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A&m& Whm treated with 0.1 equiv. of triflic acid. a solution of the Z-wmfiguntcd dieadiyne. 19 in a 23 mix- 
him of tar-BUSH aad cH2c12 filmikd the brightly yellow mym43jclmllleae 20 through P s~“-reaction. 24 lem2- 

through l mo-Myers cyclization to the mlbstituted qmaea 31 Md 24 aad thfougb an lm- 

Neocaudnostatin chromophore (“NCS”) 1 is a bicyclic dienediyne which cleaves DNA 2 upon activa- 
tion as one of the enyne[3]cumulenes 1 3, 2 4, or 3 5. These species contain nine-membered rings which ate 
enyneQ]cumulenes. This makes them so strained that they undergo a so-called cycloaromatixation of type 
4-Gl at physiological temperature or even below: A benxenoid biradical is formed 4. It saturates its half- 
empty orbitals rapidly through uptake of H atoms from DNA in vivo or from 1,4-cyclohexadiene added dur- 
ing almost all laboratory cycloaromatixations of that kind 3b-c~ 6. 
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Cycloaromatixations with bond formation between the terminal carbon atom C-l of a conjugated enyne 
C=C-C =C and an sp-hybridii C-6 are known not only for the NCS-type 4-& Related pm are the 
Saito’l-Myers 8 cycliition of enyne allenes 5 leading to a,x-biiicals 9 9-*1; the Moore cyclixations of 
enyne ketenes 6 providing the oxa analogs 10 of 9 12; and the Bergman cyclixation of enynes 7 giving the bi- 
radicals 11 h 13. The Bergman reaction is favored in the cycliration mode to the localized a,u-biradical 11 
only if its inherent endothermicity 9. t4 is overcompensated by the concomitant loss of ring strain. Since the 
NCS type cycloaromatixation 4&l gives a ZocaZked a,u-biradical, too, it might also be inherently endother- 
mic unless additionally strain energy is released. Nonetheless, Hirama et al. were able to cycloaromatixe the 
unstrained enynfl]cumulene 16 in refluxing 1,4-cyclohexadiene by the NCS type process 4& h. 16 con- 
stitutes a monocyclic analog offorms l/2 of aaivated IVCS. It was derived from the 3,5dinim%enwak 17 
by an S,“’ substitution with methyl thioglycolate in the presence of NE$. 

We wanted to prepare a modcyclic analog offirm 3 of acliwed NCS. First, we tested Hirama’s con- 
ditions in an attempted S,” reaction between the 3,5dinit&enroa te 12 and methyl thioglycolate. But in- 
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stead of enyn~3]cumulene 15 (Rt = R2 = Me) we found unreacted starting material or observed decompo- 
sition. Mesylate 13 did react with HS-CH~-CO@eJNEt~ but provided the dienediyne 14 by a direct SN re 
action rather than the desired SN” product. 

