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A catalytic system consisting of 5 mol% CoCl2 and 10 mol% 
isoquinoline allows a convenient cross-coupling of benzylic zinc 
reagents with various aryl and heteroaryl bromides or 
chlorides leading to polyfunctionalized diaryl- and aryl-
heteroaryl-methane derivatives. 

 

Pd-catalyzed cross-couplings between organozinc reagents and 

various organic halides constitute a major C-C bond formation 

methodology (Negishi cross-coupling).
1 

Due to the high price 

and toxicity of palladium, related transition metal-catalyzed 

cross-couplings involving zinc organometallics and Ni-, Fe- or 

Co-catalysts have been examined.
2-4

 Furthermore, the use of 

zinc organometallics is of special synthetic interest due to the 

high functional group compatibility of zinc reagents.5 Recently, 

we have reported several preparation methods of benzylic zinc 

halides and demonstrated that these reagents undergo 

smooth Negishi cross-couplings.6 Also Bedford reported that 

benzylic halides undergo useful Fe-catalyzed cross-couplings 

with arylzinc reagents.7 Gosmini has shown in one-pot 

procedures that arylzinc reagents generated in situ via a 

cobalt-catalyzed zinc insertion undergo cross-couplings with 

benzyl chlorides.8 Interestingly, Ingleson has described a 

transition metal free cross-coupling between relatively non-

functionalized diarylzincs with benzylic bromides and chlorides 

performed in the absence of coordinating ethereal solvents.9 

Herein, we report a practical cobalt-catalyzed cross-coupling 

promoted by 10 mol% of isoquinoline between various 

benzylic zinc reagents with aryl and heteroaryl bromides         

or chlorides resulting in the formation of valuable diaryl- and 

arylheteroaryl-methane derivatives.10 Preliminary control 

experiments performed with benzylzinc chloride (1a; prepared 

via the oxidative insertion of magnesium turnings into benzyl 

chloride (2a) in the presence of LiCl and ZnCl2)11 and 4-bromo-

benzonitrile (3a) in a 2:1 THF:MTBE mixture
12

 (MTBE = methyl 

tert-butyl ether) show that in the absence of transition 

catalysts no reaction is observed at 50 °C in 2 h (Table 1, 

entries 1 and 2). Also, Fe-catalysts such as Fe(acac)3, Fe(acac)2 

or FeCl2 were inefficient (Table 1, entries 3-5).
13

 However, the 

use of 5 mol% CoBr2, Co(acac)2 and CoCl2 show the formation 

of the desired cross-coupling product (4a) in 47-76% GC-yield 

(Table 1, entries 6-8).
14

 
 

Table 1 Screening of Catalysts for the Palladium-free Cross-

Coupling of Benzylzinc Chloride (1a) with 4-Bromobenzonitrile 

(3a).
 

 

 

Entry
 Catalyst 

(mol%) 

Additive 

(mol%) 
Yield

a,b 

1 none none 0 

2 none isoquinoline (10) 0 

3 Fe(acac)3 (5) none 0 

4 Fe(acac)2 (5) none traces 

5 FeCl2 (5) none traces 

6 CoBr2 (5) none 47 

7 Co(acac)2 (5) none 70 

8 CoCl2 (5) none 76 

9 CoCl2 (5) 4-fluorostyrene (10) 66 

10 CoCl2 (5) TMEDA (10) 68 

11 CoCl2 (5) isoquinoline (10) 87 (82)
c
 (72)

d 

12 CoCl2 (5) isoquinoline (5) 75 

13 CoCl2·2LiCl (5) isoquinoline (10) 69 

14 CoCl2·2LiCl (5) none 65 
a 1.1 equiv of benzylzinc chloride (1a) was used. b Determined by 
GC-analysis with tetradecane as an internal standard. 

c
 Isolated 

yield of pure product. d CoCl2 with a purity of 99.999% was used.      
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Previously reported additives like 4-fluorostyrene
15

