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Abstract: An efficient paired electrosynthesis involving C-H functionalization and
subsequent C-S and C-N bond formation for the assembly of valuable
3-amino-2-thiocyanato-o,-unsaturated carbonyl derivatives has been developed. In
the paired electrolysis, the amino and thiocyanato moieties originate from a single
reagent or a combination of ammonium acetate and potassium isocyanate. The
chemistry proceeds in a simple undivided cell employing a sub-stoichiometric amount
of NH4Br that serves both as an inner sphere type redox catalyst and a supporting
electrolyte; in this manner additional conducting salt is not required. The reaction also
works using catalytic amount of NH4Br. Cyclic voltammetry and the results of control
experiments demonstrate that the reaction proceeds via an anodically initiated C-H
functionalization of the 1,3-dicarbonyl substrates that occurs via the electrochemical
oxidation of bromide and simultaneous cathodic reduction of ammonium ion.

Keywords: clectrochemical C-H functionalization; paired electrolysis; indirect
electrolysis;  a-thiocyanation;  3-amino-2-thiocyanato-a,B-unsaturated  carbonyl

derivatives

1. Introduction

Oxidative functionalization of C-H bonds to form new C-C and C-heteroatom


http://dx.doi.org/10.1039/c6gc00666c

Published on 30 March 2016. Downloaded by University of California- San Diego on 01/04/2016 04:31:04.

Green Chemistry

Page 2 of 53

View Article Online
DOI: 10.1039/C6GC00666C

bonds has proven to be of importance in organic chemistry due to its high atom
economy and responsible use of ecological resources.! Along with the classical
methods using a chemical oxidant or photochemistry, electrochemistry provides an
alternative method to achieve the C-H functionalization by heterogeneous electron
transfer between an electrode and a substrate (direct electrolysis) or by using a redox
catalyst (indirect electrolysis).” In the course of an electrolysis, paired processes
have attracted much attention in both academic and industrial settings since they use
both the oxidation reaction at the anode and the reduction reaction at the cathode to
generate synthetically useful product(s), and (ideally) achieve a 200 % electrolysis
efficiency.’

3-Amino-2-thiocyanato-a,-unsaturated  carboxyl compounds are useful
substances that often serve in the synthesis of 4,5-disubstituted 2-aminothiazoles,*
which in turn are invaluable intermediates for the preparation of thiazole derivatives
possessing herbicidal and other important biological activities.” The synthesis of
3-amino-2-thiocyanato-o,-unsaturated carboxyl compounds is generally achieved
through a sequence of steps involving -amination, introduction of an a-halo/tosyloxy
substituent, and a-thiocyanation (Scheme 1).* This multi-step approach suffers from
the use of harsh conditions, large excess of oxidizing agents, and the production of
large amounts of waste.

We are interested in C-H oxidative functionalization processes induced by redox

6a-6d

catalysts.® Along with the use of other mediators, we have applied simple halide

%e61 Based on our

ions as inner sphere type redox catalysts for paired electrolysis.
experience in paired electrolysis and electrochemical C-H bond functionalization, we
hypothesized that a constant current electrolysis (CCE) of B-dicarbonyl compounds in
the presence of halide ion might initially generate a-halodicarbonyl intermediates that
would further undergo a-thiocyanation and -amination in the presence of a source of
a synthetic equivalent for NH, and SCN (Scheme 1). We report herein a novel
strategy for the synthesis of 3-amino-2-thiocyanato-o,B-unsaturated carbonyl

compounds using a halide salt as a redox catalyst via paired electrolysis. The protocol

features step efficiency and atom economy, avoiding pre-functionalization of the
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starting B-dicarbonyl compound and tedious isolation of intermediates.

Conventional approach

a-C-H
NHz O functionalization ~ \Hz2 Q

o o amination
—_— \
A, R&/&RZ R1MR2
H X
X=Br, I, OTs

thiocyanation \

NH, source,
SCN source
MX, CCE NH, O
O O R A R2
via R1MR2 SCN
X

Our working strategy

Scheme 1. Conventional approach and our working strategy for the synthesis of

3-amino-2-thiocyanato-a,B-unsaturated carbonyl compounds.

