α -Diethoxyphosphinyl- γ -butenolide, a Versatile Reagent for the Synthesis of α , β -Difunctionalized γ -Lactones

Toru MINAMI, Yoshiyuki KITAJIMA, and Tsuguhiko CHIKUGO Department of Industrial Chemistry, Kyushu Institute of Technology, Sensui-cho, Tobata, Kitakyushu 804

 α -Diethoxyphosphinyl- γ -butenolide (2) was synthesized in good yield by phenylselenenylation of an α -diethoxyphosphinyl- γ -butyrolactone carbanion and subsequent oxidative elimination of the phenylseleno residue. The butenolide 2 underwent the Michael addition of various nucleophiles to generate the phosphoryl-stabilized carbanions, which reacted with carbonyl compounds to give α , β -difunctionalized γ -butyrolactones, lignans, and a γ -butyrolactone annelated compound.

There has been recently intense interest in developing synthetic routes to naturally occurring compounds having the γ -butyrolactone moiety, due in large part to their biological activities.¹⁾ We have previously reported a convenient method for introduction of γ -butyrolactone moiety to organic molecules using α -diethoxy-phosphinyl- γ -butyrolactone (1).²⁾ In the present paper, we report the synthesis of a versatile reagent, α -diethoxyphosphinyl- γ -butenolide (2) and its synthetic application to α , β -difunctionalized γ -lactones, and lignans such as savinin and its analogues.

As shown in Scheme 1, α -diethoxyphosphinyl- γ -butenolide (2) was successfully synthesized in 78% yield by oxidative elimination of the phenylseleno moiety in α -diethoxyphosphinyl- α -phenylseleno- γ -butyrolactone (3), which was prepared in 90% yield from the reaction of an α -diethoxyphosphinyl- γ -butyrolactone carbanion with phenylselenenyl bromide. The structure of 2 was assigned on the basis of its spectral data: IR (neat) 1755 and 1605 cm⁻¹; ¹H NMR (CDCl₃) δ 1.38 (t, J=7.10 Hz, 6H, CH₃), 3.80-4.60 (quint., J=7.10 Hz, 4H, O<u>CH₂CH₃</u>), 5.02 (br, 2H, OCH₂), and 8.17 (br d, J=9.52 Hz, 1H, olefinic H). Similar to vinylphosphonates,³⁾ the butenolide

Scheme 1.

2 can be expected to undergo the Michael addition of various nucleophiles to generate the phosphoryl-stabilized carbanions, which are trapped with aldehydes to give β -functionalized α -ylidene- γ -butyrolactones. Thus, treatment of 2⁴ with t-butyl lithioacetate, followed by the reaction of aldehydes,led to α -ylidene- β -(t-butoxycarbonylmethyl)- γ -lactones 4a- c^{5} in 36-42% yields. The reaction of 2 with lithium dibutylcuprate(I) and benzaldehyde similarly gave a functionalized lactone $4d^{5}$ in 45% yield.

Scheme 2.

Nucleophile	Aldehyde	Product	Yield/%	E:Z ^{b)}
$\text{LiCH}_2\text{CO}_2^{\text{tBu}}$	PhCHO	4a	42	3:1
$\text{LiCH}_2\text{CO}_2^{t}\text{Bu}$	б-О-сно	$\overset{ ext{4b}}{\sim}$	38	3:1
$\text{LiCH}_2\text{CO}_2^{\texttt{t}Bu}$	BuCHO	4c	36	2:3
Bu ₂ CuLi	PhCHO	4d	45	

Table 1. Synthesis of α , β -Difunctionalized γ -Lactones

a) Isolated yield. No attempt to optimize yields has been made.

b) Determined by 1 H and 13 C NMR.

Accordingly, this methodology was applied to the construction of the basic lignan skeleton. The reaction of the phosphonate carbanion, generated from the Michael addition of piperonylmagnesium chloride to 2 in the presence of a catalytic amount of copper(I) iodide, with piperonal under similar conditions produced a 46% yield of (±)-Savinin (4f) [mp 154-156 °C (lit.,⁶⁾ mp 156 °C); IR (KBr) 1740 and 1650 cm⁻¹; ¹H NMR (CDCl₃) δ 2.30-3.20 (m, 2H), 3.40-4.00 (br, 1H), 4.25 (d, J=4.10 Hz, 2H), 5.93 (s, 2H), 6.04 (s, 2H), and 6.60-7.60 (m, 7H)].

Table 2. Synthesis of Lignans									
Product	a)	Rl	R ²	R ³	R ⁴	R ⁵	Yield/% ^{b)}		
4e		Н	Н	Н	Н	Н	82		
$\overset{\texttt{4f}}{\sim}$		-0CH20-		-0CH20-		Н	46		
4g		-OCH	¹ 2 ⁰⁻	OMe	OMe	OMe	57		
4h		OMe	OMe	OMe	OMe	OMe	21		

a) A single stereoisomer on the basis of their ¹H and/or ¹³C NMR data.

b) Isolated yield.