, TMEDA
16

 

or isoquinoline
17

 indicate a very positive effect of 10 mol% 

isoquinoline
18

 leading to an isolated yield of 82% for 4a (Table 

1, entry 11; compared with entries 9 and 10). Decreasing the 

amount of isoquinoline to 5 mol% reduces somewhat the yield 

of 4a (Table 1, entry 12). Also, we found that the use of 

CoCl2·2LiCl
19

 was not advantageous (Table 1, entries 13 and 

14). Additionally, we have examined the influence of the 

commercial origin of CoCl2 as well as its purity. Thus, CoCl2 

having a purity of 99.999% provides under the same 

conditions (50 °C, 2 h) the diarylmethane 4a in 72% yield 

(compared to 82%; see Table 1, entry 11).20,21 The addition     

of MTBE as a cosolvent usually decreases the amount of 

homo-coupling and therefore enhances the product yield. 

However, large amounts of MTBE reduce the reaction rate. 

We found the solvent mixture THF : MTBE 2:1 to be optimal.22 

Concerning the need of isoquinoline as ligand, an extensive 

screening showed that N-heterocycles behave best, whereas 

various phosphines did not promote the cross-coupling.23 

With these optimized conditions in hand, we studied the 

reaction scope of the cross-coupling between various benzylic 

zinc chlorides (1a-i) with a broad range of aryl and heteroaryl 

bromides or chlorides. First, the treatment of benzylic zinc 

reagents (1a,b) in the presence of 5 mol% CoCl2 and 10 mol% 

isoquinoline with 4-bromobenzonitrile (3a) at 50 °C within 2 to 

4 h is leading to the diarylmethane derivatives 4a,b in 77-82% 

(Table 2, entries 1 and 2). Furthermore, the cross-coupling of 

an ortho-substituted benzylzinc chloride (1c) with 3a afforded 

the desired arene (4c) in 74% yield (Table 2, entry 3). Similarly, 

the two functionalized benzylic zinc reagents (1d,e) cross-

coupled with 3a giving the products 4d,e in 70-79% (Table 2, 

entries 4 and 5). The ester-substituted benzylzinc chloride (1f) 

underwent a smooth cross-coupling with 3a leading to the 

functionalized diaryl-methane 4f in 62% yield (Table 2, entry 

6). Additionally, the cross-couplings of the more electron-

donating benzylic zinc reagents (1g,h) with 4-bromo-

benzonitrile (3a) furnished the arenes 4g,h in 65-82% yield 

(Table 2, entries 7 and 8). 

 

Table 2 Isoquinoline-promoted Co-Catalyzed Cross-Coupling of 

Benzylic Zinc Reagents (1a-h) with 4-Bromobenzonitrile (3a). 

 

 

 

 

 

 

 

 

Entry 
Benzylic Zinc 

Reagent
a Electrophile Product, Yield

b,c 

    

1 1a 3a 4a: 82%, 2 h 

    

2 1b 3a 4b: 77%, 4 h 

    

3 1c 3a 4c: 74%, 18 h 

    

4 1d 3a 4d: 79%, 1 h 

    

5 1e 3a 4e: 70%, 2 h 

    

6 1f 3a 4f: 62%, 18 h 

    

7 1g 3a 4g: 82%, 2 h 

    

8 1h 3a 4h: 65%, 18 h 

a 
1.3-1.5 equiv of benzylic zinc reagent were used. 

b
 Isolated 

yield of pure product. 
c
 Less than 15% of homo-coupling of the 

zinc reagent was observed. 

 

The reaction scope of this cross-coupling proved to be quite 

broad. Thus, 2-bromo-benzophenone (3b) underwent the 

cobalt-catalyzed cross-coupling with the benzylzinc chloride 

(1b) yielding to the corresponding ketone 5a in 64% yield 

(Table 3, entry 1). Similarly, the coupling of ethyl 4-bromo-

benzoate (3c) with the two benzylic zinc reagents (1e,g) led to 

the functionalized diarylmethane derivatives (5b,c) in 54-70% 

yield (Table 3, entries 2 and 3). Remarkably, 2-chloropyridines 

react well with various benzylic zinc reagents (Table 3, entries 

4-9). The cross-couplings of the benzylzinc chlorides (1b,e) 