2. Results and discussion

To investigate the feasibility of the approach outlined above, we chose ethyl
acetoacetate 1a and ammonium carbamodithioate 2 as model substrates (Scheme 2a
and Table 1). Attempts to optimize the reaction conditions began with a constant
current electrolysis that was carried out in a simple beaker-type cell equipped with a

graphite plate anode and a Ni plate cathode at room temperature. When Nal was used

Published on 30 March 2016. Downloaded by University of California- San Diego on 01/04/2016 04:31:04.

as a redox catalyst and methanol as a solvent, the desired adduct, (E)-ethyl
3-amino-2-thiocyanatobut-2-enoate (3a) was isolated in a 34% yield after passing 3.5
F/mol of charge (Table 1, entry 1). Encouraged by the result, redox catalyst screening
was subsequently carried out in an effort to improve the yield. We observed that
among all iodide and bromide salts examined (Nal, NaBr, NH4I, NH4Br, EtsNBr and
BuyNI), NH4Br gave the best result, and a 45% yield of 3a was achieved (Table 1,

entries 2-6).


http://dx.doi.org/10.1039/c6gc00666c

Published on 30 March 2016. Downloaded by University of California- San Diego on 01/04/2016 04:31:04.

Green Chemistry

Page 4 of 53
View Article Online
DOI: 10.1039/C6GC00666C

o o s NH, O
A g 22— AN @
OEt HoN™ "SNH,;  undivided cell
CCE SCN
1a 2 3a
NH4Br (50 mol%) NH, O
o 0 CH4CN
A+ nmson = S Hoe ®
OEt
Pt -.P.t electrode SCN
1a undivided cell
5 mA/cm? 3a (67%)
NH,Br (50 mol%) NH, O
6 o CH,CN “ ©
PN + NH,OAc + KSCN ot
OEt _
Pt .P.t electrode SCN
1a undivided cell
5 mA/cm? 3a (62%)

Scheme 2. Electrochemical synthesis of (E)-ethyl 3-amino-2-thiocyanatobut-2-enoate
from the reaction of 1a with different NH, and SCN sources.

Next, the effect of solvent was examined. It was observed that the "H NMR yield
of 3a increased to 73% and 79% when the electrochemical reaction was conducted in
ethanol and CH3CN, respectively (entries 7 and 8). In contrast, 3a was not detected
when DMF, DMSO, H;0 and THF were used as solvents (entries 9-12).

Further screening of electrode materials demonstrated that Pt net was preferred
(entries 13 and 14). The investigation of redox catalyst loading showed that the yield
of 3a decreased from 95% to 39% when NH4Br loading decreased from 50 to 20
mol% (compare entries 14 and 15). A further decrease of NH,4Br loading to 10 mol%
decreased the yield of products significantly (entry 16). Notably, only a trace of 3a
was detected in the absence of NH;Br, which reveals that NH,Br is essential to the
success of the one-pot electrosynthesis of 3a.

Table 1. Optimization of the reaction conditions *

Q 0 s cat. NH, O
AN OEt i HZNJ\SNH4 CCE Y okt
1a 2 3SaCN
Entry Anode/cathode Mediator (equiv) Solvent Yield (%)
1 C-Ni Nal (0.5) MeOH 34°
2 C-Ni NaBr (0.5) MeOH 36°
3 C-Ni NH4I (0.5) MeOH 44°
4 C-Ni NH4Br (0.5) MeOH 45°¢
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5 C-Ni Et,NBr (0.5) MeOH 43¢
6 C-Ni BuyNI (0.5) MeOH 15°¢
7 C-Ni NH,Br (0.5) EtOH 73

8 C-Ni NH,Br (0.5) MeCN 79

9 C-Ni NH,4Br (0.5) H,0 N.D¢
10 C-Ni NH,Br (0.5) THF N.D?
11 C-Ni NH,Br (0.5) DMF N.D¢
12 C-Ni NH,Br (0.5) DMSO N.D!
13 Pt-Ni NH,Br (0.5) MeCN 93
14 Pt-Pt NH,Br (0.5) MeCN 95, 89°
15 Pt-Pt NH,Br (0.2) MeCN 39°¢
16 Pt-Pt NH,Br (0.1) MeCN 18°¢
17 Pt-Pt NH,Br (0.0) MeCN 2°¢

* Reaction conditions: ethyl acetoacetate 1a (1.0 mmol), 2a (1.5 mmol) and redox
mediator in 10 mL of solvent, undivided cell, room temperature, current density of 5
mA/cm?, about 3.5 F/mol of charge.

®'H NMR yield.

¢ Isolated yield after column chromatograph.

4 Non detected.

*'H NMR yield in the presence of 0.1 M LiClO4 as supporting electrolyte.

