- L. C. Lin, Y. G. Hsu, and C. B. Wang, J. Chin. Chem. Soc. (Taipei), <u>20</u>, 43 (1973); Chem. Abstr., <u>79</u>, 4537 (1973).
- 3. C. B. Wang, Y. G. Hsu, and L. C. Lin, J. Chin. Chem. Soc. (Taipei), <u>24</u>, 53 (1977); Chem. Abstr., 87, 134 005 (1977).
- 4. W. H. Gumprecht and R. H. Dettre, J. Fluor. Chem., 5, 245 (1975).
- 5. V. I. Berzin, E. E. Sirotkina, V. P. Lopatinskii, and V. M. Sutyagin, Izv. Tomsk. Poliktekh. Inst., <u>300</u>, 120 (1977).
- 6. R. Kh. Freidlina, R. A. Amriev, F. K. Veliko, O. P. Baibuz, and R. P. Rilo, Izv. Akad. Nauk SSSR, Ser. Khim., 1456 (1983).
- 7. N. A. Kuz'mina, E. Ts. Chukovskaya, M. A. Rozhkova, and R. Kh. Freidlina, Izv. Akad. Nauk SSSR, Ser. Khim., 961 (1972).
- E. Ts. Chukovskaya, M. A. Rozhkova, and R. Kh. Freidlina, Izv. Akad. Nauk SSSR, Ser. Khim., 1782 (1973).
- 9. A. V. Terent'ev, V. I. Dostovalova, and R. Kh. Freidlina, Org. Magn. Reson., <u>9</u>, 301 (1977).
- F. K. Velichko, E. C. Chukovskaya, V. I. Dostovalova, and N. A. Kuzmina, Org. Magn. Reson., 7, 361 (1975).

SULFUR YLIDES. COMMUNICATION 1. CYCLOPROPANATION OF α , β -UNSATURATED KETONES WITH ETHYL(DIMETHYL-SULFURANYLIDENE)ACETATE GENERATED IN THE PRESENCE OF PHASE-TRANSFER CATALYSTS

G. A. Tolstikov, F. Z. Galin, V. N. Iskandarova, L. M. Khalilov, and A. A. Panasenko

UDC 542.97:547.512:547.384

Stabilization of the sulfur ylide ethyl(dimethylsulfuranylidene)acetate (I) is usually carried out by deprotonation of the sulfonium salt $(CH_3)_2SCH_2CO_2EtBr\odot$ (II) by reaction with NaH in THF [1] or with a mixture of a saturated solution of K₂CO₃ and 12.5 N NaOH solution in chloroform [2]. Although the method for the preparation of (I) is not complicated, cyclopropanation reactions of activated olefins with it do not always proceed satisfactorily.

We have shown that cyclopropanation of α , β -unsaturated ketones at ~20°C in the presence of phase-transfer catalysts proceeds with good yields when (I) is generated in situ from the sulfonium salt (II) and KOH powder (85%) in organic solvents [3]. In selecting the optimal reaction conditions for the cyclopropanation we used mesityl oxide (III) as the substrate, which led to the formation of one reaction product (IV) (Table 1).

High yields of the ethyl ester of 2,2-dimethyl-3-acetyl-cyclopropanecarboxylic acid (IV) were obtained by using triethylbenzylammonium chloride (TEBAC) as catalyst and THF as solvent. When no catalyst is present, and also when anhydrous KOH is used, the reaction practically does not take place. By replacing KOH with NaOH, K_2CO_3 , or Et₃N product (IV) is formed in low yield. Raising the reaction temperature increases the reaction rate, but the yield of (IV) is lowered due to the formation of by-products.

