Green Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: V. Rathore and S. KUMAR, *Green Chem.*, 2019, DOI: 10.1039/C9GC00007K.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/green-chem

Journal Name

DOI: 1

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Visible-Light-Induced Metal and Reagent-Free Oxidative Coupling of *sp*² C–H Bond with Organo-Dichalcogenides: Synthesis of 3-Organochalcogenyl Indoles

Vandana Rathore,^a and Sangit Kumar*^a

Here, a unique visible-light-induced method for the organochalcogention of *sp*² C–H bond of indoles and aniline has been presented using diaryl dichalcogenides (S, Se, and Te) and oxygen as an oxidant avoiding photocatalyst, base, catalyst, and reagent in acetone at room temperature. This benign protocol allows to access a wide range of 3-arylselenylindoles, 3-arylthioindoles and even 3-aryltelluroindoles with good to excellent yields. Various functionalities namely, methoxy, and halo either on indoles or aryl dichalcogenide showed amenability to the developed reaction. Further, thiocynation of *sp*² C–H bond of indoles has been accomplished under the visible light induced method. Mechanistic understanding by UV-Visible, EPR spectroscopy, and cyclic voltametry suggest that the light induces electron transfer from electron rich arene to oxygen provide arene radical cation and superoxide radical anion. Subsequently, reaction of radical cation with aryl dichalcogenides provide diaryl chalcogenyl cation which upon removal of proton gave unsymmetrical 3-indolyl aryl chalcogenides.

Introduction

Published on 25 March 2019. Downloaded by University of Edinburgh on 3/25/2019 5:08:21 PM

Organochalcogen compounds having C–E (E = S, Se, and Te and collectively referred as chalcogen) bond have great significance in biological, pharmaceutical industry,¹ structural chemistry,² material sciences,³ and in synthetic chemistry acting as versatile reagents in advanced synthesis and catalysis.⁴ The biological and medicinal properties of organochalcogens have achieved much interest as molecules consisting of these frameworks show antioxidant, antitumor, antimicrobial, anticancer, and antiviral properties,¹ for example, 3-arylselenylindoles I act as an antitumor agent, II shows activity to interfere with the tubulin system by acting as a prevailing inhibitor of its polymerization (Figure 1).⁵

Figure 1. . Chalcogenyl heterocyclic drugs

3-Arylsulfonyl indole III exhibits antineoplastic activity, sulfide IV displays powerful antiviral activity and used in the treatment

Light induced synthesis of diorgano chalocgenides have also been presented by Liu *and* Co-Workers.^{12a,b} and Braga Co-Workers.^{12c} recently. Nonetheless, success is limited to unsymmetrical diaryl selenides. Synthesis of diaryl sulfides and tellurides could not be established under light irradiation presumably due to strong S–S bond of disulfide and labile Te–Te bond of ditelluride. During our investigation, one example of 3phenyl indolyl telluride has been synthesized under base promoted reaction.¹³

Earlier our group have developed chalcogenation (S, Se, Te) of indole, activated/electron rich arenes and ligand directed arenes by using stoichiometric amount of oxidant and transition

^{a.} Department of Chemistry, Indian Institute of Science Education and Research.(IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal Madhya Pradesh India-462066, Email: <u>sangitkumar@iiserb.ac.in</u>

⁺ Electronic supplementary information (ESI) available: Experimental details, spectroscopic data, NMR (¹H, ¹³C, ⁷⁷Se), mass spectra, single crystal structure of **2h** (CCDC: 1887962) and UV visible study. See DOI: 10.1039/x0xx00000x

/iew Article Online

ARTICLE

metal catalyzed methodology, respectively.¹⁴ Although different methodologies have been developed for unsymmetrical diphenyl chalcogenides, however, approaches require long reaction time, use of toxic oxidants such as persulfate,^{14a} halogen,^{14b,15} high boiling solvents namely DMSO¹⁶ and DMF,¹⁷ and stoichiometric amount of additives, 17a, 18 harsh reaction conditions, 19 sensitizer and expensive metal photocatalyst.12 The use of heavy transition metal catalysts is undesirable in the synthesis of bio-relevant molecules and removal of them produces harmful waste which affect the environment and also lower the economy of the reaction. Consequently, mild and sustainable synthetic methods that avoid external oxidants, heavy transition metal catalysts, high boiling solvents, and harsh reaction conditions are highly desirable.