For the reactions described above, the -NH; and -SCN subunits of the product 3a
both originate from 2. For completeness, alternative sources were also explored. As
shown in Scheme 2b, under the optimal reaction conditions described above, but
using NH4SCN in place of ammonium carbamodithioate, 3a was isolated in a 67%
yield. In addition, when a combination of NH4OAc and KSCN were employed as
potential sources of NH, and SCN, 3a was produced in a 62% isolated yield (Scheme
2¢). In each case, the yield of 3a was lower than using 2 (entry 14, Table 1). We

therefore prefer to use 2 for the paired electrolysis.
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With the optimal conditions in hand, we then studied the scope and the generality
of the protocol, by examining reactions of ammonium carbamodithioate 2 with a

variety of 1,3-dicarbonyl compounds, 1. As shown in Table 2, 3-oxoesters, such as

methyl (1b) and #-butyl ester (1¢), afforded the corresponding adducts 3b and 3¢ in 75%

and 85% yields, respectively (entries 2 and 3, Table 2). Good yields of 3d (80%) and
3e (71%) were also obtained when 1d and le were employed as the 3-oxoester
counterparts (entries 4 and 5, Table 2). Notably, when the hindered #-butyl ketone 1f
was subjected to the optimal conditions, adduct 3f was not isolated and presumably
did not form (entry 6).

The standard conditions could also be applied to 3-oxoamides, although slightly
lower yields were obtained when compared to the corresponding 3-oxoesters. As
shown in Table 2, use of 3-oxobutanamide derivatives, 1g, 1h, and 1i, afforded the
desired products in 59%, 55% and 52% yields, respectively (entries 7-9).

The electrochemical reaction of 2 with aliphatic 1,3-diketones also proceeded
smoothly. For example, when pentane-2,4-dione (1j) was subjected to electrolysis
under the standard conditions, adduct 3j formed in an 80% yield (entry 10). Cyclic
diketones such as cyclohexane-1,3-dione (1k), and 5,5-dimethyl
cyclohexane-1,3-dione (11), also worked well, leading to good yields of 3k and 31
(entries 11 and 12).

The standard conditions were also applied to aromatic 1,3-dicarbonyl compounds.

It was found that the reaction of phenylbutane-1,3-dione (1m) with 2 proceeded
sluggishly and only 11% of adduct 3m was isolated (entry 13). By using KSCN and
NH4OAc, the yield of 3m increased to 22% (entry 14). However, in the cases of 1n,
the product 3n was not detected (entry 15); instead, 4-methoxybenzoic acid was
isolated in a 12% yield. We note, too, that in the reactions with aromatic
1,3-dicarbonyl compounds described above, an unidentified white precipitate was
formed as the main product, which is believed to be a polymer, although its exact
structure is not known, since the precipitate is insoluble in MeOH, EtOH, CH;CN,
CH,Cl,, EtOAc, acetone and water.

Other sources of the NH, functionality were also tolerated by the paired
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electrolysis protocol. For example, the reactions of ethyl acetoacetate 1a with benzyl
ammonium acetate under the standard conditions afforded adduct 30 in a 39% yield
(entry 16). Similarly, a 26% yield of adduct 3p was isolated when p-methoxybenzyl
ammonium acetate was used as the amino source (entry 17).

Table 2. Scope and generality of the electrochemical reaction.

o o NH,4Br (50 mol %) NH, O
1J\/U\ , NH, source and CH3CN 1 )
R R SCN source Pt - Pt electrode R R
1a-1n undivided cell SCN
5 mA/cm? 3a-3p
entr diketone SCN NH; source product yield
y source
1 29 1a i NH, O 32 89
MOEt HszSNH4 Moa
SCN
2 e 9 1b i b 75
MOMe

)k NH, O
HoN SNH,4 MOMe
SCN

S
3 M 1c big NH O 3¢ 85
O—t-Bu HoN™ "SNHy MO*t—Bu
SCN

4 1R 1d i NH O 3d 80
OFt H,N~ “SNH N
> 4 A)\:toa
5 o o le i NH; O 3¢ 71
NOEt HoN™ "SNH, Noa
SCN
6 i 1f $ NH, O -
WOB HzN)kSNH“ N OFt
SCN
7 o 9 1g i NH, O 3g 59
N/\ H2N SNH4 X NC
K SCN
S
8 1h 1 NH, O 3h 55
o o H,N~ “SNH, NN
i53 LrO-
H
9 o o 1i i NH; O i 52

MN H,N” “SNH, MN@
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H2N SNH4 M
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0]
S NH,
JJ\ SCN
HoN™ “SNH,
(0]
i NH, O
HN" “SNH, ~
SCN
KSCN NH4OACc NH; Q
X

H,N" “SNH,

NH, O
/@Mw
VeO SCN

KSCN g NH,0AC )N%/TLOB

SCN

KSCN NHOAC g”“ o
MeO MOE(
MeO SCN

3j

3k

31

3m

3m

3n

80

67

49

11

22

39%

26%

* Reaction conditions: diketone derivatives 1 (1.0 mmol), NH; and SCN source (each

1.5 mmol) and NH4Br (0.5 equiv) in 10 mL of acetonitrile, undivided cell, platinum

net (2X2.5 cm?) as anode and cathode electrodes, 40 °C, constant current electrolysis

at current density of 5 mA/cm?, ~3.5 F/mol charge.

