TOTAL SYNTHESIS OF (\pm) PODOPHYLLOTOXIN
T. Kaneko* and H. Wong
Bristol-Myers Company
Pharmaceutical Research and Development Division 5 Research Parkway
Wallingford, Connecticut 06492

Abstract: A straightforward approach to podophyllotoxin was developed using silyl enol ether 5 .

Podophyllotoxin (1) is a lignan isolated from Podophyllum peltatum and P. emodi ${ }^{1}$. It is a potent inhibitor of microtubule assembly and a key intermediate of an antitumor agent, etoposide (2) ${ }^{2}$. Although there have been several elegant syntheses of this compound or its $C 4$ epimer (epipodophyllotoxin) ${ }^{3}$, we sought an operationally simpler route, which is the subject of this letter.

The challenge of the synthesis lies in the formation of four contiguous stereocenters and the presence of a base-sensitive trans lactone. Two of the published syntheses involve conversion of a cis lactone (picropodophy1lotoxin) to a trans lactone by a kinetic protonation of the lactone enolate. ${ }^{3 a, b}$ This produces a mixture of isomers in which the desired trans lactone is the minor component. Another problem is that bis-alkylation is observed to be the major course of action in the base-catalyzed hydroxymethylation of tetralone $3 .{ }^{4}$

$1 \quad \mathrm{R}=\mathrm{HO}, \quad \mathrm{R}^{\prime}=\mathrm{CH}_{3}$

2

To circumvent these problems we planned to establish the stereochemistry of the C2 center early in the synthesis. The possible use of cis ester 4 was suggested by a considerable amount (approximately 16%) of 4 in the equilibrium mixture resulting from treatment of trans ester (3) with EtONa in EtOH at $21^{\circ} \mathrm{C}$. We reasoned, furthermore, that under mild conditions 4 could be converted to a silyl enol ether without epimerization at C 2 , and then alkylation would take place from the β-face since the α-face is shielded by a pendant aromatic ring and the ethoxycarbonyl group ${ }^{5}$ and that use of the silyl enol ether should also eliminate the problem of bisalkylation.

The starting material in our synthesis (Scheme) was readily available by the published route. $3 \mathrm{e}, 4 \mathrm{~b}$ Cis ester 4 was obtained by treatment of 3 with 4 eq. of LDA followed by an aqueous HCl quence at $-40^{\circ} \mathrm{C}$. After one recrystallization from EtOH the desired cis ester was obtained in 70% yield. ${ }^{6}$ This keto ester was treated with TMSOTf in the presence of triethylamine at $3^{\circ} \mathrm{C}$ to give silyl enol ether. $\underline{5}^{7}$ Under these conditions, the stereochemistry at C2 was maintained as the dihedral angle between the C1 and C2 protons was calculated to be approximately 21° from their coupling constant (7.1Hz). 8 The silyl enol ether thus prepared was allowed to react with dibenzyloxymethane in the presence of a catalytic amount of TMSOTf to give compound $6 .{ }^{9,12}$ The yield for the two steps was $70-74 \%$, and as expected, only the β-isomer was obtained. The benzyloxymethyl group could also be introduced using benzyloxymethyl chloride and $\mathrm{TiCl}_{4}{ }^{10}$

Reduction of the C 4 carbonyl group with LiBH_{4} at $0^{\circ} \mathrm{C}$ proceeded stereospecifically to give lactone $\underline{7}^{12}$ as the major product (43\%) as well as alcohol $\underline{8}$ (25\%). ${ }^{12}$ Catalytic hydrogenation of $\underline{7}$ in EtOAc in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ gave the known 11 neopodophyllotoxin (9) in 55\% yield. Following the chemistry developed by von Wartburg the C2-C4 lactone was hydrolyzed with 1 N NaOH , and after acidification the diol acid (podophyllic acid) was treated with dicyclohexyl carbodimide in THF at $0^{\circ} \mathrm{C}$ to give podophyllotoxin in 54% yield. Thus, this sequence gave podophyllotoxin in a straightforward manner in 5 steps from tetralone 3.