12 R'=RZ=Mc.X=~CAr S-CO&k 
13 R'=Ph,RZ=H.X=OMs 
14 R1rF'h,RZ=H,X=SCH&O&k 15 16 

Success came after a Pd(O)/CuI mediated coupling of the earlier described enoltritlate 18 15 with 1, l- 
diphenylpropargyl alcohol giving the Z-configurated dienediyne 19 16. When 19 was dissolved in 2:3 fert- 
BuSH/CH2C12 and treated at -65°C with 0.1 equiv. of tritlic acid in the presence of 3A molecular sieves, we 
obtained a brightly yellow solution. After addition of NRts, aqueous workup, and Sash chromatography, we 
isolated a dark-red foam. We believe that it was a slightly contaminated sample of cumulene 20. Indicative 
for structure 20 are (1) the single olefinic tH-NMR signal at 6 5.56 (m,, 1”-H) vs. 619 5.50 (m,., l”-H) and 
6.59 (m,, 2-H); (2) the appearance of a triplet at &4 4.04 (.I 2,3 = 6.1 Hz, 2-H) instead of the singlet at 6~ 
2.97(OH);and(3)that4”-H2appearsasanABpartofanABXspectnrmratherthananA2partofanA2X 
spectrum @A = 0.88, $ = 0.97, JAB = 16.4 I-Ix, 5.JA,t* = 3.1 I-Ix, 5.TB,tl = 3.3 Hz): The anisochrony of 
these protons cannot be due to the remote stereocenter at C-2; it must reflect a distortion out of the cumulene 
plane of the otherwise too proximate phenyl group at C-3’ including its quatenary center. 
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Our failure to obtain cumulene 20 entirely pure was at least partly due to its reactivity. When, for ex- 
ample, 20 was kept in the fen-BuSHICH2Cl~lNRt~ mixture in which it was formed for 4 d at room temper- 
ature, it disappeared completely (HPLC monitoring). Two new compounds were detected by their UV ab- 
sorptions. They were isolated by preparative HPLC and assigned the styrene structures 23 (4% yield) and 24 
(2% yield) on the basis of their high resolution mass, lH-NMR, and tsC-NMR spectra. Oxonolyses of 23 
and 24 gave benxophenone (69% and 68%) respectively) in accordance with the proposed structures; in ad- 
dition, we obtained the sulfonyl aldehyde 26 (42%) starting from 23. 
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23 24 25 

Also, we tried to purify by HPLC @P-18 silica, I&OH/H20 97.5:2.5) cumulene 29 which when ob- 
tained by flash chromatography was still contaminated. We were surprised to isolate - guided by a strong 
W absorption - in 10% yield an ironer C3tH&Si according to the high resolution mass qectrum. It 
constitutes a cyclopentalblamhracene as deduced from 1D (tH, t3C) 17 and 2D NMR experiments (H,H- 
COSY, delayed H,H-COSY, C,H correlation). This assignment was corroborated by desilylation with excess 
ByNF in THF (room temp., 3h) giving 27 (39% after preparative HPLC). The tH-NMR spectrum of 27 
showed a singlet at 6 3.13 for Ar-C!& instead of the singlet at 6 3.17 for Ar-C&-S&IQ. Interestingly, the 
phenyl substituent in the anthracenes 25 and 27 cannot rotate freely on the time scale of the tH-NMR 
experiment since onho- and O&O’-H possess different chemical shifts as do me&z- and meta’-H. The 
rotational barrier is caused by two interactions which are also present - although differently arranged with 
respect to each other - in l,l’-binaphthyl (Zs) and cause a rotational barrier of 21-23 kcal/mol there 18. 

26 25: R = SiMq 27: R = H 28 

The molecular formula of styrene 23 (24) differs from that of 20 by an uptake of H2(QHtcS). Their 
formation would therefore be explicable with the assumption that cumulene 20 undergoes a NCS-type 
cycloatomatixation through bond formation between C-I and C-7 delivering the bcnzenoid biradical21. 21 
would give the isolated products by H atom transfer from tert-BuSH (2 x 43) or by one such H transfer 
plus a radical recombiion reaction with the by-product terf-BUS* thereof (-44). 

Quite differently, anthracene 25 has the same molecular formula as cumulene 20. The transformation 
20+25 is novel and includes no cycloanrmotizaton. 2045 seems to begin with bond formation betwen C-2 
und C-8 which would give qtinoid u,u-biiical22. A subsequent radical cyclixation - also interptetable as a 
1 $-electrocyclixation - would lead to a cyclopenta[b]anthracene derived u, x-biiical as an immediate pre- 
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cur8or of the final product 25.- In view of this r&ional Hirama’s spontanaw convcmion of 
enyn~]cumuIene 16 into bawcyclobutene 29 via the u,r-bimdiaxl36 might have to be suppIun&ed by a 
previously uncwidQcd h intermediate, namely the q&&d u,u-biradicaI31: 1631 would be completely 
analogous to 2042. 

16 29 30 31 
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