®Isolated yield.

‘4-methoxybenzoic acid was isolated as the main product.

In addition to the wide range of substrates to which our protocol is applicable, we

note that it can be scaled to gram quantities thus highlighting its practicality. As

shown in Scheme 3, when 1.0 gram of 1a or 1i was allowed to react with 2 under the

standard conditions, adducts 3a (from 1a) and 3i (from 1i) were isolated in 62 % and

46 % yields, respectively.
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O O S NH4Br (50 mol %) NH, O
+ CH4CN ~
MR HQN)LSNH4 )\(LLR
Pt - Pt electrode SCN
1a (R = OEt), 1.0 undivided cell 3a, 62% (1.3 9)
a(R= »1Y9 2 (1equiv 2 a, o199
1i(R=NHPh), 1.0g (Tequv) — 5mA/om 3i, 46% (1.0 g)

Scheme 3. Scaling up

The process can also be achieved using catalytic amounts of bromide salt. As
shown in Scheme 4, when NH4SCN was used, its reaction with 1,3-dicarbonyl
compounds in the presence of 20 mol% of EtsNBr as a redox catalyst gave moderate

to good yields of the corresponding adducts.

10 NH,SCN (E:hr;g;(zo o 2
+ 4 N
R1J\/U\R2 Pt - Pt electrode RH\/\LRZ
1 undivided cell SCN
5 mA/cm? 3
1a: R' = Me, R? = OFEt 3a (61%)
1c: R' = Me, R?= Ot-Bu 3c (45%)
1d: R' = Pr, R? = OEt 3d (43%)
1j: R" = Me, R?= Me 3j (40%)

Scheme 4. Paired electrolysis of 3-amino-2-thiocyanato-a,p-unsaturated carbonyl

derivatives using a catalytic amount of bromide ion

o -2e

2 Br Br, (1
S) -e

Br; 3/2 Br, 2)

To provide mechanistic insight, cyclic voltammetry was used as the initial tool.
As shown in curve a of Figure 1, the CV of NH4Br in acetonitrile exhibits two
oxidation waves, one at 0.60 V and the other, 0.93 V vs Ag/AgNO; (0.1 M in CH;CN).
According to the literature,” we assign the first peak to correspond to the oxidation of
bromide to form molecular bromine, Br, (eq. 1). Once formed, its reaction with
bromide ion leads to tribromide Brs; . The second wave is therefore attributed to the
anodic oxidation of Br;~ to produce Br, (eq. 2). Curve b refers to the CV of NH4Br in
the presence of 5 equiv of ethyl acetoacetate. Here we observe that the intensity of the
two oxidation peaks increases, while the reduction peak current decreases. Since ethyl
acetoacetate is not oxidized in the potential range from 0.0 V to 1.5 V vs Ag/AgNO;

(0.1 M in CH3CN) that was used (curve e), the increase in the oxidative peak current
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is attributed to a catalytic current, resulting from the reaction of the in situ
electrochemically-generated bromine and ethyl acetoacetate, generating o-bromo
ethyl acetoacetate and bromide ion that leads to an increase of oxidation peak current

and the appearance of catalytic current accompanying the conversion of 1 to 5

(Scheme 5).
250
200
150 —~d
5
~ 100
b Cc
50 7 -
ﬁ_a -
0 S —— j/'

T T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600

E vs. Ag/AgNO, (0.1 M in CH,CN)YmV
Figure 1. Cyclic voltammogram of NH4Br, 1a and 2 in 0.1 M LiClO4+/CH3CN, using
GC disk working electrode, Pt wire and Ag/AgNOs (0.1 M in CH3CN) as counter and
reference electrode at 100 mV/s scan rate. a: NH4Br (2 mmol/L). b: NH4Br (2
mmol/L) and 1a (10 mmol/L). c¢: 2 (2 mmol/L). d: NH4Br (2 mmol/L), 1a (10
mmol/L) and 2 (10 mmol/L). e: 1a (2 mmol/L).

Curve ¢, portraying the CV of 2, reveals an irreversible oxidation peak at 0.83 V
vs Ag/AgNO; (0.1 M in CH3CN). It is significant to note that when 2 was added to
the mixture described above, an additional dramatic increase in the catalytic current
was observed (curve d). Thus, the first peak current increased from 33 to 214 pA,
indicating that 2 promotes the regeneration of bromide anion (note the conversion of 5
to 6 in Scheme 5).