In continuation of our work on organochalcogen chemistry¹⁴ and visible light induced synthesis of heterocycles,²⁰ herein, we disclose an attractive mild visible light induced strategy for the organo chalcogenylation (S, Se, Te) of indole in oxygen atmosphere by using commercially available substrates in acetone. Further, cyclic voltammetry, UV-visible and electron paramagnetic resonance (EPR) spectroscopic studies have been carried out to establish the mechanism of light induced reaction (Scheme 1).

Results and Discussion

The optimization of the reaction was carried out using indole 1a substrate and diphenyl diselenide 1ab as organochalcogenating reagent under visible-light irradiation (5 mL RB). Various solvents were screened in the reaction mixture (entries 1-9) at room temperature. The formation of desired indolyl selenide 2a in THF and benzene was observed in trace amount (Table 1, entries 1 and 2). When CH₂Cl₂, DMF, and DMSO solvents were tested, the desired selenide 2a was obtained in 10, 26, and 28% yields, respectively (Table 1, entries 3, 4 and 5). Similarly, CHCl₃ and EtOH were also tried, however, led poor improvement in the yield of 2a (Table 1, entries 6 and 7). Surprisingly, when reaction was performed in CH₃CN and acetone an observable increase in the yield of the selenide 2a was perceived (Table 1, entries 8 and 9). Acetone found to be superior and 66% yield was observed under oxygen atmosphere (Table 1, entry 9). Reaction was also performed in a dark condition but only trace amount of desired selenide 2a was realized (Table 1, entry 11). Moreover, the presented reaction was also tolerated under sunlight which provided nearly the same yield of 2a (78% vs. 66% in CFL) although a shorter time (6 h for sunlight vs. 16 h for one 26 W CFL bulb) is required (Table 1, entry 11, see SI,

Table 1. Optimization of the reaction conditions ^a

entry	solvent	yield ^b (%)
1	THF	trace
2	Benzene	trace
3	CH ₂ Cl ₂	10
4	DMF	26
5	DMSO	28
6	CHCl ₃	32
7	EtOH	35
8	CH₃CN	60
9	acetone	66
10 ^c	acetone	trace
11 ^d	acetone	78
12 ^e	acetone (degassed under N ₂)	trace

 $^{\rm a}$ The reactions were carried out using 0.2 mmol of indole and 0.1 mmol of diphenyl diselenide in 2 mL of solvent at room temperature under O_2 or N_2 atmosphere for indicated time under a household CFL bulb (26 W) for 16 h. $^{\rm b}$ Percentage isolated yield. c Reaction was carried out in dark. d Reaction was carried out under strict N_2 atm.

page S3 for reaction setup under light irradiation). The reaction provided trace amount of desired product under N_2 atmosphere in degassed acetone (Table 1, entry 12).

Scheme 2. Substrate scope with regard to 3-organoselenylindoles 2b-2w.

Journal Name

Next, the substrate scope was studied under the optimized reaction for a variety of commercially available indoles and diaryl diselenides under sunlight irradiation (Scheme 2). In the beginning, indole with naphthyl diselenide successfully reacted to give respective 3-selenyl indole 2b in 74% yield (Scheme 2). Moreover, N-methyl indole also react effectively with diphenyl diselenide to afford 2c in 76% isolated yield. Indole with electron donating methyl and methoxy groups were well tolerated under the light induced reaction condition and provided methyl and methoxy-substituted indolyl selenides 2d-21. Similarly, halo fluoro, chloro, bromo and even iodo substituent on the phenyl ring of indole showed compatibility with the light induced reaction conditions and afforded respective 3-indolyl selenides 20-2w in 73-85% yields. 2-Bromophenyl selenide 2h is also studied by single X-ray crystal structure analysis (see SI, page S184-S189). Furthermore, coupling of 2-phenyl indole with phenyl diselenide resulted formation of 2-phenyl-3-(phenylselanyl) indole 2m with good (79%) yield. Interestingly, 3-methyl indole also coupled with phenyl diselenide and resulted 2-selenyl indole **2n** in 25% yield. The poor yield of **2n** could be due to low stability of C₂-centered radical cation which is the possible intermediate in the formation of 2n (vide infra, mechanistic part). It seems that both electron-donating and withdrawing groups also with free N-H as well as N-protected indole substrates showed the compatibility to the reaction conditions and afforded respective structurally diverse 3-selenyl indoles.

