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Abstract: Whea treated with 0.1 equiv. of triflic acid, a solution of the Z-configurated dienediyne 19 in a 2:3 mix-
ture of tert-BuSH and CH,Cl, fumnished the brightly yellow enyne{3]Jcumulene 20 through a Sy''-reaction. 20 reac-
ted at room temperature through a Saito-Myers cyclization to the substituted styrenes 31 and 24 and through an un-
precedented cycloisomerization to the anthracene 25.

Neocarzinostatin chromophore ("NCS") 1 is a bicyclic dienediyne which cleaves DNA 2 upon activa-
tion as one of the enyne[3Jcumulenes 1 3, 2 4, or 3 5. These species contain nine-membered rings which are
enyne[3Jcumulenes. This makes them so strained that they undergo a so-called cycloaromatization of type
4-8 at physiological temperature or even below: A benzenoid biradical is formed 4. It saturates its half-
empty orbitals rapidly through uptake of H atoms from DNA in vivo or from 1,4-cyclohexadiene added dur-
ing almost all laboratory cycloaromatizations of that kind 3%, 6,
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Cycloaromatizations with bond formation between the terminal carbon atom C-1 of a conjugated enyne
C=C-C=C and an sp-hybridized C-6 are known not only for the NCS-type 4-+8. Related processes are the
Saito’-Myers 8 cyclization of enyne allenes 5 leading to o,x-biradicals 9 5-11; the Moore cyclizations of
enyne ketenes 6 providing the oxa analogs 10 of 9 12; and the Bergman cyclization of enynes 7 giving the bi-
radicals 11 24, 13, The Bergman reaction is favored in the cyclization mode to the localized o,0-biradical 11
only if its inherent endothermicity 9 14 is overcompensated by the concomitant loss of ring strain. Since the
NCS type cycloaromatization 4-8 gives a localized o,0-biradical, too, it might also be inherently endother-
mic unless additionally strain energy is released. Nonetheless, Hirama er al. were able to cycloaromatize the
unstrained enyne[3]cumulene 16 in refluxing 1,4-cyclohexadiene by the NCS type process 4-»8 68, 16 con-
stitutes a monocyclic analog of forms 1/2 of activated NCS. 1t was derived from the 3,5-dinitrobenzoate 17
by an Sy;''" substitution with methy! thioglycolate in the presence of NEt,.

We wanted to prepare a monocyclic analog of form 3 of activated NCS. First, we tested Hirama's con-
ditions in an attempted Sy’ reaction between the 3,5-dinitrobenzoate 12 and methyl thioglycolate. But in-
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stead of enyne[3Jcumulene 15 (R! = RZ = Me) we found unreacted starting material or observed decompo-
sition, Mesylate 13 did react with HS-CH,-CO,Me/NEt; but provided the dienediyne 14 by a direct Sy re-
action rather than the desired Sy'* product.
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12 R'=R®=Me, X =0,CAr s’\Cone
13 R'=Ph,R*=H,X=0Ms
14 R'=Ph,R%=H, X =SCH,COMe 15 16 17 CAr

Success came after a Pd(0)/Cul mediated coupling of the earlier described enoltriflate 18 15 with 1,1-
diphenylpropargyl alcohol giving the Z-configurated dienediyne 19 16, When 19 was dissolved in 2:3 fert-
BuSH/CH,Cl, and treated at -65°C with 0.1 equiv. of triflic acid in the presence of 3A molecular sieves, we
obtained a brightly yellow solution. After addition of NEt3, aqueous workup, and flash chromatography, we
isolated a dark-red foam. We believe that it was a slightly contaminated sample of cumulene 20. Indicative
for structure 20 are (1) the single olefinic H-NMR signal at 5 5.56 (m,, 1''-H) vs. ;9 5.50 (m, 1'"-H) and
6.59 (m,, 2-H); (2) the appearance of a triplet at dx9 4.04 (Jo 3 = 6.1 Hz, 2-H) instead of the singlet at 519
2.97 (OH); and (3) that 4''-H, appears as an AB part of an ABX spectrum rather than an A, part of an A,X
spectrum (55 = 0.88, g = 0.97, Jug = 16.4 Hz, 54 ;+ = 3.1 Hz, °Jg j» = 3.3 Hz): The anisochrony of
these protons cannot be due to the remote stereocenter at C-2; it must reflect a distortion out of the cumulene
plane of the otherwise too proximate phenyl group at C-3' including its quatenary center.