Several control experiments were performed in an effort to obtain additional
insight into the reaction mechanism. As shown in Scheme 5a, the direct electrolysis of
the mixture of 1a and 2 using LiClOy as the conducting salt, without the presence of a
halide-based salt, afforded only trace amounts of 3a, indicating that the efficient

formation of 3a involves halide as a mediator. When the reaction was performed in
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the presence of TEMPO, a radical scavenger, less than 6% yield of 3a was detected
(Scheme 5b), as was also the case in the presence of BHT (Scheme 5c¢). These results
implicate the role of a radical intermediate. Electrolysis of the ethyl acetoacetate, 1a,
in the absence of 2 under otherwise identical conditions afforded ethyl
2-bromo-3-oxobutanoate 5a in 25% (Scheme 5d). Moreover, an electrolysis of a
mixture of the a-bromo keto ester 5a and 2 without the addition of a bromide salt,
produced 3a in a 29% yield (Scheme 5e). These results indicate that the brominated
keto ester Sa is likely a key intermediate for the one-pot synthesis of

3-amino-2-thiocyanatobut-2-enoate, under our standardized reaction conditions.

3 LiCIO, / CH3CN NHz @
0O O ICIO, 3
PPN * H N)J\SNH N okt (@)
OEt 2 4 Pt - Pt electrode SCN
2 undivided cell 3a (t
1a 5 mA/cm?2 a (trace)

NH,Br (20 mol%)

s T_EMPO (1.0 equiv) NH, O
)(J)\/lcj)\ + H N)J\SNH LiClIO,/ CH;CN S okt (b)
2 4
OEt Pt - Pt electrode SCN
2 undivided cell
1a 5 mA/cm? 3a (6%)
NH4Br (20 mol%)
S BHT (1.0 equiv) NH, O
O O LiClO4/ CH3CN
" N A= N OEt ©
PN HoN~ “SNH,
OEt Pt - Pt electrode SCN
2 undivided cell
1a 5 mA/cm? 3a (2%)

NH4Br (1.0 equiv)

M LiCIO, / CHACN o 0
(d)
OFt Pt - Pt electrode MOE"
undivided cell Br
5 mA/cm? 5a (25%)
o o j\ LiCIO, / CHsCN NH, O €
MOEt +  HyN” T"SNH,4 Pt - Pt electrode MOE’(
Br undivided cell SCN
5a 2 5 mA/cm?

3a (29%)

Scheme 5. Controlled experiments

Based on the CV analysis and preparative scale electrolysis results, a
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plausible mechanism is proposed and shown in Scheme 5. The reaction sequence
begins with the anodic oxidation of bromide ion to form molecular bromine and
its subsequent reaction with substrates 1 to afford a-brominated structures 5.
During this step, bromide is regenerated. @ The subsequent nucleophilic
substitution reaction of 5 with the carbamodithioate anion, resulting from the
dissociation of the ammonium salt 2, generates intermediate 6 or its tautomer 7.
Once again, the bromide ion is regenerated, this time in the subsequent
thiocyanation (5—6) step. The generated bromide is oxidized again at the surface
of the anode and enter the redox cycle. Therefore, the bromide works as an inner
sphere type redox mediator.** Meanwhile, the cathodic reduction of ammonium
ion affords ammonia, which reacts with 7 to afford the ketoimine 8 and its
tautomer 9. Further anodic oxidation of 9 leads to the expulsion of H,S and

production of the final product 3.*°

SCN H,S HS._ S
3 NH NH 8
9
il n
ZBre O (6] O O
R1)K’)LXR2 R1MXR2 NH3
S S «—» HS S
o o Y A
NH, NH
Ry XRj 6 7
I Br. o o Hszs@ T HNT SNH, N4 I
2
2

Anode Cathode

28r
Scheme 6. Proposed mechanism for the electrochemical synthesis of

3-amino-2-thiocyanato-a,B-unsaturated carbonyl derivatives mediated by NH4Br.

3. Conclusion
In summary, an effective electrochemical protocol for the synthesis of

3-amino-2-thiocyanato-o,-unsaturated carbonyl derivatives has been developed. The
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chemistry proceeds via a paired electrolysis mode in a simple undivided cell, wherein
bromide is oxidized anodically and ammonium ion is reduced cathodically. In the
reaction, an additional conducting salt is not required and a sub-stoichiometric amount
of bromide salt serves both as an inner sphere type redox catalyst and the supporting
electrolyte. The reaction also works using catalytic quantities of Et4,NBr as a redox
catalyst. The ability to scale up the protocol demonstrates its practicality. The paired
electrolysis avoids pre-functionalization, tedious isolation of intermediates, the
utilization of external oxidants, the production of large amount of waste, and therefore
represents an environmentally benign means by which to achieve the transformation.
Application of these ideas and results to other types of reactions is underway in our

laboratory.
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It is really very terrible when toxic H,S is formed. Therefore, when scaling up,
we can try to use thiocyanate such as NH4SCN, KSCN and NaSCN, instead of

carbamodithioate anion for the thiocyanation.
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An efficient paired electrosynthesis involving C-H functionalization and subsequent
C-S and C-N bond formation for the assembly of valuable

3-amino-2-thiocyanato-a,B-unsaturated carbonyl derivatives has been developed.
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1. Experimental

1.1 Instruments and reagents

All melting points are uncorrected. IR spectra were recorded as KBr pellets. All
the material 1a-1n and solvents were commercially available and used without
further purification.