After variation of substitution in indole, functional group tolerance in diaryl diselenides was investigated under the light induced carbon-selenium bond forming reaction. Diphenyl diselenides with ortho-methyl, para-methyl and para-methoxy substituents coupled with variously substituted indoles to furnish desired unsymmetrical selenides 2e, 2j, 2q and 2t in 74-78% yields. Functional groups such as ortho-and para-halo (F, Cl, Br) and para-CF₃ containing diselenides were also amenable to the reaction and gave variously substituted C₃ selenyl indoles 2f, 2g, 2h, 2k, 2l, 2o-p, 2r-s and 2u-w smoothly. Next, N,Ndimethylaniline as the coupling partner was studied under light induced the carbon-selenium bond forming reaction. N,Ndimethylaniline smoothly reacted with diphenyl diselenide under light induced condition to afford unsymmetrical diaryl selenide 2x in 65% yield. We also explored the synthesis of trimethoxy-substituted phenyl indolyl selenide II which has been studied as tubulin inhibitor.^{5d} For this purpose, 5-methoxy-2-methyl indole was protected by using NaH base and subsequently reacted with methyl iodide to afford N-methyl-5methoxy-2-methyl indole.²¹ Reaction of 3,4,5-trimethoxyphenyl diselenide with N-methyl-5-methoxy-2-methyl indole under light induced reaction condition afforded trimethoxysusbtituted phenyl indolyl selenide II in 25% yield.

Next, we explored another class of 3-chalcogenyl indole under the similar optimized reaction conditions. The formation of carbon-tellurium bond is difficult presumably due to its weak bond strength and metallic nature. Consequently, tellurium undergoes metal-tellurium exchange reaction in TM-catalyzed and electropositive alkali metal mediated reactions. Also, tellurides are easily oxidized due to low electropositive potential, as a result diorgano tellurides are difficult to access under oxidative reaction conditions used for the synthesis of unsymmetrical diorgano chalcogenides. Here, various aromatic phenyl and naphthyl ditellurides were compatible with substituted indole and furnished 3-telluroindoles **3a-3d** in 55-62% yields (Scheme 3).

Similarly, diaryl disulfide reacted well under the light induced reaction condition (Scheme 4). 2-Methyl, 5-methoxy, 5-halo (Cl, Br, I) groups on indole substrates were tested with various aromatic disulfides. The studied diaryl disulfides afforded 3-sulfenyl indole **4a-4g** in 62-78 % yields (Scheme 4). Alkyl *n*-hexyl disulfide substrate was also reacted with indole **1a** under the reaction conditions, however, *n*-hexyl disulfide failed to afford any sulfide under light induced reaction conditions.

Scheme 4. Synthesis of 3-sulfenylindoles

After the success of organochalcogenation of indoles, motivated us to promote the thiocyanation under the optimized conditions.

Scheme 5. Scope of thiocyanation of indoles

en Chemistry Accepted Manus

Journal Name

Organothiocyanates are valuable synthetic intermediates which can be easily transformed into an array of organosulfur molecules.²² Thiocyanide group has been introduced in to arenes by electrophilic thiocyanation using thiocyanate salt in the presence of oxidizing agents namely hypervalent iodine reagents,²³ and related oxidants²⁴ or photocatalyzed reaction conditions.²⁵ We sustained our studies by treating substituted indoles with NH₄SCN (2 equiv) in acetone under sunlight, the corresponding thiocyanated product **5a-5i** were obtained with 51-74% yields (Scheme 5).

Worth comparing the reactivity of diaryl disulfides, diselenides, and ditellurides under the light induced reaction conditions. Reaction hours for disulfide, diselenide and ditelluride substrates are 9-11 h, 6-7 h, and 5-6 h, respectively. Also, yield of tellurides **3a-3d** noticed to be less than the respective selenides, for example 77% for selenium in **2d** vs 62% for tellurium in **3a**. It seems that diselenide substrates are reacted well under the light induced conditions and provided better yields of unsymmetrical selenides whereas disulfides substrates noticed to be more reactive, however, provided poor yields of unsymmetrical tellurides presumably because of weak carbon-tellurium bond.

Mechanistic Study

ARTICLE

Insight into the mechanism involved was made by control experiments, UV-visible spectroscopy and cyclic voltammetry study on the substrates, and EPR study on the reaction mixture (see SI, page S22).

