IONONE AND LIGNAN GLYCOSIDES FROM EPIMEDIUM DIPHYLLUM

TOSHIO MIYASE, AKIRA UENO, NOBUO TAKIZAWA,* HIROMI KOBAYASHI* and HIROKO OGUCHI*

School of Pharmaceutical Sciences, University of Shizuoka, 2-2-1, Oshika, Shizuoka 422, Japan; *Central Research Laboratories, Yomeishu Seizo Co., Ltd, Nakaminowa, Minowa-cho, Kamiina-gun, Nagano 399-46, Japan

(Received in revised form 21 April 1989)

Key Word Index—Epimedium diphyllum; Berberidaceae; ionone derivative; lignan; phenylethanoid; icariside B; icariside D; icariside E.

Abstract—From the aerial parts of *Epimedium diphyllum*, a new ionone derivative glucoside, icariside B_8 , two new lignan glycosides, icarisides E_4 and E_5 and a new phenylethanoid glucoside, icariside D_2 , have been isolated together with 20 known compounds. The structures of four new compounds were established by spectral and chemical evidence.

INTRODUCTION

The aerial parts of *Epimedium* species have been used since ancient times as a tonic in China and Japan. The glycosides of *E. grandiflorum* Morr. var. *thunbergianum* (Miq.) Nakai were reported previously [1-3]. We have now examined the aerial parts of *E. diphyllum* Lodd. (syn. *Aceranthus diphyllus* Morr. et Decne.) and isolated a new ionone derivative glucoside, two new lignan glycosides and a new phenylethanoid glucoside together with 20 known polar compounds. The identification of the new compounds is described in this paper.

RESULTS AND DISCUSSION

Compounds 1–3, 5, 7–9, 15, 18–23 have already been isolated from *E. grandiflorum* [1–3] and were identified by direct comparison. Compound 6 was identified as the *threo* isomer of 5 by comparing its 13 C NMR spectrum with that of 5 [2]. Compounds 10, 12–14, 17 were identified by comparing their spectral data with reported data [4–8].

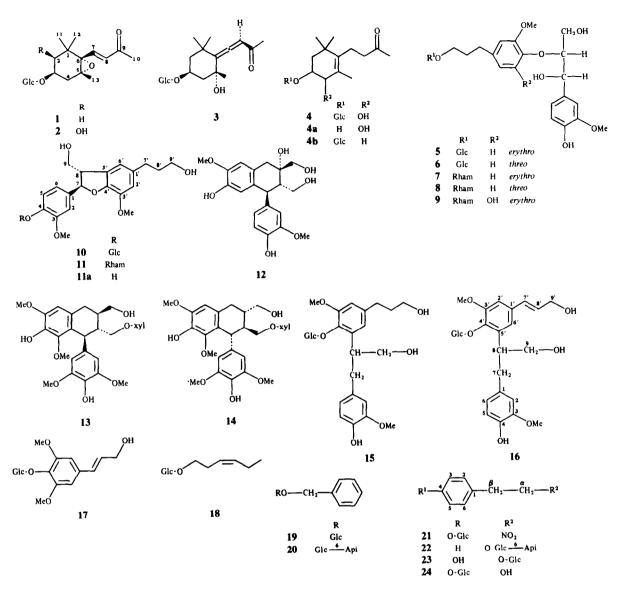
The spectrum of 4 showed signals for two tertiary methyl at $\delta 0.88$ and 0.97, a vinyl methyl at $\delta 1.90$, an acetyl methyl at $\delta 2.09$ and an anomeric proton signal at $\delta 5.23$ (d, J = 7 Hz) in the ¹H NMR spectrum and the ¹³C NMR spectrum exhibited 19 carbon signals, including six carbon signals due to a glucopyranosyl residue. These NMR data suggested that 4 had an ionone-type skeleton. Enzymatic hydrolysis afforded 4a as an aglycone, whose ¹HNMR spectrum showed two carbinyl proton signals at $\delta 4.12$ (dt, J = 12.5, 3 Hz) and 4.19 (d, J= 3 Hz) and a methylene proton signals at $\delta 1.73$ (dd, J = 12.5, 3 Hz) and 2.21 (t, J = 12.5 Hz) in addition to four singlet methyl signals. The above results showed that 4a had an α -glycol. In the ¹³C NMR spectrum of 4a, C-5 (δ 129.4) was shifted down-field by 4.1 ppm and C-2 (δ 42.5) was shifted up-field by 7.1 ppm compared with those of the aglycone of icariside B_6 (4b) which has one hydroxyl group at C-3 [3]. These results led us to conclude that the structure of icariside B_8 is 4.