When the sulfonium salt $(CH_3)_2^{\oplus}CH_2CO_2MeBr^{\odot}$ (V) is used instead of the sulfonium salt (II), the yield of the cyclopropanation product is lowered considerably. Introduction of a furan or benzene substituents raises the electrophilicity of the starting substrate, which is reflected in an increased yield of the product of the cyclopropanization reaction (Table 2). On cyclopropanization of enones with different substituents R¹ and R², a mixture of stereo-isomers is formed. Their ratios vary within a wide range, generally with predominance of

Institute of Chemistry, Bashkir Branch, Academy of Sciences of the USSR, Ufa. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2287-2292, October, 1985. Original article submitted May 30, 1984.

2117

TABLE 1. Cyclopropanation of Mesityl Oxide

*TEBAC: triethylbenzylammonium chloride; TBAI: tetrabutylammonium iodide; TBAB: tetrabutylammonium bromide.

TABLE 2. Cyclopropanation of Enones

Starting enone	Reaction products	Yi eld ,	% Ratio of isomers (a):	Starting enone	Reaction products	Yi eld , %	Ratio of iso- mer (a):(b)
(III) (III) (VII) (VII) (VIII)	(IV) (VI) (XII) (XIII) (XIV)	73 30 93 48 77	100:0 100:0 70:30 67:33 39:61	(VIII) (IX) (X) (XI)	(XV) (XVI) (XVII) (XVIII) (XVIII)	65 96 89 50	26:74 96:4 62:38 72:28

isomer (a), which is characterized by the trans position of the carbethoxy group and the substituent containing the carbonyl group.

 $\begin{array}{l} R^{1}=R^{2}=R^{3}=CH_{3} \mbox{(III)}, \ R^{1}=\alpha-\mbox{furyl}, \ R^{2}=H, \ R^{3}=CH_{3} \mbox{(VII)}; \ R^{1}=Ph, \ R^{2}=H, \ R^{3}=Ph \mbox{(IX)}; \ R^{1}=Ph, \ R^{2}=H, \ R^{3}=Ph \mbox{(II)}; \ R^{1}=Ph, \ R^{2}=H, \ R^{3}=Ph \mbox{(II)}; \ R^{1}=Ph, \ R^{2}=H, \ R^{3}=Ph \mbox{(IX)}; \ R^{1}=Ph, \ R^{2}=H, \ R^{3}=Ph \mbox{(IX)}; \ R^{1}=CH_{3}, \ R^{2}=CH_{3}, \ R^{3}=CH_{3}, \ R^{3}=CH_{3}, \ R^{3}=CH_{3}, \ R^{4}=CH_{3} \mbox{(VI)}; \ R^{1}=\frac{10}{9} \mbox{(IV)}; \ R^{1}=\frac{10}{9} \mbox{(IV)}; \ R^{1}=\frac{10}{9} \mbox{(IV)}; \ R^{1}=\frac{10}{9} \mbox{(II)}; \ R^{1}=\frac{10}{10} \mbox{(II)}; \ R^{$

Isomers (XIVa) and (XVIb) and (XVa) and (XVb) were separated by means of preparative GLC. Other isomers, (XIIa) and (XIIb) and (XVIIIa) and (XVIIIb), were separated by column chromatography over silica gel. Comparative experiments on the cyclopropanation of all enones with previously prepared (I) (benzenes, 18-27 h, 80°C) demonstrated complete identity of the ratios of the cis and trans isomers.

Thus, the stereochemistry of the starting compound (I), prepared in situ from the sulfonium salt, does not differ from that obtained when previously prepared ylide is used.