Me;,Si - Me;,Si CF3SO3H (0.1 eq.), Me,Si
‘/%OH 3A molec. sieves,
Ph 2:3 (BuSH/CH,Cl,
————————- ———
0SO,CF, cat. PACly(PPhs),, 65°C, 15 min;
cat. Cul, 3:1 THF/ NEty; ca. 46%
iPryNH, r.t., 4h; 52%
1813 19

Our failure to obtain cumulene 20 entirely pure was at least partly due to its reactivity. When, for ex-
ample, 20 was kept in the terr-BuSH/CH,Cl,/NEt; mixture in which it was formed for 4 d at room temper-
ature, it disappeared completely (HPLC monitoring). Two new compounds were detected by their UV ab-
sorptions. They were isolated by preparative HPLC and assigned the styrene structures 23 (4% yield) and 24
(2% yield) on the basis of their high resolution mass, 'H-NMR, and 13C-NMR spectra. Ozonolyses of 23
and 24 gave benzophenone (69% and 68%, respectively) in accordance with the proposed structures; in ad-
dition, we obtained the sulfonyl aldehyde 26 (42%) starting from 23.
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Also, we tried to purify by HPLC (RP-18 silica, MeOH/H,0 97.5:2.5) cumulene 20 which when ob-
tained by flash chromatography was still contaminated. We were surprised to isolate - guided by a strong
UV absorption - in 10% yield an isomer C3;H34SSi according to the high resolution mass spectrum. It
constitutes a cyclopentafblanthracene as deduced from 1D (!H, !3C) 17 and 2D NMR experiments (H,H-
COSY, delayed H,H-COSY, C,H correlation). This assignment was corroborated by desilylation with excess
BuyNF in THF (room temp., 3h) giving 27 (39% after preparative HPLC). The IH-NMR spectrum of 27
showed a singlet at & 3.13 for Ar-CHj instead of the singlet at § 3.17 for Ar-CH,-SiMe;. Interestingly, the
phenyl substituent in the anthracenes 25 and 27 cannot rotate freely on the time scale of the 1H-NMR
experiment since ortho- and ortho’-H possess different chemical shifts as do meta- and meta’-H. The
rotational barrier is caused by two interactions which are also present - although differently arranged with
respect to each other - in 1,1'-binaphthyl (28) and cause a rotational barrier of 21-23 kcal/mol there 18,

25

SO,/Bu
26 25: R =SiMe; 27:R=H 238

The molecular formula of styrene 23 (24) differs from that of 20 by an uptake of Hy(C4H;S). Their
formation would therefore be explicable with the assumption that cumulene 20 undergoes a NCS-type
cycloaromatization through bond formation berween C-1 and C-7 delivering the benzenoid biradical 21. 21
would give the isolated products by H atom transfer from rert-BuSH (2 x —23) or by one such H transfer
plus a radical recombination reaction with the by-product zer-BuS- thereof (+24).

Quite differently, anthracene 25 has the same molecular formula as cumulene 20. The transformation
20-»25 is novel and includes no cycloaromatization. 20-»25 seems to begin with bond formation between C-2
and C-8 which would give guinoid o,0-biradical 22. A subsequent radical cyclization - also interpretable as a
1,6-electrocyclization - would lead to a cyclopenta[bJanthracene derived o, x-biradical as an immediate pre-
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cursor of the final product 25.- In view of this rational Hirama's spontaneous conversion of
enyne[3jcumulene 16 into benzocyclobutene 29 via the o, x-biradical 36 might have to be supplemented by a
previously unconsidered 6 intermediate, namely the quinoid o,o-biradical 31: 16+31 would be completely
analogous to 20-»22.

CO-,Me COzMe CO,Me
16 29 30 31
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