Icariside E₄ (11) showed a similar ¹H NMR spectrum to that of 10 [4] except for a doublet methyl at $\delta 1.59$ (J

= 6 Hz) and a singlet anomeric proton signal at δ 6.07. In the ¹³C NMR spectrum of 11, six carbon signals due to a rhamnopyranosyl residue were observed and the glycosylation shifts were observed at C-1 (+4.0 ppm), C-3 (+1.1 ppm), C-4 (+3.2 ppm) and C-5 (+2.5 ppm) compared with those of 11a, obtained from 11 by enzymatic hydrolysis. This aglycone was identical to the aglycone of 10 [4]. The CD spectrum of 11 showed a negative Cotton effect [θ]₂₇₉-4700, suggesting C-7 and C-8 to be R and S, respectively [9]. From these data the structure of icariside E₄ was decided to be 11.

Icariside E_5 (16) showed absorption maxima at 219 (4.56), 259 (4.22), 267 (sh 4.17), 288 (sh 3.82) and 306 (sh 3.54) nm and a similar ¹H NMR spectrum to that of 15 [3], except for a vinylic proton signal at $\delta 6.58$ (dt, J = 16, 5 Hz). The ¹³C NMR spectrum showed two sp^2 carbon signals at $\delta 129.8$ and 131.0 in addition to aromatic carbon signals, suggesting that 16 had a *trans*-double bond in a side chain. Catalytic hydrogenation afforded 15 in good yield. Thus, the structure of icariside E_5 was decided to be 16.

Icariside D_2 (24) showed a similar ¹H and ¹³C NMR spectrum compared with those of 23 [1] but an oxymethylene carbon signal (C- α) was shifted up-field by 8.0 ppm and C-1 was shifted down-field by 4.4 ppm. Thus, the structure of icariside D_2 was decided to be 24.


There are some morphological differences between *E. diphyllum* and *E. grandiflorum* but the chemical constituents are similar to each other.

EXPERIMENTAL

The instruments used in this study were the same as described in the previous paper [1].

Plant material. Aerial parts of E. diphyllum were harvested in summer of 1987 from cultivations in the botanical garden of Yomeishu Seizo Co., Ltd (Nakaminowa, Minowa-cho, Kamiinagun, Nagano, Japan). The plant was identified by Prof. A. Ueno and a voucher specimen has been deposited in the Herbarium, School of Pharmaceutical Sciences, University of Shizuoka.

Extraction and isolation. Dried aerial parts (550 g) were extracted with hot H_2O . The H_2O extract was passed through an

Amberlite XAD-2 column and the eluate with MeOH was concd under red. pres. The residue (50 g) was chromatographed on a silica gel column with $CHCl_3$ -MeOH (93:7-9:1) and each fr. was purified by HPLC, YMC Pack ODS-7 20 mm × 25 cm; MeCN-H₂O (23:2-3:1) to give 26 mg 1, 4 mg 2, 19 mg 3, 7 mg 4, 17 mg 5, 2 mg 6, 58 mg 7, 46 mg 8, 2 mg 9, 13 mg 10, 37 mg 11, 5 mg 12, 16 mg 13, 13 mg 14, 21 mg 15, 15 mg 16, 10 mg 17, 56 mg 18, 10 mg 19, 7 mg 20, 4 mg 21, 19 mg 22, 4 mg 23 and 6 mg 24.

Icariside B_8 (4). $[\alpha]_D^{23} - 60.9^{\circ}$ (MeOH; c0.64). FABMS (MeOH + *m*-nitrobenzyl alcohol) *m/z*: 411 [M + Na]⁺. ¹H NMR (pyridine- d_5): $\delta 0.88$; 0.97 (each 3H, s, H₃-11/H₃-12), 1.90 (3H, s, H₃-13), 2.09 (3H, s, H₃-10), 5.23 (1H, d, J = 7 Hz, anomeric H). ¹³C NMR (pyridine- d_5): $\delta 18.5$ (C-13), 22.4 (C-7), 27.1; 29.3; 29.6 (C-10/C-11/C-12), 37.8 (C-1), 39.8 (C-2), 43.7 (C-8), 62.8 (C-6'), 68.9 (C-4), 71.7 (C-4'), 74.6 (C-3), 75.6 (C-2'), 78.8 (C-5'), 79.0 (C-3'), 101.5 (C-1'), 128.0 (C-5), 141.2 (C-6), 207.4 (C-9). *Icariside* E_4 (11). Amorphous powder. $[\alpha]_D^{22} - 22.0^{\circ}$ (MeOH;

c 1.32). (Found: C, 60.65; H, 6.94. $C_{20}H_{34}O_{10}$ ·1/2 H_2O requires: C, 60.57; H, 6.84%). UV λ_{max}^{MeoH} nm (log ϵ): 225 (sh 4.12), 280 (3.56). CD [θ] (nm): -4700 (279). ¹H NMR (pyridine- d_5): δ 1.59 (3H, d, J = 6 Hz, H₃-6″), 2.08 (2H, m, H₂-8′), 2.87 (2H, dd, J = 8, 7 Hz,

