A NOVEL REGIO- AND STEREO-SPECIFIC HYDROACETOXYLATION REACTION OF 2-ALKYNOIC ACID DERIVATIVES

Xiyan Lu^{*}, Guoxin Zhu and Shengming Ma Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032, China

Abstract: 2-Alkynoic acid derivatives were hydroacetoxylated regio- and stereospecifically by reaction with lithium acetate in HOAc at rt under the catalysis of palladium acetate to afford 3-acetoxy-2(2)-alkenoic acid derivatives.

The high reactivity of the carbon-carbon triple bond toward nucleophilic reagents is of great significance in many synthetic reactions.¹ Usually such addition reaction occurred non-stereoselectively. Recently, we reported a novel regio- and stereospecific hydrohalogenation reaction of 2-propynoic acid and its derivatives.² The nucleophility of acetate anion is similar to that of chloride anion.³ The discovery of the stereospecific hydrohalogenation reaction of 2-propynoic acid derivatives attracts our interest to study the corresponding hydroacetoxylation reaction. On the other hand, the pure geometrical isomers of enol esters are very important precursors in stereoselective synthesis. ^{4,5} Herein, we wish to report a regio- and stereo-specific hydroacetoxylation reaction of 2-alkynoic acid derivatives with lithium acetate in HOAc in the presence of palladium acetate at rt to afford the thermodynamically unfavorable Z-enol acetates.

A general procedure is as follows: To a solution of alkynoate(1 mmol) and LiOAc(1 mmol) in HOAc(1 mL), $Pd(OAc)_2(0.05 \text{ mmol})$ was added under stirring. The reaction mixture was stirred at rt until the alkynoate disappeared as monitored by TLC. Water(5 mL) was added, and the mixture was neutralized with solid K_2CO_3 , extracted with ether and dried(MgSO₄). The product 2 was isolated by preparative TLC on silica gel using petroleum ether/ethyl acetate as the solvent.

The results are summarized in the **Table**. The configuration of carbon-carbon double bond in the product was determined by 1 H NMR spectra, because the vinyl proton of the E-isomer appears at further downfield than that of the Z-isomer due to the deshielding effect of the cis acetoxy group.^{6,7}

When the reaction between methyl 2-heptynoate (1c) and LiOAc was carried out in CF_3COOH in the presence of $Pd(OAc)_2$, only methyl 3-oxoheptanate(3) was obtained (entry 6). This may be due to the high acidity of CF_3COOH , which catalyzed the hydrolysis of the initial product 3-acetoxy-2-heptenoate(2e). 2-Butynamide could also react with NaOAc stereospecifically (entry 10). Complex reaction occurred from unsubstituted 2-propynoates and LiOAc in the same condition.

Reaction of acetic acid-d with benzyl 2-butynoate(la) in the presence of two

7205

equivalents of LiOAc and a catalytic amount of Pd(OAc)2 at rt for 14 h, afforded benzyl 3-acetoxy-2(Z)-2-d-butenoate in 87% yield, indicating that the vinylic hydrogen comes from the acid.

$R-CHC-COR' + MOAc \xrightarrow{Cat. Pd(OAc)_2} R C = C$							
la-f		т	MOAC	HOAC, rt ACO COR'			XOR '
Entry		1		м	Time	Product	Isolated Yield
	No.	R	R'		(h)		(%)
1	la	Me	OBn	Li	8.5	2a	78
2	1b	Me	OMe	Li	15	2b ^a	83
3	lb	Me	OMe	Na	2	2 b	82.5
4	lc	n-Bu	OMe	Li	20	2c	83
5	lc	n-Bu	OMe	Na	12	2c	78
6 ^b	lc	n-Bu	OMe	Li	5	3 ^C	76
7	ld	Ph	OMe	Li	22	2đ ^đ	83
8	1 d	Ph	OMe	Na	24	2 ð ^d	82
9	le	Me	R' ^e	Li	30	2 e	56
10	lf	Me	NH ₂	Na	4.5	2 f ^a	79

Table. Reaction of 2-Alkynoic Acid Derivatives

a. The configuration of double bond was assigned by comparing the ¹H NMR data with the literature value;⁸ b. CF₃COOH was used as the solvent; c. Compound 3 is $n-C_{A}H_{Q}COCH_{2}COOCH_{3}$ d. 2:E > 97:3; e. R'= OCH₂CH=CHCH₂OH.

The regio- and stereo-selective formation of the alkenylpalladium intermediate by trans attack of acetate anion at the coordinated carbon-carbon triple bond was postulated as the key step in this hydroacetoxylation.⁹ The intermediate was trapped by proton with the retention of the configuration of the double bond to afford the product stereospecifically.

Acknowledgement: We thank the National Natural Science Foundation of China and The Laboratory of Orgmetallic Chemistry, Academia Sinica for financial support.

References and notes:

- 1. Winterfeldt, E. Angew. Chem. Int. Ed. Engl., 1967, 6, 423.
- 2. Ma, S.; Lu, X.; J. Chem. Soc. Chem. Commun., 1990, 1643; Ma, S.; Lu, X.; Li, Z.; J. Org. Chem., 1992, 57, 709.
- Lowry, T. H. Richardson, K. L. " Mechanism and Theory in Organic Chemistry ", 2nd ed.; Harper & Row, New York, 1981; p.333.
- House, H. O. "Modern Synthetic Reactions", 2nd ed. Benjamin, London, 1972, p.313
 Nogradi, M.; "Stereoselective Synthesis ", Verlag Chemie, Weinheim, 1987, p. 193; Evans, D. A. in "Asymmetric Synthesis ", Morrison, J. D., (ed.); Academic Press, Orlando, 1984, Vol. 3, p.119.
- 6. Evans, D. A. in "Asymmetric Synthesis ", Morrison, J. M. (ed.), Academic Press, Orlando, 1984, Vol 3, p.12.
- 7. Neuenschwander, M. Lienhard, U.; Fahrni, H. P. Hurni, B. Chimia, 1978, 32, 212.
- 8. Niederhauser, A.; Neuenschwander, M.; Helv. Chim. Acta., 1973, 56, 1318.
- 9. Yanagihara, N. Lambert, C. Iritani, K. Utimoto, K. Nozaki, H.; J. Am. Chem. Soc., 1986, 108, 2753.