The structure of the isomers was assigned on the basis of ¹H and ^{1.3}C MMR spectroscopic data. The configurations of the substituents at the atoms C¹ and C³ of the compounds (IV) and (VI) were unambiguously established by analyzing the chemical shifts of the carbon atoms of the methyl groups C⁹ and C¹⁰ (IV) and C⁸ and C⁹ (VI). For each methyl group the existence of the cis interaction led to a minor difference in the signals of the methyl groups of up to 1 ppm, which suffices for assigning compounds (IV) and (VI) to the trans series [4]. Up to now, for compounds having only one substituent on each carbon atom of the cyclopropane ring, we do not have accurate criteria which make it possible to carry out stereo-chemical analyses based on ¹H and ¹³C NMR spectroscopic data. Adams et al. [5] have analyzed the PMR spectra of the isomer pair

However, the presence in each isomer of two ${}^{3}J_{cis}^{HH}$ and one ${}^{3}J_{trans}^{HH}$ vicinal constants, which differ only slightly (4.5 and 5, 6.5 and 7; 10 and 10 Hz), makes unambiguous assignment of stereochemistry on the basis of PMR spectra difficult. The values of the chemical shifts of the proton signals of the isomer pair also differ insignificantly.

The chemical shifts of the carbon atoms of the cyclopropane rings of the isomer pairs are close together in the ¹³C NMR spectra, which makes the assignment of the signals of C² and C^3 and the stereochemical assignment of each isomer to the cis and the trans series difficult. The signals of the carbon atoms that are in the α -position of the cyclopropane ring provide much information. It can be seen in Table 3 that the signals of the carboxyl carbon atoms differ not more than 0.65 ppm in the isomer pairs. This fact points to the absence of the two other possible isomers with the 1,2- and 1,3-trans-trans and the 1,2and 1,3-cis-cis position of the substituents because in those cases the carbon atom of the carbozyl group would undergo a quite different type of interaction causing a great difference in chemical shift. Moreover, the trans configuration of the substituents at C^2 and C^3 follows from the trans configuration of the starting enone. The configuration of the substituents at C^2 and C^3 remains constant in the series (a) and (b) and therefore from here on it was of interest to establish the configuration of the substituents at C¹ and C³, while series (a) was attributed to compounds having trans position of the substituents and series (b) to compounds having cis position of the substituents. The assignment of the isomers to the cis or the trans series was performed on the basis of the relationship of the signals of the carbon atoms that are in α -position to the atoms C¹ and C³ of the cyclopropane ring. The diamagnetic shift of the C³ signal of up to 3 ppm and the paramagnetic shift of the carbonyl atom C⁴ of up to 4 ppm relative to the corresponding signals of the isomer pair is evidence of the affiliation of compound (XIIa) to the trans series and of compound (XIIb) to the cis series.

The difference in chemical shift of the signals of the isomer pair results from one cis interaction of the carboxyl carbon with different substituents at C^2 and C^3 . An analogous relationship of the signals of the carbonyl atom C^4 and the signal of the carbon atom in the *a*-position to C^2 enables us to assign the isomer pairs (XIV)-(XVIII) unambiguously to the cis and trans series.

EXPERIMENTAL

PMR spectra were taken on a Tesla BS-497 instrument (100 MHz) and ¹³C NMR spectra on a Jeol FX-900 in CDCl₃ with TMS as standard; IR spectra were recorded on a UR-20 apparatus (films). GLC analyses were carried out on a Khrom-5 chromatograph (column: 5% NZhFSE-30 on

ropanecarboxylic Acids	•	
Cyclop		
of		
Esters		
the		
of		
Spectra		
NMR	\sim	
1 ³ C]	CDC13.	
TABLE 3.	(δ, ppm,	