When reaction was performed in the presence of a radical scavenger (TEMPO) the reaction was inhibited, suggesting the participation of radical species in the transformation (Scheme 6, eq. 1). The mass analysis of the reaction mixture indicates the formation of TEMPO-indole adduct **2ab** (m/z = 273.1974, calcd 273.1961, Figure S1, SI page S20) and the mass peak due to selenide **2a** was not observed.

Scheme 6. Control experiments for mechanistic study

Absorption Spectra. The UV-visible study was carried out for Indole and diphenyl diselenide. Absorption spectra of Indole **1a** (5 x 10^{-3} M) in acetonitrile shows an absorption in visible range 380-420 nm while diphenyl diselenide **1ab** absorb in UV range at 331 nm in acetonitrile (Figure 2).

Figure 2. Absorption spectra of indole 1a, diphenyl diselenide 1ab and 2a in acetonitrile

Cyclic Voltammetric Study

To have insight into redox behaviour of indole 1a, cyclic

4 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Next, reaction was performed in the presence of another, radical scavenger 2,6-di-*tert*-butyl-4-methylphen@l (BHT)?/ExpectedIV, the formation of desired selenide **2a** was also not observed (Scheme 6, eq. 2). We also studied the reaction of *para*toluenethiol with 2-methyl indole under the reaction conditions (eq 3). Desired sulfide **4a** was not realized, although, trace of oxidized *para*-tolyl disulfide was observed.

Published on 25 March 2019. Downloaded by University of Edinburgh on 3/25/2019 5:08:21 PM

Journal Name

voltammetry study was carried out (Figure 3). The Cyclic voltammogram (CV) of 1a shows a redox potential of +0.497 V (Figure 3). The observed oxidation potential of 1a is +0.455 V. Indole **1a** has a triplet exited state energy of +3.0355 V.²⁶ Thus, excited state oxidation potential $E_{1/2}^{\text{ox}*}$ **1a**^{+/3}**1a**^{*} is -2.59 V ^{27,28} and the reduction potential of oxygen into hydrogen peroxide is +0.65 V (vs. SCE) which suggests that the oxygen could oxidize indole.

Emission quenching experiment (Stern Volmer study)

Figure 4 The emission quenching of indole 1a by diphenyl diselenide 1ab

Emission intensities were recorded using a HORIBA Jobin Yvon Fluorolog3 Spectrofluorimeter. Initially, emission spectra of 10 μ M indole in CH₃CN was collected. Then, appropriate amount of quencher was added with increasing concentration and subsequent emission spectrum were recorded (Figure 4).

Figure 5 The modified Stern Volmer plot for guenching indole 1a fluorescence by the quencher diphenyl diselenide 1ab yields a linear plot

Here I_0 and I denote the intensities of the emission in the absence and presence of the guencher DPheoducy Chingoeurve was plotted using the modified Stern Volmer equation, and the Stern Volmer constant (K_{sv}) was calculated to be 13.34 mM⁻¹ (Figure 5).

Mechanism

Based on the control experiments, it is equitable to assume that indole, excited by visible light, resulted in radical cation I upon reaction with oxygen (Scheme 7). Oxidation potential of indole is +0.455 V where reduction potential of oxygen into hydrogen peroxide is +0.65 V, which suggests that oxidation of indole by oxygen is feasible by -1.94 V. Indolyl radical cation I could be stabilized resonance to form II. Indolyl radical II would add to diaryl dichalcogenide, forming an arylchalcogenylated indole cation III and a radical PhE[•] IV. The anion radical of O2^{•-} generated by visible light irradiation, would abstract a proton from cation III, thus, would facilitate the formation of desired unsymmetrical selenide 2a' and perhydroxyl radical H₂O[•] (Scheme 7). In the second cycle, perhydroxyl radical H₂O[•] would abstract the electron from 1a and subsequent abstraction of proton from III gave hydrogen peroxide. The formation of hydrogen peroxide in the reaction mixture of indole 1a and diphenyl diselenide 1ab was also confirmed by ¹H NMR experiment (please see SI, page S24) which shows a peak at 10.14 ppm. Intermediate aryl chalcogenyl radical IV could dimerize to provide diaryl dichalcogenides. Also aryl chalcogenyl radical IV could couple with indolyl radical II to afford indolyl aryl chalcogenide cation III. Formation of aryl thiols and selenols under optimized reaction conditions seem unlikely as our control experiment suggest that the reaction of para-toluenethiol with indole does not provide any indolyl tolyl sulfide 4a.

