
Contrib. Plasma Phys. 41 (2001) 1, 15−25

Effective Potentials, Energies, and Pair-distribution
Functions of Plasmas by Monte-Carlo Simulations

H. Wagenknecht, W. Ebeling, A. Förster

Institut für Physik, Humboldt-Universität zu Berlin,
Invalidenstraße 110, D-10115 Berlin, Germany
e-mail: ebeling@physik.hu-berlin.de

Received 17 April 2000, in final form 2 October 2000

Abstract

The one-component plasma (OCP), an electron gas on a positive background, and the subsys-
tem of free charges in a two-component plasma (TCP) is investigated using a quasi-classical
approach. Quantum effects such as the Heisenberg uncertainty principle and the Pauli ex-
clusion principle are incorporated into our model by effective potentials. In case of the OCP
the symmetry effects are of special interest whereas in case of TCP the Heisenberg effects
play the significant role. The method of Slater sums is used to obtain effective potentials.
Monte Carlo simulations for both OCP and TCP were carried out to calculate the Coulombic
energy, the effective energy, and the pair-distribution functions.

1 Introduction: systems of charged fermions

The description of many-particle systems of charged fermions belongs to the most
interesting problems in modern physics. Such a description can be made either in
the physical or in the chemical picture. In the physical picture the system consists of
electrons and nuclei only and it is completely determined by the Coulomb interaction
of these point-like particles and their statistics.

In the chemical picture the description of the system is more complex. It is composed
of free electrons, free nuclei, and different types of bound states such as ions, atoms,
and molecules. All these particles are introduced as individual ”chemical species”
which interact by effective pair potentials. Although the treatment of a plasma within
the chemical picture yields a good description of the system it is essential to carry
out a careful quantum-mechanical calculation of all different types of effective pair
potentials. This way a double counting of effects can be avoided.

We investigate a plasma in the region of partial degeneration and strong coupling.
The next section gives an introduction of effective pair potentials. In section 3 we
present results for the simulations of an electron gas which is of interest in solid state
physics and which has been investigated by many researchers, e.g. [1]-[4]. In section
4 results for the mass-symmetrical plasma are given. Such systems may be observed
in semiconductors [5] or in astrophysics [6]. At the temperatures of the simulations
the plasma is almost fully ionised and hence interactions between bound states and
free charges are thermodynamically insignificant. For our investigation we restrict
ourselves to a system of free electrons (index e) and free positrons (index p).
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2 Effective potentials

2.1 Coordinate-dependent potentials

Effective potentials can be obtained by the method of Slater sums which was already
used by Morita [7] and was further developed by Kelbg [8], Ebeling et al. [9] and
Rohde et al. [10]. All quantum effects are included into an effective pair potential by
modification of the original Coulomb energy UCoul to an effective energy:
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where rij = |	ri − 	rj | and mij =
mimj

mi +mj
.

The effective potential of the particle i with respect to the position of the particle j
is obtained by dividing the effective energy by the charge ej. The effective potential
depends not only on the distance between particles like the Coulomb potential but it
depends also on the temperature T and on the masses of particles mi, mj. At high
temperatures perturbation theory yields in first order [8]
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where λij denotes the thermal de Broglie wavelength given by λij = �/
√
2mijkBT , �

is the Planck constant and kB is the Boltzmann constant. This way we find the Kelbg
interaction energy UK
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We assume that for the two-component plasma (TCP) of free charges the quasi-
classical Hamiltonian has the form
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Here i, j = 1...N are the indices of the particles and N is the total number of particles.
We restrict our investigation to temperatures T ≥ 104K, consider only the free charges,
and we assume that the real interactions have the same functional form as the Kelbg
potential with an additional free parameter γij . The function F (rij, mij, T ) in Eqs.(3)
is replaced by F (rij, mij, T, γij) which is defined as
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For γij = 1 Eq.(5) coincides with Eq. (2). Now we use the method of Slater sums to
correct the height of the Kelbg potential at zero-point distance [9]
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F (rij = 0, mij, T, γij) = −kBT ln [Sij(rij = 0)] (6)

and simultaneously to conserve the correct first derivative for r → 0
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In Eq. (6) Sij denotes the binary Slater sum of the particles i and j at zero distance
including also symmetry effects coming from the different spin directions. It is given
by
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Values for the logarithm of the binary Slater sums for different temperatures are given
in Tab. 1. The interaction parameter ξij is defined by ξij = −eiej/(4πε0λijkBT ). In
Eq.(8) for the bound states the Brillouin-Planck-Larkin convention is used. ζ(k) de-
notes Riemann’s Zeta-function. In Eq.(9) the symmetry effects coming from different
spin directions of electrons and positrons are already included.