spec	
NULK	~
0	1045
•	
コココ	

		1 - 1	l
ů	20,659 20,656 14,077 14,077 13,97 133,997 133,396 133,396 133,396 133,396 133,597 133,597 135,597 135,597 135,597 135,597 135,597 135,597 135,597 135,597 135,597 135,	C15	141,78 d 141,78 d 127,22 d 127,03 d
C7	60,64 t 51,83 q 60,80 t 60,80 t 60,80 t 60,77t 61,30 t 51,86 q 128,76 d 128,76 d 11,15 t	C ^{I4}	110,54d 110,54d 128,86 d 128,58 d 128,58 d 128,53 d 128,97 d
ů	170,50 s 171,06 s 188,05 s 167,78 s 168,43 s 168,43 s 169,07 s 169,07 s 169,39 s 169,39 s 169,39 s 169,39 s 128,27 d 11,457 d 11,457 d 10,90 t	Сıs	108,00 đ 108,00 đ 128,54 đ 128,53 đ 128,59 đ 128,59 đ
Cs	31,9% q 32,9% q 32,9% q 30,946 q 30,946 q 30,81 q 30,81 q 33,79 s 30,81 q 33,79 s 30,81 q 33,73 s 30,81 q 33,73 s 30,81 q 33,73 s 30,81 q 33,73 s 30,81 q 32,177 d 33,73 s 30,81 q 30,81 q 30,	C ¹²	41.78 d 40,90 d 27.22d 27.22d 27.22d 21.13 s 34.82 s 34.82 s 28.67 d 28.67 d
č	203,79 \$ 203,79 \$ 203,835 \$ 203,835 \$ 204,77 \$ 204,865 \$ 204,865 \$ 204,865 \$ 204,865 \$ 204,865 \$ 204,865 \$ 202,55 \$ 193,44 \$ 193,44 \$ 202,88 \$ 202,88 \$		
చ	41,45 d 41,646 26,446 4 28,296 d 4 33,199 d 4 33,194 d 4 29,93 d 4 29,084 d 4 29,89 d 4 29,89 d 4	Ci	110,5 110,4 128,9 14,00 14,10 14,10 14,10 134,60 134,60 134,60 138,60 138,60 138,60 138,60 138,60 138,60 138,60 14,000 14,0000 14,0000 14,0000 14,0000 14,0000 14,0000 14,0000 14,0000 14,00000 14,0000000000
C3	32,777 s 32,93 s 32,93 s 35,22d * 34,66 d * 34,66 d * 34,66 d * 34,66 d * 34,60 d * 34,89 d * 34,50 d *	G ¹⁰	19,71 q 107,97 d 106,27 d 128,57 128,53 d 128,63 d 61,13 t 61,13 t 61,13 t 61,13 t 61,13 t 61,13 t 61,13 t 61,13 t 61,13 t 61,13 t 61,12 t 61,
ū	34,44 d 33,914 d 30,68 d 30,68 d 30,42 d 31,76 d 31,76 d 31,76 d 31,76 d 31,76 d 31,76 d 31,76 d 31,76 d	ů	20,63 q 19,68 q 19,68 q 150,82 \$ 150,82 \$ 134,47 \$ 138,47 \$ 138,47 \$ 168,41 \$ 168,41 \$ 168,41 \$ 168,41 \$ 168,96 \$ 60,67 t
Compound	(IVa) (VIa) (VIa) (XIIa) (XIIA) (XIIA) (XIVa) (XVIa) (XVIa) (XVIa) (XVIA) (XVIA) (XVIIa) (XVIIa) (XVIIa) (XVIIA) (XVIIA) (XVIIA)	Compound	(IVa) (XIIa) (XIIa) (XIIa) (XIIb) (XIIb) (XIVb) (XIVb) (XVIb) (XVIb) (XVIb) (XVIb) (XVIb) (XVI
	Compound d ¹ C ² C ³ C ⁴ C ³ C ⁴ C ³	Compound C^{1} C^{2}	Compound C^{1} C^{2}

*Possibly reversed assignment of the signals.

Chromaton N-AW-HMDS, column length 1.2 m). Mass spectra were taken on an MX-1306 instrument operating under standard conditions. The preparative separation of isomers was carried out with an LKhP-7I apparatus using the phase 15% PÉG-6000 on Chromaton N-AW; column 0.84 m long with a diameter of 18 mm.

The synthesis of the sulfonium salts (I) and (II) was carried out according to [2] and that of (V) according to [6].