1.2 Typical procedure for the synthesis of 3-amino-2-thiocyanato-2-butenoate

3 by constant current electrolysis.

A 50 mL beaker-type cell was equipped with a Pt anode and a Pt plate
cathode and connected to a DC regulated power supply. To the cell was added ethyl
acetoacetate 1 (1 mmol), amine 2 (1.5 mmol) and NH4Br (50 mol%) dissolved in 15
mL of CH3;CN. The mixture was electrolyzed using constant current conditions (~5
mA/cm?) at 40 °C while stirring. The electrolysis was terminated when the starting
material 1 was consumed as determined by TLC. After the electrolysis, the solvent
was removed under reduced pressure and extraction was carried out using ethyl
acetate (3x15 mL); the combined organic layers were washed with a saturated
aqueous Na,COjs solution, and dried over MgSQy. Purified product was obtained after
column chromatography on silica gel using a solvent mixture of petroleum ether and
ethyl acetate.

1.3 Cyclic voltammetry experiments

Cyclic voltammograms were recorded at room temperature using a Princeton
Applied Research Model 273A  Potentiostat/Galvanostat equipped with
electrochemical analysis software and a conventional three-electrode cell. A glassy
carbon (GC) disk electrode (ca. ¢ = 3 mm) or a Pt disk electrode (ca. ¢ =1 mm) was
used as the working electrode and a Pt wire as the counter electrode. Ag/AgNOs (0.1
M in CH3;CN) was used as a reference electrode. All electrodes for CV experiments

were purchased from CH Instruments, Inc. USA.

The working electrodes were carefully polished on a polishing pad before each

experiment using a fine mesh alumina slurry, and then ultrasonically rinsed with
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acetone. All solutions were degassed by sparging dry nitrogen through the solution for
10 min prior to conducting each electrochemical experiment; a nitrogen atmosphere
was maintained throughout. In each measurement, the three electrodes were fixed in

place, and were not allowed to be disturbed in any manner.

2. Spectroscopic Data

(E)-3-Amino-2-thiocyanato-but-2-enoic acid ethyl ester (3a)"

NH, O
NS
o™
SCN

White solid; m.p. 111 - 113 °C; '"H NMR (400 MHz, CDCl3): 6 1.37 (t,J=7.2 Hz,
3H), 2.42 (s, 3H), 4.25 (q, J = 7.2 Hz, 2H), 5.56 (s, 1H), 9.32 (s, 1H); *C NMR (100
MHz, CDCls): 6 14.4, 23.2, 60.75, 75.5, 113.7, 168.4, 168.6; IR (KBr) (cm™): v 3417,
2986, 2142, 1622, 1269; HRMS calcd for C;HoN,O,S: 185.0385, found: 185.0355.

(E)-3-Amino-2-thiocyanato-but-2-enoic acid methyl ester (3b)*

NH, O

SCN

White solid; m.p. 90 - 93 °C; "H NMR (400 MHz, CDCl3): 6 2.43 (s, 3H), 3.81 (s,
3H), 5.60 (s, 1H), 9.31 (s, 1H); *C NMR (100 MHz, CDCls): 6 23.4, 52.0, 76.0,
113.3, 128.8, 168.5, 168.8; IR (KBr) (cm™): v 3427, 3329, 2950, 2146, 1633, 1276;
HRMS calced for C¢H9N>O,S: 173.0385, found: 173.0381.

(E)-3-Amino-2-thiocyanato-but-2-enoic acid tert-butyl ester (3c)3
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NH, O J<
NS
o

SCN

Pale yellow solid; m.p. 82 - 84 °C; "H NMR (400 MHz, CDCl;): 6 1.56 (s, 9H), 2.37
(s, 3H), 5.42 (s, 1H), 9.25 (s, 1H); *C NMR (100 MHz, CDCl;): 6 23.5, 28.3, 81.2,
113.6, 167.3, 168.0; IR (KBr) (cm™): v 3292, 3101, 1597, 1527, 1430; HRMS calcd
for CoH;sN»0,S: 215.0854, found: 215.0847.