From Eq. (6) the parameter γij can be calculated for rij = 0. It is given by

γij = −
√

π

λij

eiej
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. (10)

Eq. (7) is identically fulfilled which means that the first derivative of the effective
potential energy Eqs. (4,5) is correct for rij = 0. This identity is fulfilled only for the
given argument in the error-function in Eq.(5).

The advantage of effective potentials derived from Slater sums is that the pair-
correlations and the thermodynamic functions can be described correctly. On the
other hand the momentum distributions in computer simulations with these effective
potentials are always Maxwell distributions. This may be corrected by another type
of potential - the momentum-dependent potential which will be introduced in the next
subsection.
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T/K ln(See(r = 0)) ln(Sep(r = 0))

10000 -9.04071 7.99727
20000 -6.84912 6.4018
30000 -5.82477 5.51923
40000 -5.19576 4.92503
50000 -4.75786 4.48641
60000 -4.42984 4.14441
70000 -4.17197 3.86776
80000 -3.96216 3.63795
90000 -3.78702 3.44311
100000 -3.63788 3.27526

Tab. 1: Logarithm of the binary
Slater sums for different tempera-
tures

2.2 Momentum-dependent potentials

Momentum-dependent effective potentials may be obtained from the Gaussian wave-
packets (GWP) approach. In this case the quasi-classical Hamiltonian has the follow-
ing structure
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with pij = |	pi − 	pj |. The interaction between two particles in a surrounding plasma is
modelled in two ways, first by the Pauli energy UP and second by an effective Coulomb
energy that is determined by a certain function F (rij/r0). Starting with a GWP
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effective expressions of type Eq.(11) are obtained by averaging the Hamilton operator
with respect to Ψ0(	x),
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An effective momentum-dependent Pauli energy can be obtained when averaging the
operator of the kinetic energy with respect to an antisymmetrised two-particle wave
function of identical particles. The Pauli energy has the form
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and was already suggested by Dorso et al. [11] and was used by Klakow et al. [12] and
Ebeling et al. [13]. Here p0, r0, and U0 are parameters which satisfy the conditions
p0r0 = � and U0 = �

2/(4mer
2
0) = c kBT . me is the electron mass. The constant c can

be obtained from the calculation of the pair-correlation function of the ideal gas
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and fitting g(r = 0) at zero distance to the exact value g(r = 0) = 1/2 for the ideal
Fermi gas
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This condition yields the value c = 1.015819. Furthermore, by the averaging procedure
Eq.(13) an effective Coulomb energy of the form
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is obtained which was already used by Klakow, Toepffer, and Reinhard [12] and Ebeling
et al. [13]. The KTR potential does not provide a correct description of the spatial
correlations at small distances. This deficit may be corrected by a combination of
the KTR potential with the method of Slater sums. To receive the correct potential
energy at zero-point distance we propose a modification of the argument of the error
function in Eq.(17). The modified effective Coulomb energy reads
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In this expression R∗
ij is given by
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where for the argument in UP we took the most probable momentum p̃ij =
√

mekBT of
the pair of particles i, j. In the binary Slater sum for zero-particle distance S0

ij(rij = 0)
we only took the Coulombic effects into account and left out the symmetry effects
for identical particles since the symmetry effects are already included in the term
UP(rij = 0, p̃ij/p0). Therefore we get
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The expression for S0
ep(rep = 0) is identical to Sep(rep = 0) which is given in Eq.(8) since

there are no exchange effects between the two kinds of particles involved. In Fig. 1 we
compare the shape of different potentials for the electron-electron interaction and for
the electron-positron interaction. Here, all effective energies and the Coulomb energy
are divided by the charge ei in order to obtain the potential of the i-th particle with
respect to the particle j. For simplicity, in the following the index i is skipped for all
potentials. The original Kelbg potential VK shows the right first derivative but does
not have the correct height at rij = 0. The corrected KTR potential VKTR,corr has the
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Fig. 1: Effective Potentials at
T = 10000K; Kelbg potential
V K , corrected KTR potential
V KTR, corr corrected Kelbg
potential V K, corr, Hansen po-
tential V H , and Coulomb po-
tential V Coul