Method of Cyclopropanation of α , β -Unsaturated Ketones. A mixture of 10 mmoles of enone, 10 mmoles of sulfonium salt, 10 mmoles of KOH powder (85%), and 0.15 mmole of TEBAC in 20 ml of THF was stirred for 1-2 h at about 20°C. The precipitate was filtered off, the solvent evaporated, and the residue vacuum distilled.

Ethyl 2,2-dimethyl-3-acetylcyclopropanecarboxylate (IV) was prepared from salt (II) and enone (III), bp 65°C (1 mm), np²⁵ 1.4555; IR spectrum (ν , cm⁻¹): 1710, 1745 (G=O). PMR spectrum (δ , ppm): 1.44 s (CH₃), 1.07 t (CH₃), 2.22 s (COCH₃), 2.23-2.71 m (CH, CH-cyclopropyl), 4.07 q (CO₂CH₂). m/e 184 (M⁺).

Methyl 2,2-dimethyl-3-acetylcyclopropanecarboxylate (VI) was prepared from salt (V) and enone (III), bp 56°C (1 mm). IR spectrum (ν , cm⁻¹): 1710, 1745 (C=O). PMR spectrum (δ , ppm): 1.13 s (CH₃), 1.3 s (CH₃), 2.2 s (COCH₃), 2.27-258 m (CH, CH-cyclopropyl), 3.6 s (OCH₃). m/e 170 (M⁺).

Ethyl 2-(α -furyl)-3-acetylcyclopropanecarboxylate (XIIa,b) was prepared from salt (II) and enone (VII), bp 140°C (1 mm), np²⁵ 1.4945. IR spectrum (ν , cm⁻¹): 1715, 1740. PMR spectrum (XIIa), (δ , ppm): 1.12 t (CH₃), 2.31 s (COCH₃), 2.36-2.51 and 2.72-3.01 m (CH, CH, CH-cyclopropyl), 3.99 q (CO₂CH₂), 6.01-6.22 m (CH, CH-3,4-furyl), 7.18-7.24 m (CH, 2furyl): PMR spectrum (XIIb), (δ , ppm): 1.23 t (CH₃), 2.17 s (COCH₃), 4.01 q (CO₂CH₂), 5.96-6.26 m and 7.15-7.20 m (3H, furyl). M/e 222 (M⁺).

 $\frac{\text{Methyl } 2-(\alpha-\text{furyl})-3-\text{acetylcyclopropanecarboxylate (XIIIa, b)}{\text{and enone (VII), bp } 115^{\circ}\text{C} (1 \text{ mm}), \text{ np}^{25} 1.5092. \text{ IR spectrum } (\nu, \text{ cm}^{-1}): 1710, 1740 \text{ (C=O)}. \text{ PMR spectrum } (\delta, \text{ ppm}): 2.33 \text{ s} (3\text{H, COCH}_3), 2.35-2.90 \text{ m} (\text{CH, CH-cyclopropyl}), 3.54 \text{ s} (\text{CO}_2\text{CH}_3), 5.97-6.23 \text{ m} (\text{CH, CH-3},4-\text{furyl}), 7.08-7.20 \text{ m} (\text{CH}-2-\text{furyl}).$

Ethyl 2-phenyl-3-acetylcyclopropanecarboxylate (XIVa, b) was prepared from the salt (II) and the enone (VIII), bp 134°C (1 mm), n_D^{25} 1.5225. IR spectrum (v, cm⁻¹): 1715, 1735 (C=O). PMR spectrum (XIVa), (δ , ppm): 1.0 t (CH₃), 2.34 s (COCH₃), 2.40-2.62 m (CH, CH-cyclopropyl), 2.84-3.04 m (CH-cyclopropyl), 3.88 q (CO₂CH₂), 7.16 s (C₆H₅).