H₂-7'), 3.86 (6H, s, OMe × 2), 3.93 (2H, t, J = 7 Hz, H₂-9'), 6.07 (1H, s, H-1"), 6.10 (1H, d, J = 6 Hz, H-7), 6.95; 7.04 (each 1H, br s, H-2', H-6'), 7.2–7.6 (3H, m, H-2, H-5, H-6). ¹³C NMR (pyridine-d₅): δ 18.6 (C-6"), 32.7 (C-7'), 36.0 (C-8'), 55.2 (C-8], 56.0; 56.4 (OMe), 61.5 (C-9'), 64.5 (C-9), 71.0 (C-5"), 72.1 (C-3"), 72.7 (C-2"), 73.8 (C-4"), 88.0 (C-7), 101.6 (C-1"), 111.3 (C-2), 113.9 (C-2'), 117.6 (C-6'), 119.0 (C-5, C-6), 129.9 (C-1'), 138.0 (C-1), 136.4 (C-5'), 144.7 (C-3'), 146.4 (C-4'), 147.3 (C-3), 151.4 (C-4).

Icariside E_5 (16). Amorphous powder. $[\alpha]_D^{22} - 118.8^{\circ}$ (MeOH; c 1.04). (Found: C, 58.06; H, 6.50. $C_{26}H_{34}O_{11} \cdot H_2O$ requires: C, 57.77, H, 6.71%). UV λ_{mar}^{MeOH} (log ε): 219 (4.56), 259 (4.22), 267 (sh 4.17), 288 (sh 3.82), 306 (sh 3.54). ¹H NMR (pyridine- d_5): δ 3.70 (6H, s, OMe × 2), 4.56 (2H, br d, J = 5 Hz, H_2 -9'), 6.58 (1H, dt, J =16, 5 Hz, H-8'), 6.7–7.3 (aromatic H). ¹³C NMR (pyridine- d_5): δ 39.2 (C-7), 42.3 (C-8), 55.9; 56.1 (OMe), 62.5; 63.0 (C-6"/C-9'), 66.6 (C-9), 71.3 (C-4"), 76.2 (C-2"), 78.3 (C-5"), 78.5 (C-3"), 105.9 (C-1"), 108.9 (C-2'), 113.6 (C-2), 116.1 (C-5), 118.8 (C-6'), 129.8 (C-8'), 131.0 (C-7'), 132.3 (C-1), 134.7 (C-1'), 139.6 (C-5'), 144.7 (C-4'), 146.1 (C-4), 148.3 (C-3), 152.9 (C-3').

Icariside D_2 (24). Amorphous powder. $[\alpha]_{D^3}^{23} - 61.9^{\circ}$ (MeOH; *c* 0.11). FAB MS (MeOH + *m*-nitrobenzyl alcohol) *m/z*: 323 [M + Na]⁺, 301 [M + H]⁺. ¹H NMR (pyridine- d_5): δ 2.96 (2H, *t*, *J* = 7 Hz, H₂-β), 4.03 (2H, t, J = 7 Hz, H₂-α), 5.60 (1H, d, J = 7 Hz, H-1'), 7.29 (4H, s, aromatic H). ¹³C NMR (pyridine-d₅): δ39.6 (C-β), 62.5 (C-6'), 63.7 (C-α), 71.4 (C-4), 75.0 (C-2'), 78.6 (C-5'), 78.8 (C-3'), 102.5 (C-1'), 117.0 (C-3, C-5), 130.5 (C-2, C-6), 133.9 (C-1), 157.2 (C-4).

