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Summary: 1-Benzyl-2-imidazoline is deprotonated at C-2 and a&dated by a sulphenylation-substitution 
sequence (to complete a formal Cl-transfer), whereas arylation occurs by an unusual sulphenylation-sulphide 

contraction pathway 

The Zimidazoline (4,5dihydroiidazole) ring of the coenzyme Ns,Nlo-methenyltetrahydrofolate (1) is 

involved in Nature in the transfer of a single carbon unit at the carboxylare (and other) oxidation 1evels.J We 

have been developing methods to mimic such pmcesses.2 In these and in the biological situation the transferred 

carbon C* (C-2 of the imidazoline sub-unit) acts as an electrophile, and this polarity is also used in the methods 

for transfer at the carbonyl oxidation level reported by ourselves and others.3v4 We wished instead to employ 

C-2 of an imidazoline initially as a nucleophile (2) in an extension to C@insfer of our C+ransfer process 

based on a-deprotonation (3).2 We report herein the implementation of this strategy for C-2 alkylation of an 

imidazoline via a one-pot sulphenylation-alkylation sequence; we also report C-2 arylation via an unexpected 

sulphide contraction.5 Combined w&h cleavage of the ring by hydrolysis ,k this completes a Cl-transfer at the 

carboxylate oxidation level; our alternative cleavage sequencejh would lead to ketones. 
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As substrate we prepared 1-benzyl-2-imidazoline (4a)6 from N-benzyl-1,2-diaminoethane7 and triethyl 

orthoformate (4 mol. equiv.; p-TsOH, 0.05 mol. equiv.; 72%). No exchange was observed at C-2 when (4a) 

was dissolved in 90. On the other hand treatment with n-BuLi (THF, -78’C, 20 min) led to an orange-red 

solution; exclusive deprotonation at C-2 was confirmed by quenching with D20, when examination of the 

products before further work-up showed complete disappearance of the C-2 signal at 6 6.95 (lH, s) in the tH 

n.m.r. spectrum and no change in intensity of other signals.8 We also prepared the I-(2-phenoxyethyl)- and l- 

(2-methoxyethyl)-imidazolines, (4b) (76%) and (4~) (50%) respectively,6 from the corresponding diaminesg 

and methyl orthoformate. These were designed so that the oxygen atom could assist lithiation by coordination, 

and indeed C-2 depmtonation occurred as for (4a), but these new systems offered no advantage over the l- 

benzyl compound (4a).tu 
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(4) a; R’= CHph ( 5) a; R’= CHzPh, R2= Me H 

b; R’= CH$H20Ph b; R’= CH&H20Me, R2= Me (7) 
c; R’= CH$ZH20Me c; RI= CH&H@Me, R2= Et 

Alkylation experiments with the 2-lithio-imidazolines met with mixed success. Treatment of (4a) with n- 

BuLi as above, followed by iodomethane led to the 2-methyl derivative (5a)ll in moderate yield (50%); similar 

treatment of (4c) led to the Zmethyl compound (5b) (34%).6 A low yield (7%) of the 2-ethyl compound (5c)e 

was also observed, indicating that the basic 2-lithio-imidazoline (2) could u-deprotonate initially formed (5b), 

which undergoes a second methylation before completion of the desired ahcylation.12 

Lithiation-allqlation of (4a) with other alkyl halides was unsuccessful. Addition of dipolar aprotic solvents 

such as HMPA afforded no improvement; neither did the use of alkyl tosylates or triflates as electrophile.13 

Methylation was achieved with dimethyl sulphate (60%) but other dialkyl sulphates failed to react. Trans- 

metallation of the 2-&h&derivative from (4a) using pentynyl copper14 or chlorotitanium triisopropoxide had no 

effect on the alkylation and 2-trinlkylsilyl or 2-ttialkylstannyl derivatives (potential masked carbanions) were not 

observed ftom reaction of the 2-lithio-imidazohne with the corresponding chloro-silanes or -stannanes.l5 
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b; R’= 4-Mef&H4 
Scheme 1 