Scheme 7. Proposed mechanism for C3-chalcogenylation of indoles

In summary, we have developed a benign oxidant, photocatalyst and transition-metal-free visible light induced methodology for the construction of carbon-chalcogen (S, Se, Te) bond that enables 3-chalcogenyl indole. The mild reaction conditions tolerate various diaryl selenides/tellurides/sulfides

Conclusions

Journal Name

ARTICLE

and ammonium thiocyanate with substituted indole for this transformation and accessed heterocyclic unsymmetrical chalcogenides in excellent yields. We believe that the developed methodology is sustainable and easy to their potentially operational procedures.

Acknowledgements

We are grateful for the financial support from DST-SERB New Delhi (EMR/2015/000061). VR acknowledges UGC for fellowship [23/12/2012(ii)EU-V] and also thankful to Miss Cavya Jose for the column chromatography of the reaction mixture of tellurides **3a-3d**. SK thanks to Dr. Apurba Lal Koner and Mr. Tanoy Dutta for emission quenching experiment and Dr. Sadhan Jana for cyclic voltammetry study.

Notes and references

- 1 Application in biology: C. W. Nogueira, G. Zeni, J. B. T. Rocha, Chem. Rev. 2004, **104**, 6255.
- 2 K. Selvakumar and H. B. Singh, Chem. Sci., 2018, 9, 7027
- 3 a) S. Patai, Z. Rappoport, Wiley, C. In *The Chemistry of Organic Selenium and Tellurium Compounds*; John Wiley and Sons: New York, NY, 1987; Vol. 2; b) J. Hellberg, T. Remonen, M. Johansson, O. Inganas, M. Theander, L. Engman, P. Eriksson, *Synth. Met.* 1997, 84, 251; c) G. Evano, N. Blanchard, M. Toumi, *Chem. Rev.* 2008, 108, 3054; d) S. Kumar, H. Johansson, T. Kanda, L. Engman, T. Müller, H. Bergenudd, M. Jonsson, G. F. Pedulli, R. Amorati, L. Valgimigli, *J. Org. Chem.* 2010, 75, 716; e) T. Wirth, *Organoselenium Chemistry: Synthesis and Reactions*; Wiley-VCH: Weinheim, Germany, 2012; pp 1-65.
- 4 For application in the synthesis of organic compounds: a) M. Besev, L. Engman, Org. Lett. 2002, 4, 3023; b) B. Berlin, C. Ericsson, L. Engman, J. Org. Chem. 2003, 68, 8386; c) D. M. Freudendahl, S. Santoro, S. A. Shahzad, C. Santi, T. Wirth Angew. Chem. Int. Ed. 2009, 48, 8409; d) P. Srivastava, L. Engman, Tetrahedron Lett. 2010, 51, 1149; e) Y. Okada, M. Oba, A. Arai, K. Tanaka, K. Nishiyama, W. Ando, Inorg. Chem. 2010, 49, 383.
- 5 a) G. L. Regina, R. Bai, W. M. Rensen, E. D. Cesare, A. Coluccia, F. Piscitelli, V. Famiglini, A. Reggio, M. Nalli, S. Pelliccia, E. D. Pozzo, B. Costa, I. Granata, A. Porta, B. Maresca, A. Soriani, M. L. Iannitto, A. Santoni, J. Li, M. M. Cona, F. Chen, Y. Ni, A. Brancale, G. Dondio, S. Vultaggio, M. Varasi, C. Mercurio, C. Martini, E. Hamel, P. Lavia, E. Novellino, R. Silvestri, *J. Med. Chem.* 2013, **56**, 123; b) M. Nuth, H. C. Guan, N. Zhukovskaya, Y. L. Saw, R. P. Ricciardi, *J. Med. Chem.* 2013, **56**, 3235; c) Q. Guan, C. M. Han, D. Y. Zuo, M. A. Zhai, Z. Q. Li, Q. Zhang, Y. P. Zhai, X. W. Jiang, K. Bao, Y. L. Wu, W. G. Zhang, *Eur. J. Med. Chem.* 2014, **87**, 306; d) Z. Y. Wen, J. W. Xu, Z. W. Wang, H. Qi, Q. L. Xu, Z. S. Bai, Q. Zhang, K. Bao, Y. L. Wu, W. G. Zhang, *Eur. J. Med. Chem.* 2015, **90**, 184.
- S. Kumar, L. Engman, L. Valgimigli, R. Amorati, M. G. Fumo, G. F. Pedulli, J. Org. Chem. 2007, 72, 6046.
- 7 a) S. Ranjit, R. Lee, D. Heryadi, C. Shen, J. Wu, P. Zhang, J. Org. Chem. 2011, **76**, 8999; b) Q. Wu, D. Zhao, X. Qin, J. Lan, J. You, Chem. Commun. 2011, **47**, 9188; c) P. Anbarasan, H. Neumann, M. Beller, Chem. Commun. 2011, **47**, 3233; d) M. Chen, Z-T. Huang, Q-Y. Zheng, Chem. Commun. 2012, **48**, 11686; e) F. L. Yang, S. K. Tian, Angew. Chem. Int. Ed. 2013, **52**, 4929; f) T. Hostier, V. Ferey, G. Ricci D. G. Pardo, J. Cossy, Org. Lett. 2015, **17**, 3898; g) T. Hostier, V. Ferey, G. Ricci, D. G. Pardo, J. Cossy, Chem. Commun. 2015, **51**, 13898. h) L.Bering,