4e-h

Similar treatment of 2 with benzylmagnesium chlorides and aromatic aldehydes led to the corresponding lignan derivatives $4e,g,h^{7)}$ in 21-82% yields (Table 2). Hydrogenation of 4f in ethyl acetate over 10% Pd-C at

low hydrogen pressure (2 atm) gave (\pm) -isohinokinin $(5)^{8}$ (84% yield) [mp 115 °C (lit.,^{6,8)}mp 115-116 °C); IR 1770 cm⁻¹].

Furthermore, in an attempt to develop a short and efficient approach to sesquiterpene lactone construction, we have examined to utilize the butenolide $\frac{2}{2}$ for the one-step synthesis of γ -butyrolactone annelated compounds.

The intramolecular Wittig-Horner reaction of the carbanion $\frac{7}{2}$, generated from

Scheme 3.

similar treatment of 2 with the carbanion $\underline{6}$, gave the hoped-for γ -butyrolactone annelated compound $\underline{8}^{9)}$ in 46% yield.

Thus, α -diethoxyphosphinyl- γ -butenolide (2) can serve as a versatile reagent not only for the synthesis of α , β -difunctionalized γ -lactones and lignans, but for the γ -butyrolactone annelation. Further studies are in progress.

References

- See for examples: P. A. Grieco, Synthesis, <u>1975</u>, 67 and references cited therein;
 Y. S. Rao, Chem. Rev., <u>76</u>, 625 (1976); R. S. Ward, Chem. Soc. Rev., <u>11</u>, 75 (1982).
- T. Minami, I. Niki, and T. Agawa, J. Org. Chem., <u>39</u>, 3236 (1974); T. Minami,
 M. Matsumoto, H. Suganuma, and T. Agawa, ibid., 43, 2149 (1978).
- T. Minami, H. Suganuma, and T. Agawa, Chem. Lett., <u>1978</u>, 285; T. Minami, K. Nishimura, I. Hirao, H. Suganuma, and T. Agawa, J. Org. Chem., 47, 2360 (1982).
- 4) The butenolide 2 was used without purification due to susceptibility to polymerization even allowing to stand at room temperature.
- 5) All the new compounds gave satisfactory, spectral data and analytical data (±0.4 % for C, H). Physical and spectral data for the selected compounds are as follows: 4a [a 3:1 mixture of (E)- and (Z)-4a]: mp 133-135 °C; ¹H NMR (CDCl₃) δ 1.46 (s, 9H), 2.20-2.80 (m, 2H), 3.80-4.60 (br, 3H), 6.80-7.00 [br, 0.25H, (E)-H of HC=C-(CO)-], 7.20-7.60 (br, 5H), and 7.60-7.90 [br, 0.75H, (Z)-H of HC=C-(CO)-].

4c [a 2:3 mixture of (E) - and (Z)-4c]: oil; ¹H NMR (CDCl₃) δ 0.80-1.80 (m, 18H), 2.20-3.0 (m, 3H), 3.70-4.70 (m, 2H), 6.04-6.36 [dt, J=2.2, 7.8 Hz, 0.6H, (E)-H of HC=C-(CO)-], and 6.50-6.82 [dt, J=2.2, 7.8 Hz, 0.4H, (Z)-H of HC=C-(CO)-].

- 6) J. E. Batterbee, R. S. Burden, L. Crombie, and D. A. Whiting, J. Chem. Soc., C, <u>1969</u>, 2470.
- 7) Although we cannot exclude the stereoisomeric Z-form, we tentatively assign the products the E-structure 4e,g,h since the reaction of the diethoxyphosphinyl- γ -butyrolactone carbanion with aromatic aldehydes led exclusively to E-isomers.²⁾ 4e: oil; ¹H NMR (CDCl₃) & 2.28-3.30 (m, 2H), 3.60-4.10 (br, 1H), 4.26 (d, J=4.0 Hz, 2H), and 7.00-7.70 (m, 11H); ¹³C NMR (CDCl₃) & 37.8, 39.8, 69.7, 127.1, 128.5, 128.9, 129.1, 130.0, 134.1, 137.4, 137.9, and 172.3. 4g: mp 102-104 °C; ¹H NMR (CDCl₃) & 2.32-3.24 (m, 2H), 3.60-3.90 (br, 1H), 3.88
 - (s, 9H), 4.20-4.40 (br, 2H), 5.92 (s, 2H), 6.40-6.80 (m, 5H), and 7.40-7.56 (br, 1H).
- 8) K. Yamashita and M. Matsui, Bull. Agr. Chem. Jpn., <u>22</u>, 227 (1958).
 5: ¹H NMR (CDCl₃) δ 2.00-3.10 (m, 5H), 3.56-4.20 (m, 3H), 6.67 and 6.76 (2s, 4H, -OCH₂O-), and 6.40-6.80 (m, 6H).
- 9) 8: pale yellow oil; IR (neat) 1720-1760 and 1660 cm⁻¹; ¹H NMR (CDCl₃) δ 1.29 (t, J=7.0 Hz, 6H), 1.56 (s, 3H), 1.60-2.60 (m, 5H), 4.26 (q, J=7.0 Hz, 4H), and 5.02 (d, J=2.3 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.1, 21.4, 28.1, 31.2, 56.5, 62.9, 71.2, 77.9, 131.7, 158.8, 167.2, and 167.5.

(Received April 24, 1986)