(E)-3-Amino-2-thiocyanato-hex-2-enoic acid ethyl ester (3d)1

NH, O

SCN

Pale yellow solid; m.p. 121 - 123 °C; '"H NMR (400 MHz, CDCl3): 6 1.07 (t,J= 7.6
Hz, 3H), 1.38 (t, J= 6.8 Hz, 3H), 1.69-1.78 (m, 2H), 2.68-2.71 (m, 2H), 4.26 (q, J =
6.8 Hz, 2H), 5.54 (s, 1H), 9.41 (s, 1H); ®C NMR (100 MHz, CDCl;): § 13.7, 14.4,
21.3,38.1,60.8, 75.7, 113.7, 168.7, 171.8; IR (KBr) (cm™): v 3410, 3295, 2965, 2146,
1621, 1266; HRMS calcd for CoH;3N,0,S: 213.0698, found: 213.0707.

(E)-3-Amino-4-methyl-2-thiocyanato-pent-2-enoic acid ethyl ester (3e)

NH, O

SCN

Brown oil; liquid; "H NMR (400 MHz, CDCls): 6 1.23 (d, J = 6.8 Hz, 6H), 1.35 (t, J
= 6.8 Hz, 3H), 3.64-3.71 (m, 1H), 4.24 (q, J = 7.2 Hz, 2H), 5.73 (s, 1H), 9.55 (s, 1H);
3C NMR (100 MHz, CDCly): 0 14.4, 20.3, 32.5, 60.8, 74.3, 113.9, 168.4, 176.5; IR
(KBr) (cm™): v 3424, 2982, 2143, 1668, 1612, 1161; HRMS calcd for CoH 3N,0,S:
213.0698, found: 213.0707.


http://dx.doi.org/10.1039/c6gc00666c

Page 21 of 53

Published on 30 March 2016. Downloaded by University of California- San Diego on 01/04/2016 04:31:04.

Green Chemistry
View Article Online
DOI: 10.1039/C6GC00666C

(E)-3-Amino-2-thiocyanato-but-2-enoic acid diethylamide (3g)

NH, O
NS

N/\
scN L

Pale yellow solid; m.p. 135 - 136 °C; '"H NMR (400 MHz, CDCl3): 6 1.19 (t, J = 6.8
Hz, 6H), 2.23 (s, 3H), 3.47 (q, J = 7.2 Hz, 4H), 5.34 (s, 2H); *C NMR (100 MHz,
CDCls): 6 13.6, 16.3, 41.6, 113.6, 148.7, 163.8, 167.2; IR (KBr) (cm™): v 3293, 3144,
2149, 1592, 1272; HRMS calcd for CoH 6N30S: 214.1014, found: 214.1010.

(E)-3-Amino-2-thiocyanato-but-2-enoic acid p-tolylamide (3h)

NH, O /@/
)\(MH
SCN

Pale yellow solid; m.p. 123 - 125 °C; "H NMR (400 MHz, CDCl): 6 2.35 (s, 3H),
2.44 (s, 3H), 5.60 (s, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 8.25 (s,
1H), 10.15 (s, 1H); ®C NMR (100 MHz, CDCl3): 6 20.9, 24.0, 75.4, 111.7, 121.1,
129.5, 134.1, 135.1, 166.8, 167.8; IR (KBr) (cm™): v 3330, 2156, 1592, 1503, 1231,
803; HRMS calcd for C1,H14N50S: 248.0858, found: 248.0853.

(E)-3-Amino-2-thiocyanato-but-2-enoic acid phenylamide (3i)

Pale yellow solid; m.p. 139 - 140 °C; "H NMR (400 MHz, CDCl;): 6 2.46 (s, 3H),
5.61 (s, 1H), 7.15 (t, J = 7.2 Hz, 1H), 7.35-7.39 (m, 2H), 7.52 (d, J = 7.6 Hz, 2H),
8.32 (s, 1H), 10.17 (s, 1H); *C NMR (100 MHz, CDCls): § 24.0, 75.4, 111.7, 120.9,
124.4, 129.0, 137.8, 166.9, 168.0; IR (KBr) (cm™): v 3387, 3335, 2152, 1529, 1230,
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751; HRMS calcd for C;;H;2N30S: 234.0701, found: 234.0695.

(E)-4-Amino-3-thiocyanato-pent-3-en-2-one (3j)3

NH, O

SCN

Pale yellow solid; m.p. 122 - 123 °C; '"H NMR (400 MHz, CDCls): ¢ 2.43 (s, 3H),
2.51 (s, 3H), 5.98 (s, 1H), 10.97 (s, 1H); *C NMR (100 MHz, CDCl;): 6 24.0, 29.0,
87.0, 113.0, 169.5, 198.1; IR (KBr) (cm™): v 3419, 2978, 2150, 1612, 1255; HRMS
calced for C¢H/N,OS: 155.0279, found: 155.0289.