<u>Methyl 2-phenyl-2-acetylcyclopropanecarboxylate (XVa,b)</u> was prepared from salt (V) and enone (VIII), bp 115°C (1 mm), np²⁵ 1.5393, IR spectrum (ν , cm⁻¹): 1710, 1740 (C=0). PMR spectrum (XVa), (δ , ppm): 2.29 s (COCH₃), 3.38 s (OCH₃), 2.36-3.10 m (CH, CH, CH-cyclopropyl), 7.13 s (C₆H₅). ¹H NMR spectrum (XVb) (δ , ppm): 2.18 s (COCH₃), 3.59 s (OCH₃), 2.36-3.10 m (CH, CH, CH-cyclopropyl), 7.13 s (C₆H₅).

<u>Ethyl 2-(α -furyl)-3-benzoylcyclopropanecarboxylate (XVIa, b)</u> was prepared from salt (II) and enone (IX). IR spectrum (ν , cm⁻¹): 1680, 1735 (C=O). PMR spectrum (δ , ppm): 1.13 t (3H, CH₃), 2.46-3.16 m and 3.50-3.75 m (CH, CH, CH-cyclopropyl), 3.98 q (CO₂CH₂), 6.0-6.25 m (CH, CH-3,4-furyl), 7.18-7.4 m (CH-2-furyl, CH, CH, CH-m, m, p-phenyl), 7.78-8.0 m (CH, CH- σ ,o-phenyl).

<u>Ethyl 2-phenyl-3-benzoylcyclopropanecarboxylate (XVIIa,b)</u> was prepared from salt (II) and enone (X), n_D^{25} 1.5850. IR spectrum (v, cm⁻¹): 1680, 1730. PMR spectrum (δ , ppm): 1.03 t (CH₃), 2.56-3.48 m (CH, CH-cyclopropyl), 3.85 q (CO₂CH₂), 7.28-8.04 m (C₆H₅).

Ethyl 2-phenyl-3-cyclopropylcarbonylcyclopropanecarboxylate (XVIIIa,b) was prepared from salt (II) and enone (XI), bp 110-115°C ($2\cdot10^{-2}$ mm). IR spectrum (v, cm⁻¹): 1695, 1730 (C=O). PMR spectrum (XVIIIa) (δ , ppm): 0.98 t (CH₃), 1.05-1.43 m (CH₂, CH₂-cyclopropyl), 2.47-2.78 m and 2.95-3.37 m (CH, CH, CH-cyclopropyl), 3.95 q (CO₂CH₂), 7.25 s (C₆H₅). PMR spectrum (XVIII b) (δ , ppm): 1.1 t (CH₃), 1.05-1.43 m (CH₂, CH₂-cyclopropyl), 2.47-2.78 m and 2.95-3.37 m (CH, CH-cyclopropyl), 4.17 q (CO₂CH₂), 7.18 s (C₆H₅).

CONCLUSIONS

We worked out a modification of the method for the cyclopropanation of α,β -unsaturated ketones with ethyl(dimethylsulfuranylidene)acetate, generated in situ from a sulfonium salt with 85% KOH in the presence of a phase-transfer catalyst, and studied the stereochemistry of the polysubstituted cyclopropanes.

- 1. A. J. Speziale, C. C. Tung, K. W. Ratts, and A. J. Yao, J. Am. Chem. Soc., <u>87</u>, 3460 (1965).
- 2. V. B. Payne, J. Org. Chem., <u>32</u>, 3351 (1967).
- 3. G. A. Tolstikov, F. Z. Galin, and V. N. Iskandarova, Izv. Akad. Nauk SSSR, Ser. Khim., 1210 (1983).
- 4. N. C. Rol and A. D. H. Claque, Org. Magn. Reson., <u>16</u>, 187 (1982).
- 5. J. Adams, L. Hoffman, and B. M. Trost, J. Org. Chem., <u>35</u>, 1600 (1970).
- 6. A. W. Johnson and R. T. Amel, J. Org. Chem., <u>34</u>, 1240 (1969).