L. D'Ottavio, G. Sirvinskaitea, A. P. Antonchick, Chem. Commun. 2018, 54, 13022. DOI: 10.1039/C9GC00007K

- a) X. L. Fang, R. Y. Tang, P. Zhong, J. H. Li, Synthesis 2009, 4183;
 b) W. Ge, Y. Wei, Green Chem. 2012, 14, 2066; c) J. B. Azeredo, M. Godoi, G. M. Martins, C. C. Silveira, A. L. Braga, J. Org. Chem. 2014, 79, 4125; d) N. L. Ferreira, J. B. Azeredo, B. L. Fiorentin, A. L. Braga, Eur. J. Org. Chem. 2015, 5070; e) B. M. Vieira, S. Thurow, J. S. Brito, G. Perin, D. Alves, R. G. Jacob, C. Santi, E. J. Lenardão, Ultrasonics Sonochemistry 2015, 27, 192; f) X. Zhang, C. Wang, H. Jiang, L. Sun, Chem. Commun. 2018, 54, 8781.
- 9 a) H. Cao, J. Yuan, C. Liu, X. Hu, A. Lei, *RSC Adv.* 2015, 5, 41493;
 b) Q. Lu, H. Wang, P. Peng, C. Liu, Z. Huang, Y. Luoa, A. Lei, *Org. Chem. Front.* 2015, 2,908; c) G. Zhang, C. Liu, H. Yi, Q. Meng, C. Bian, H. Chen, J-X. Jian, L-Z Wu, A. Lei, *J. Am. Chem. Soc.* 2015, 137, 9273; d) H. Wang, Q. Lu, C. Qian, C. Liu, W. Liu, K. Chen, A. Lei, *Angew. Chem. Int. Ed.* 2016, 55, 1094; e) H. Wang, Q. Lu, C-W Chiang, Y. Luo, J. Zhou, G. Wang, A. Lei *Angew. Chem. Int. Ed.* 2017, 56, 595.
- S. Kumar, L. Engman, J. Org. Chem. 2006, **71**, 5400; b) V. G. Ricordi, C. S. Freitas, G. Perin, E. J. Lenardão, R. G. Jacob, L. Savegnago, D. Alves, Green Chem. 2012, **14**, 1030; c) D. Kundu, S. Ahammed, B. C. Ranu, Green Chem. 2012, **14**, 2024; d) N. Mukherjee, T. Chatterjee, B. C. Ranu, J. Org. Chem. 2013, **78**, 11110; e) A. Kumar, S. Kumar Tetrahedron 2014, **70**, 1763; h) D. Kundu, S. Ahammed, B. C. Ranu, Org. Lett. 2014, **16**, 1814.
- a) N. Taniguchi, J. Org. Chem. 2007, 72, 1241; b) M. S. Silva, J. V. Comasseto, Tetrahedron 2011, 67, 8763; c) B. Mohan, S. Hwang, S. Jang, K. H. Park, Synlett 2014, 25, 2078; d) M. Matsumura, H. Kumagai, Y. Murata, N. Kakusawa, S. Yasuike, J. Organomet. Chem. 2016, 807, 11; e) N. Taniguchi, Tetrahedron 2016, 72, 5818; f) P. Maity, S. Ahammed, R. N. Manna, B. C. Ranu, Org Chem Front. 2017, 4, 69; g) J. Rafique, S. S. Saba, M. S. Franco, L. Bettanin, A. R. Schneider, L. T. Silva, A. L. Braga, Chem. Eur. J. 2018, 24, 4173.