We determined therefore to use our nucleophilic lithio-imidazoline in conjunction with nucleophilic 

alkylating agents (organometalhcs), i.e. a double umpolung of the inherent reactivity at C-2. The phenylthio 

group fitted this scheme, available both as an electrophile (in disulphides or sulphenyl chlorides) and as a 

nucleofugal leaving group. Thus the lithiated heterocycle from (4a) was reacted efficiently with phenyl 

disulphidel3 to produce the 2-phenylthio-2-imidazoline (6a)e (Scheme 1); the isolated yield of (6a) after aqueous 

work-up and chromatography was moderate (56%) but also isolated was 1-benzyl-2-imidazolidinone (7) 
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(2sa)p presumed to arise by hydrolysis of the primary product during isolation. As this process must involve a 

substitution at C-2 by an oxygen nucleophile, it supported our original rationale for sulphenylation. Although 

(6a) was stable towards Grignard reagents, it did react with n-butyl-lithium (TVF. -78’C) to afford l-bet@-Z 

butyl-Zimidazoline (8a)e in good yield (70%) (Scheme 1). The particular value of the arylthio group in this 

sequence was confiied when (4a) was converted into the Zbutylthio derivative (6b)e (n-B& THF, -7rC; 

BunSSBun; 63%) with no observed hydrolysis to 0, and (6b) was inert towards n-butyl-lithium.16 

To avoid losses of (6a) by hydrolysis and to create a ‘direct’ C-2 alkylation of 2-unsubstituted imidazolines, 

the sulphenylation and substitution were generally performed in ‘one-pot’. Thus (4a) was treated successively 

with n-B& and phenyl disulphide (THF, -78X!), warmed to O’C to complete sulphenylation, retooled to -78°C 

and treated with an alkyl-lithium. Conventional work-up and chromatography completes the sequence. In this 

way the 2-butyl-, 2-octyl-, and 2-phenyl-2-imidazolines (8a-c)e were prepared (Scheme 1) in 72,76, and 52% 

yields, respectively, based on (4a). The 2-(2-furyl) derivative (8d)e was also prepared, albeit in poor yield in an 

unoptimised reaction. 

Attempts to extend this sequence to secondary alkyl-lithiums produced unexpected findings. Treatment of 

the 2-phenylthio-2-imidazoline (6a) with s-BuLi (2 mol equiv., THF, -78-C) gave I-benzyl-2-phenyl-2- 

imidazoline (9a 3 8c) (69%). Intrigued by this sulphur extrusion, we prepared the 2-@-methylphenyl)thio- 

imidazoline (6c)e from (4) [BuLi, THF, -78’C, (4-methylphenylklisulphide] in 55% yield some urea (7) (21%) 

was again isolated. Desulphurisation of (6c) (2 mol equiv. s-BuLi, THF -78’C) gave l-benzyl-2-(4- 

methylphenyl)-2-imidazoline (9b)e (46%). The orientation of the aryl ring was easily confirmed by the presence 

of signals for a 1,4-disubstituted benzene in the 1H n.m.r. spectrum (S 7.3 & 7.5, each 2H, d). This 

regiospecific sulphide contraction prompts us to suggest the mechanism of Scheme 2. Single electron transfer to 

the aryl ring from the s-alkyl-lithium17 leads to a radical anion that, in the absence of a proton source, rearranges 

to an episulphidel* bearing the negative charge on nitrogen. Further reduction and reammatisation affords an 

N,S-dianion that can be postulated to undergo protonation and elimination of H2S during work-up. 

vH,Ph $H,Ph 

Scheme 2 

We have thus demonstrated that a 2-metallo-2-imidazohne (2) may be alkylated (via sulphenylation- 

substitution) or arylated (via sulphur extrusion). The 2-substituted imidazollnes (8) & (9) may be cleaved as we 

have reported earlier to complete a single carbon transfer and yield carboxylic acids% or ketonesPh We thank 

Dr. M. Cox for helpful discussions, and ICI Pharmaceuticals and SERC for a CASE studentship (to J.R.N.). 
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