correct height but not the right shape as rij → 0. Also shown is the corrected Kelbg
potential VK,corr Eqs.(3,5,10) which we use in our TCP simulations, the potential of
Hansen et al. VH ([14], see also work of C. Deutsch et al. [15]) and the Coulomb
potential VCoul= e/4πε0r.
Note that all effective potentials show the same long-range behaviour but differ for
interesting short-range distances where correlations appear.

3 Monte Carlo simulations for the electron gas

Monte Carlo simulations were used to calculate the excess internal energy Uxc of a
system consisting of N electrons as a function of Γ in the quasi-classical region (Fig. 2).
Γ denotes the coupling parameter and is given by Γ = e2(4πne/3)

1/3/(4πε0kBT ), ne

is the electron density. The selected range of the coupling parameter Γ covers the
region of weak coupling (Γ ≤ 10−2) up to the strongly coupled regime (Γ = 30).

For the classical OCP there exist analytical results for Uxc(Γ) for Γ ≤ 0.4 [16] and
very accurate MC calculations in the region of strong coupling 1 ≤ Γ ≤ 200 [4]. We
compare our results to a Padé formula given by Kahlbaum [17] which covers the
whole OCP fluid range 0 ≤ Γ ≤ 200. Note that this Padé formula is limited to the
pure classical plasma whereas our calculations include quantum effects through the
effective potentials.

In Figs. 3 and 4 the pair-distribution function for a temperature of 20000 K and
for different values of Γ is shown. While for Γ = 0.5 the distribution function increases
monotonously to 1, for the strong coupled region (Γ = 10) it displays already a next-
neighbour peak. The distances in the figures are given relatively the Bohr radius a0.
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Fig. 2: Excess Internal Energy
of the OCP

θ is the degeneracy and is given by θ = T/TF where TF is the Fermi temperature.

4 Monte Carlo simulations for mass-symmetrical plasmas

The equilibrium state of an electron-positron plasma is simulated using the corrected
Kelbg potential VK,corr by a Monte Carlo run with 1600 particles. As a thermodynamic
characteristic of TCP we present in Fig. 5 the effective energy
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∑
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4πε0
F (rij, mij, T, γij) (21)

and the Coulombic energy
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∑
i<j
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at a temperature of 10000 K as a function of Γ. The result for the corrected Kelbg
potential of Eqs.(5,10) is compared with molecular dynamics simulations by Valuev
[19, 20] (Ueff,V and UCoul,V), the classical Debye limit
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√
6Γ3/2NkBT (23)

with N the number of electrons, and a Padé formula by Beule et al. [21] (UPadé)
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4). (25)
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Fig. 3: gee(r) for T=20000 K, Γ=0.5,
ne = 5.1× 1019 cm−3, θ = 34.3
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Fig. 4: gee(r) for T=20000 K, Γ=10,
ne = 4.1× 1023 cm−3, θ = 0.08

Pair-correlation functions for the electron-electron gee and the electron-positron gep cor-
relations are shown in Figs. 6, 7 and 8 for three given temperatures: T = 45500K,
T = 98000K, T = 455000K. For equal particles the electron-electron and positron-
positron correlations are averaged over different spin directions. Since the masses of
electrons and positrons are equal it yields one single curve. The results are compared
with path integral Monte Carlo (PIMC) results [18] (gee,PIMC , gep,PIMC) and with molec-
ular dynamics (MD) simulations [19] (gee,MD , gep,MD). For the given temperature region
a qualitatively agreement of all three methods is observed. Only for a limited range
small divergences between the different results can be found.

5 Conclusion

An OCP and a mass symmetrical TCP was investigated by quasi-classical Monte
Carlo simulations. The interactions between particles were simulated by effective pair
potentials calculated by the method of Slater sums. We found the thermodynamic
functions from simulations in good agreement with other simulation methods and
with theoretical results. We could show that the pair-correlation functions are in good
agreement with PIMC and MD methods. In a forthcoming paper we will skip the
condition of equal masses and investigate the electron-proton plasma for a regime of
strong coupling and partial degeneration.
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