Enzymatic hydrolysis of 4. A soln of 4 (5 mg) in H₂O (0.5 ml) was treated with cellulasc (Sigma type II) (10 mg) at 38° for 2 hr. The reaction mixt. was extd × 3 with EtOAc. Solvent was evapd off and the residue was purified by HPLC (YMC Pack ODS-7, MeCN-H₂O (9:31) to give aglycone 4a as a colourless syrup (2 mg). $[\alpha]_{D}^{23} - 102.2^{\circ}$ (MeOH; c 0.22;). EIMS m/z (rel. int.): 218 $[M-H_2O]^+$ (5), 168 (16), 152 (19), 135 (23), 109 (45), 42 (100). ¹H NMR (pyridine- d_5) (400 MHz): $\delta 0.99$; 1.04 (each 3H, s, H₃-11/H₃-12), 1.73 (1H, dd, J = 12.5, 3 Hz, H-2_{pseud-ax}), 1.92 (3H, s, H₃-13), 2.09 (3H, s, H₃-10), 2.21 (1H, t, J = 12.5 Hz, H-2_{pseud-eq}), 4.12 (1H, dt, J = 12.5, 3 Hz, H-3), 4.19 (1H, d, J = 3 Hz, H-4). ¹³C NMR (pyridine- d_5): $\delta 18.4$ (C-13), 22.5 (C-7), 27.4; 29.4; 29.6 (C-10/C-11/C-12), 37.9 (C-1), 42.5 (C-2), 43.8 (C-8), 67.1 (C-3), 72.2 (C-4), 129.4 (C-5), 140.5 (C-6), 207.5 (C-9).

Enzymatic hydrolysis of 11. A soln of 11 (8 mg) in H₂O (1 ml) was treated with cellulase (Sigma type II) (10 mg) at 38° for 4 hr. The reaction mixt. was extracted with EtOAc as described for 4 and the residue purified by HPLC (YMC Pack ODS-7, MeOH-H₂O (11:9) to give aglycone (11a) as an amorphous powder (5 mg). $[\alpha]_{D}^{23} - 17.7^{\circ}$ (Me₂CO; c 0.48). EIMS m/z (rel. int.): 360 [M]⁺ (51), 342 [M-H₂O]⁺ (100), 330 (56), 327 (36). ¹H NMR (pyridine- d_5): $\delta 2.07$ (2H, m, H₂-8'), 2.87 (2H, dd, J = 8, 6 Hz, H₂-7'), 3.63; 3.83 (each 3H, s, OMe), 3.90 (2H, t, J = 6 Hz, H₂-9'), 6.04 (1H, d, J = 7 Hz, H-7), 6.90; 7.03 (each 1H, br s, H-2'/H-6'), 7.20 (2H, br s, H-5, H-6), 7.30 (1H, br s, H-2). ¹³C NMR (pyridine- d_5): $\delta 32.7$ (C-7'), 36.0 (C-8'), 55.1 (C-8), 55.9; 56.3 (OMe), 61.5 (C-9'), 64.5 (C-9), 88.4 (C-7), 110.9 (C-2), 113.8 (C-2'), 116.5 (C-5), 117.6 (C-6'), 119.8 (C-6), 130.3 (C-1'), 134.0 (C-1), 136.2 (C-5'), 144.7 (C-3'), 147.4 (C-4'), 148.2 (C-3, C-4).

Catalytic hydrogenation of 16. A soln of 16 (5 mg) in MeOH (1 ml) was treated with H₂ for 5 min. using 5% Pd-C (5 mg) as catalyst at room temp. After removal of catalyst by filtration, MeOH was evapd off and the residue purified by HPLC [YMC Pack ODS-7, MeCN-H₂O (3:17)] to give 15 as an amorphous powder (4 mg), which was identified as icariside E_3 by direct comparison with an authentic sample.

Acknowledgement—We thank the staff of the Central Analytical Laboratory of this school for elemental analysis and measurement of MS.

REFERENCES

- 1. Miyase, T., Ueno, A., Takizawa, N., Kobayashi, H. and Karasawa, H. (1987) Chem. Pharm. Bull. 35, 1109.
- Miyase, T., Ueno, A., Takizawa, N., Kobayashi, H. and Oguchi, H. (1987) Chem. Pharm. Bull. 35, 3713.
- Miyase, T., Ueno, A., Takizawa, N., Kobayashi, H. and Oguchi, H. (1988) Chem. Pharm. Bull. 36, 2475.
- 4. Abe, F. and Yamauchi, T. (1986) Chem. Pharm. Bull. 34, 4340.
- 5. Ghogomu-Tih, R., Bodo, B., Nyasse, B. and Sondengam, B. L. (1985) Planta Med. 464.
- Ogura, M. and Ogihara, Y. (1976) Chem. Pharm. Bull. 24, 2102.
- 7. Vechietti, V., Ferrari, G., Orsini, F. and Pelizzoni, F. (1979) Phytochemistry 18, 1847.
- Sawabe, A., Matsubara, Y., Kumamoto, H., Iizuka, Y. and Okamoto, K. (1986) Nippon Nogeikagaku Kaishi 60, 593.
- Achenbach, H., Groß, J., Domingues, X. A., Cano, G., Star, J. V., Brussolo, L. D. C., Munoz, G., Salgado, F. and Lopez, L. (1987) Phytochemistry 26, 1159.