²*J*=13.5 Hz, H-6), 2.51 (m, 1H, ²*J*=13.5 Hz, H-6), 2.42 (m, 1H, H-5), 2.20 (m, 1H, H-5), 1.40 (s, 9H, CH₃ Boc). ¹³C NMR (100.61 MHz, CDCl₃) δ 172.2 (COOCH₃), 167.1 (ClCH₂CO), 155.9 (CO Boc), 79.9 (C(CH₃)₃), 53.4 (C-2), 52.8 (CH₃O), 51.3 (C-4), 45.7 (NHCH₂), 41.3 (ClCH₂), 28.2 (C(CH₃)₃), 26.8 (C-5), 20.3 (C-6).

11. *syn* PNA unit U4 (amide bond isomers, 1:1): ¹H NMR (500 MHz, CD₃OD) δ 7.33, 7.30 (2s, 1H, CH T), 5.68 (m, 0.5H, H-2), 5.32 (m, 0.5H, H-4), 5.00–4.55 (m, 3H, H-2, H-4, T-CH₂), 3.80–3.15 (m, 2H, NHCH₂), 3.12, 3.04 (2t, 1H, ²J=³J=12.5 Hz, ²J=³J=11.6 Hz, H-6), 2.75–2.47 (m, 2H, H-6, H-5), 2.23 (m, 1H, H-5), 1.91 (s, 3H, CH₃ T), 1.48, 1.43 (2s, 9H, CH₃ Boc). ¹³C NMR (125.73 MHz, CD₃OD) δ 175.2, 175.0 (COOH), 169.8, 169.5, 167.5, 158.7, 153.5 (CO), 144.1, 143.9 (CH T), 111.6, 111.5 (CCH₃ T), 81.4, 80.9 (C(CH₃)₃), 55.6, 54.9 (C-4), 52.8, 52.0 (C-2), 50.5, 50.4 (T-CH₂), 46.3, 44.1 (NHCH₂), 29.2 (C(CH₃)₃), 28.9, 28.4 (C-5), 21.5, 20.8 (C-6), 12.8, 12.7 (CH₃ T).

12. Schnölzer, M.; Alewood, P.; Jones, A.; Alewood, D.; Kent, S. B. H. Int. J. Protein Res. **1992**, 40, 180.

13. PNA characterization by MALDI-TOF MS using α -cyano-4-hydroxycinnamic acid as matrix. [MH]⁺: PNA ref 2541.2 (calcd 2541.0); PNA 1 2584.9, PNA 2 2585.3 (calcd 2585.0); PNA 10x 2601.0, PNA 20x 2600.9 (calcd 2601.0); PNA 3 2612.9 (calcd 2613.0); PNA 30x 2629.1 (calcd 2629.0); PNA 4 2598.8 (calcd 2599.0); PNA 40x 2615.0 (calcd 2615.0). 14. Wöhr, T.; Wahl, F.; Nefzi, A.; Rohwedder, B.; Sato, T.; Sun, X.; Mutter, M. *J. Am. Chem. Soc.* 1996, *118*, 9218.

15. UV-melting experiments were performed in 10 mM sodium phosphate buffer (pH=7), 100 mM NaCl with [PNA]=4 μ M and [DNA]=2 μ M. The mixture was heated for 5 min at 85 °C, slowly cooled and stored overnight at R.T and incubated 30 min at 15 °C before T_m measurements (heating and cooling rates=0.5 °C/min).