(E)-3-Amino-2-thiocyanato-cyclohex-2-enone (3k)4

NH,

o

Deep green solid; m.p. 96 - 100 °C; "H NMR (400 MHz, DMSO-de): 6 1.78-1.84 (m,
2H), 2.31 (t, J = 6.4 Hz, 2H), 2.61 (t, J = 6.0 Hz, 2H), 7.79 (s, 1H), 8.19 (s, 1H); *C
NMR (100 MHz, DMSO-d): 6 20.6, 30.3, 37.2, 86.7, 112.9, 171.6, 190.3; IR (KBr)
(cm™): v 3396, 3311, 3193, 2148, 1615, 1522, 1297; HRMS calcd for C;H7N,OS :
167.0279, found: 167.0285.

(E)-3-Amino-5,5-dimethyl-2-thiocyanato-cyclohex-2-enone (31)4

NH,
SCN

Pale yellow solid; m.p. 149 - 151 °C; "H NMR (400 MHz, CDCl3): 0 1.11 (s, 6H),

2.41 (s, 2H), 2.52 (s, 2H), 5.47 (s, 1H), 6.08 (s, IH); *C NMR (100 MHz, DMSO-ds):
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d 27.8, 31.8, 43.4, 50.6, 85.4, 112.9, 170.0, 189.8; IR (KBr) (cm™): v 3392, 3311,
3182, 2964, 2145, 1622, 1527, 1318; HRMS calcd for CoH;1N,OS: 195.0592, found:
195.0600.

(E)-3-Amino-1-phenyl-2-thiocyanato-but-2-en-1-one (3m)

NH, O

SCN

Pale yellow solid; m.p. 141 - 144 °C; '"H NMR (400 MHz, CDCls): ¢ 2.54 (s, 3H),
6.29 (s, 1H), 7.45-7.47 (m, 3H), 7.52-7.54 (m, 2H), 11.22 (s, 1H); *C NMR (100
MHz, CDCly): 0 24.4, 86.7, 113.6, 126.8, 128.1, 129.9, 141.0, 171.9, 196.3; IR (KBr)
(cm'l): v 782, 729, 699, 658, 540; HRMS calcd for C;;HoN,OS: 217.0436, found:
217.0444.

(E)-ethyl-3-(benzylamino)-2-thiocyanatobut-2-enoate (30)

Pale yellow oil; liquid; '"H NMR (400 MHz, CDCl3): 0 1.35 (t, J= 7.2 Hz, 3H), 2.44
(s, 3H), 4.22 (q, J = 7.2 Hz, 2H), 4.53 (d, J = 5.6 Hz, 2H), 7.25-7.40 (m, 5H), 10.57 (s,
1H); *C NMR (100 MHz, CDCly): § 14.4, 17.9, 48.4, 60.7, 74.8, 113.8, 126.9, 128.0,
129.1, 136.6, 169.3, 169.5; IR (KBr) (cm™): v 2981, 2147, 1575, 1455, 1235, 1069;
HRMS calcd for Ci4H;5N>O,S: 275.0854, found: 275.0792.

(E)-ethyl 3-(4-methoxybenzylamino)-2-thiocyanatobut-2-enoate (3p)
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OCHj

White solid; m.p. 64 - 66 °C; "H NMR (400 MHz, CDCL): 6 1.36 (t, J = 7.2 Hz, 3H),
2.47 (s, 3H), 3.83 (s, 3H), 4.22 (q, J = 7.2 Hz, 2H), 4.47 (d, J = 5.6 Hz, 2H), 6.92 (d, J
= 8.4 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H),10.48 (s, 1H); *C NMR (100 MHz, CDCL): 6
14.4, 17.9, 48.0, 55.3, 60.7, 74.6, 113.9, 114.5, 128.4, 128.4, 159.4, 169.3, 169.3. IR
(KBr) (cm™): v 3447, 2148, 1635, 1576, 1516, 1252; HRMS calcd for C;sH;7N,05S:
305.0960, found: 305.0965.

Ethyl 2-amino-4-methylthiazole-5-carboxylate (4a)°

N
)\ o
HZNASiyg

White solid; m.p. 173 - 175 °C; "H NMR (400 MHz, CDCLs): 6 1.35 (t, J = 7.2 Hz,
3H), 2.55 (s, 3H), 4.28 (q, J = 7.2 Hz, 2H), 5.39 (s, 2H); “C NMR (100 MHz,
CDCls): 6 14.4, 17.2, 60.6, 111.5, 160.0, 162.5, 169.2.
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3. Spectroscopy
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