Scheme

70-74\% for two steps

9
$\xrightarrow[\substack { \text { 2) } \\ \begin{subarray}{c}{\mathrm{DCC} \\ 45 \%{ \text { 2) } \\ \begin{subarray} { c } { \mathrm { DCC } \\ 4 5 \% } }\end{subarray}]{\substack{\mathrm{OH} \\ \mathrm{H}^{+}}}$

1

References and Notes

1. For a review see: Hartwell, J.L.; Schrecker, A.W., Fortschr. Chem. Org. Naturst., 1958, 15, 83.
2. Doyle, T.W. in "Etoposide", Isse11, B.F.; Muggia, F.M.; Carter, S.K., Ed.; Academic Press, New York, 1984; pp 15-32.
3. a. Gensler, W.J.; Gatsonis, G.D. J. Org. Chem. 1966, 31, 4004; b. Kende, A.S.; King, M.L.; Curran, D.P., J. Org. Chem., 1981, 46, 2826; c. Rajapaska, D.; Rodrigo, R., J. Amer. Chem. Soc., 1981, 103, 6208; d. Van der Eycken, J.; De Clerq, P.; VAndewalle, M., Tetrahedron Lett., 1985, 26, 3871; e. Vyas, D.M.; Skonezny, P.M.; Jenks, T.A.; Doyle, T.W., 1986, 273099.
4. a. Kende, A.S.; Liebeskind, L.S.; Mills, J.E.; Rutledge, P.S.; Curran, D.P., J. Amer. Chem. Soc., 1977, 99, 7082; b. Murphy, W.S.; Wattanasin, S., J.C.S. Perkin I. 1982, 271.
5. The pendant aromatic ring is essentially perpendicular to the plane of fused ring.s See: Rithner, C.D.; Bushweller, C.H.; Gensler, W.J.; Hoogasian, S.; J. Org. Chem., 1983, 48, 1491.
6. All new products had satisfactory spectroscopic and microanalytical data.
7. Combination of trimethylsilyl iodide and hexamethyldisilazane at $-20^{\circ} \mathrm{C}$ works equally well to generate the silyl enol ether.
8. The NMR measurement was carried out on the t-butyldimethylsilyl enol ether prepared with TBDMSOTf and TEA.
9. Noyori, R.; Murata,S.; Suzuki, M.; Tetrahedron Lett., 1980, 21, 2527.
10. Hosomi, A.; Sakata, Y.; Sakurai, H.; Chem. Lett., 1983, 405.
11. Renz, J.; Kuhn, M.; von Martburg, A.; Liebigs Ann. Chem., 1985 681, 207.
12. mp and NMR: 6, $107-109^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 1.19(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 2.99(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=12.2,1 \mathrm{~Hz}), 3.63$
($\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.2,3.3 \mathrm{~Hz}$), $3.71(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.5,5.0 \mathrm{~Hz}), 4.01$ $(\mathrm{m}, 2 \mathrm{H}), 4.30(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.0,2.3 \mathrm{~Hz}), 4.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.2 \mathrm{~Hz}), 4.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.1 \mathrm{~Hz}), 4.56$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~m}, 5 \mathrm{H}):$ I. $194-196^{\circ} \mathrm{C} ;\left(\mathrm{CDCl}_{3}\right) \delta 2.96(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.5 \mathrm{~Hz}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.9,7.5 \mathrm{~Hz})$, $3.55(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.4,7.2 \mathrm{~Hz}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}), 4.45$ $(\mathrm{s}, 1 \mathrm{H}), 5.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H})$, $7.29(\mathrm{~m}, 5 \mathrm{H}): \underline{8}$ amorphous solid, $1.08(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.99$ $(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.9,5.4 \mathrm{~Hz}), 3.50(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 3.68-3.89(\mathrm{~m}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 4.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}), 4.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}), 4.77$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 2 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H})$, 7.33 (m,5H).
(Received in USA 24 September 1986)