- 12 a) Q-B. Zhang, Y-L. Ban, P-F. Yuan, S-J. Peng, J-G. Fang, L-Z. Wu, Q. Liu, *Green Chem*. 2017, **19**, 5559; b) P-F. Yuan, Q-B. Zhang, X-L. Jin, W-L. Lei, L-Z. Wu, Q. Liu, *Green Chem*. 2018, **20**, 5464; c) S. Saba, J. Rafique, M. S. Franco, A. R. Schneider, L. Espíndola, D. O. Silva, A. L. Braga *Org. Biomol. Chem*. 2018, **16**, 880.
- 13 S. K. Bhunia, P. Das, R. Jana, Org. Biomol. Chem. 2018, 16, 9243.
- 14 a) C. D. Prasad, S. J. Balkrishna, A. Kumar, B. S. Bhakuni, K. Shrimali, S. Biswas, S. Kumar, *J. Org. Chem.* 2013, **78**, 1434; b)
 A. Kumar, B. S. Bhakuni, C. D. Prasad, S. Kumar, S. Kumar, *Tetrahedron* 2013, **69**, 5383. (c) C. D. Prasad, S. Kumar, M. Sattar, A. Adhikary, S. Kumar, *Org. Bio. Chem.* 2013, **11**, 8036. (d) C. D. Prasad, M. Sattar, R. Kumar, S. Kumar, *Org. Lett.* 2017, **19**, 774. (e) M. Sattar, M. Shareef, K. Patidar, S. Kumar, *J. Org. Chem.* 2018, **83**, 8241.
- 15 E. G. Zimmermann, S. Thurow C. S. Freitas, S. R. Mendes, G. Perin, D. Alves, R. G. Jacob, E. J. Lenardão, *Molecules* 2013, 18, 4081; b) C. C. Silveira, S. R. Mendes, L. Wolf, G. M. Martins, L. V. Mühlen, *Tetrahedron* 2012, 68, 10464.
- 16 a) W. Ge, Y. Wei, *Green Chem.* 2012, 14, 2066; b) J. B. Azeredo,
 M. Godoi, G. M. Martins, C. C. Silveira, A. L. Braga, *J. Org. Chem.* 2014, 79, 4125; c) F. H. Xiao, H. Xie, S. W. Liu, G. J. Deng, *Adv. Synth. Catal.* 2014, 356, 364.
- 17 a) N. Taniguchi, *J. Org. Chem.*, 2015, **80**, 7797; b) V. Rathore, A. Upadhyay, *Org. Lett.*, 2018, **20**, 6274.
- 18 N. Taniguchi, and T. Onami, J. Org. Chem. 2004, 69, 915.
- 19 a) Z. Li, J. Q. Hong, X. J. Zhou, *Tetrahedron* 2011, **67**, 3690; b)
 W. Ge, Y. Wei, *Synthesis* 2012, **44**, 934; c)) X. L. Fang, R. Y. Tang, P. Zhong, J. H. Li, *Synthesis* 2009, 4183; d) J. S. Yadav, B. V. S. Reddy, Y. J. Reddy, K. Praneeth, *Synthesis* 2009, 1520; d)
 Y. Maeda, M. Koyabu, T. Nishimuraand, S. Uemura, *J. Org. Chem.* 2004, **69**, 7688.