with ethyl 2-chloronicotinate (3d) proceeded smoothly under 

these conditions affording the 2,3-disubstituted pyridines 

(5d,e) in 60-95% yield (Table 3, entries 4 and 5). Also,                

3-(ethoxycarbonyl)benzyl-zinc chloride (1f) underwent the 

coupling with the 2,3-di-substituted pyridine (3d) giving the 

functionalized aryl-hetero-arylmethane 5f in 68% yield (Table 

3, entry 6). Furthermore, the cross-couplings of the benzylic 

zinc reagents (1d,g,i) with 2-chloro-nicotinonitrile (3e) led to 
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the desired benzylated pyridines (5g-i) in 67-77% yield (Table 

3, entries 7-9). Finally, the reaction of 3-fluorobenzylzinc 

chloride (1d) with ethyl 5-bromofuran-2-carboxylate (3f) 

afforded within 3 h the 2,5-disubstituted furan (5j) in 60% yield 

(Table 3, entry 10). The use of aryl bromides bearing electron-

donating substituents led to low yields.
24

 

 

Table 3 Co-Catalyzed Cross-Coupling Reactions of Benzylic Zinc 

Reagents with Aryl and Heteroaryl Halides. 

 

 

 

 

 

 

 

Entry 
Benzylic Zinc 

Reagenta Electrophile Product, Yieldb,c 

    

1 1b 3b 5a: 64%, 4 h 

    

2 1e 3c 5b: 54%, 18 h 

    

3 1g 3c 5c: 70%, 1 h 

    

4 1b 3d 5d: 95%, 4 h 

    

5 1e 3d 5e: 60%, 2 h 

    

6 1f 3d 5f: 68%, 18 h 

    

7 1d 3e 5g: 67%, 3 h 

    

8 1g 3e 5h: 77%, 2 h 

    

9 1i 3e 5i: 68%, 18 h 

    

10 1d 3f 5j: 60%, 3 h 

a
 1.3-1.5 equiv of benzylic zinc reagent were used. 

b
 Isolated 

yield of pure product. 
c
 Less than 15% of homo-coupling of the 

zinc reagent was observed. 

 

Moreover, such benzylic zinc reagents undergo high yield 

cross-couplings with various chloro- or bromo-N-heterocycles. 

Thus, the reaction of 4-methoxybenzylzinc chloride (1g) with 2-

bromopyrimidine (3g) and the two substituted pyridines, 2-

chloro-5-(trifluoromethyl)pyridine (3h) and 2-chloro-6-fluoro-

pyridine (3i), led rapidly (within 2 h) to the functionalized aryl-

heteroarylmethanes (6a-c) in 52-83% yield (Scheme 1).
 

 

 

 

 

 

 

 

 

 

 

Scheme 1 Isoquinoline-promoted Cross-Coupling of the Benzylic 
Zinc Reagent 1g with selected N-Heterocycles (3g-i).  

 

In summary, we have reported a new practical Co-catalyzed, 

isoquinoline-promoted cross-coupling of various benzylic zinc 

chlorides with a range of aryl and heteroaryl bromides and 

chlorides, producing polyfunctionalized diaryl- or aryhetero-

aryl-methane derivatives. This method tolerates a variety of 

functional groups, such as esters, nitriles or ketones, and 

proceeds smoothly at 50 °C within 1-18 h. Remarkably, the 

combination of MTBE (MTBE = methyl tert-butyl ether) as co-

solvent and isoquinoline as additive led only to small amounts 

of homo-coupling. In most cases, shorter reaction times and 

improved yields could be obtained. Further investigations 

towards the synthesis and applications of benzylic organo-

metallics are underway in our laboratories.  

N

Cl

CN

MeO

ZnCl

E+

CoCl2 (5 mol%)

isoquinoline (10 mol%)

THF : MTBE = 2:1
MeO

E

1g 50°C, 2 h 6a-c

MeO MeO

MeO

N

N

N

F

N
CF3

6a: 71%; X = Br 6b: 83%; X = Cl

6c: 52%; X = Cl
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