PM

6 | J. Name., 2012, 00, 1-3

View Article Online DOI: 10.1039/C9GC00007K

- Journal Name
- 20 S. Jana, A. Verma, R. Kadu, S. Kumar, Chem. Sci. 2017,8, 6633.
- 21 X. Chen, G. Zheng, Y. Li, G. Song, X. Li, Org. Lett. 2017, 19, 6184.
- 22 a) T. Nguyen, M. Rubinstein, C. Wakselman, J. Org. Chem. 1981, 46, 1938; b) Z. H. Zhang, L. S. Liebeskind, Org. Lett. 2006, 8, 4331; c) R. Riemschneider, J. Am. Chem. Soc. 1956, 78, 844; d) Y. T. Lee, S. Y. Choi, Y. K. Chung, Tetrahedron Lett. 2007, 48, 5673 and references cited therein.
- 23 Hypervalent iodine reagents a) A. De Mico, R. Margarita, A. Mariani, G. Piancatelli, Tetrahedron Lett. 1996, 37, 1889; b) A. De Mico, R. Margarita, A. Mariani, G. Piancatelli, Chem. Commun. 1997, 1237; c) J. S. Yadav, Reddy, B. V. S.; B. B. Murali Krishna, Synthesis 2008, 3779.
- 24 a) V. K. Jadhav, R. R. Pal, P. P. Wadgaonkar, M. M. Salunkhe, Synth. Commun. 2001, 31, 3041; b) J. S. Yadav, B. V. S. Reddy, M. K. Gupta, Synthesis 2004, 1983; c) J. S. Yadav, B. V. S. Reddy, A. D. Krishna, C. S. Reddy, A. V. Narsaiah, Synthesis 2005, 961; d) D. S. Bhalerao, K. G. Akamanchi, Synlett 2007, 2952; e) J. S.; Yadav, B. V. S.; Reddy, B. B. M. Krishna, Synthesis 2008, 3779; f) A. Dey, A. Hajra, Adv. Synth. Catal. 2018, 360, 1.
- 25 Photocatalyzed reaction conditions S. Mitra, M. Ghosh, S. Mishra, A. Hajra J. Org. Chem. 2015, 80, 8275; b) W. Zhang, J. Tang, W. Yu, Q. Huang, Y. Fu, G. Kuang, C. Pan, G. Yu, ACS Catal. 2018, 8, 8084.
- 26 E. M. Evleth, O. Chalvet, P. Bamiere, J. Phys. Chem. 1977, 81, 1913.
- For calculation of oxidation potential $(E_{1/2}^{ox*})$ in excited state 27 from ground state $(E_{1/2}^{ox})$: N. A. Romero, D. A. Nicewicz, *Chem.* Rev., 2016, 11, 10075.
- 28 Oxidation potential $(E_{1/2}^{\rm ox\,*})$ Indole ${\bf 1a}$ in excited state was calculated by using formulae: $(E_{1/2}^{0x*} \mathbf{1a^{*}}/\mathbf{31a^{*}}) =$ ground state oxidation potential ($E_{1/2}^{\text{ox}}$ 1a^{•+}/ ³1a^{*}) – triplet excited state energy $(E_{0,0}^{T})$ of **1a**. Indole **1a** has a triplet energy $(E_{0,0}^{T})$ 70 kcal mol⁻¹ or 3.0355 V. Oxidation potential $(E_{1/2}^{0X*}) = (E_{1/2}^{0X})$ $\mathbf{1a^{*+/3}1a^*}$) - $E_{0,0}^{\mathrm{T}}$ +0.45 - 3.0355 = -2.5855 V \approx -2.59 V.

Breen Chemistry Accepted Manuscript

Visible-Light-Induced Metal and Reagent-Free Oxidative Coupling. of Spectro Online C—H Bond with Organo-Dichalcogenides: Synthesis of 3-Organochalcogenyl Indoles

Vandana Rathore and Sangit Kumar*

Published on 25 March 2019. Downloaded by University of Edinburgh on 3/25/2019 5:08:21 PM

Here, a unique visible-light-induced method for the organochalcogention of sp^2 C—H bond of indoles and aniline has been presented using diaryl dichalcogenides (S, Se, and Te) and oxygen as an oxidant avoiding photocatalyst, base, catalyst, and reagent in acetone at room temperature. This benign protocol allows to access a wide range of 3-arylselenylindoles, 3arylthioindoles and even 3-aryltelluroindoles with good to excellent yields. Various functionalities namely, methoxy, and halo either on indoles or aryl dichalcogenide showed amenability to the developed reaction. Further, thiocynation of of sp^2 C—H bond of indoles has been accomplished under the visible light induced method. Mechanistic understanding by UV-Visible, EPR spectroscopy, and cyclic voltametry suggest that the light induces electron transfer from electron rich arene to oxygen provide arene radical cation and superoxide radical anion. Subsequently, reaction of radical cation with aryl dichalcogenides provide diaryl chalcogenyl cation which upon removal of proton gave unsymmetrical 3-indolyl aryl chalcogenides.