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ABSTRACT: Glycogen synthase kinase-3β (GSK3β) is involved in many pathological conditions and represents an attractive 
drug target. We previously reported dual GSK3β/p38α mitogen-activated protein kinase inhibitors and identified N-(4-(4-(4-
fluorophenyl)-2-methyl-1H-imidazol-5-yl)pyridin-2-yl)cyclopropanecarboxamide (1) as a potent dual inhibitor of both 
target kinases. In this study, we aimed to design selective GSK3β inhibitors based on our pyridinylimidazole scaffold. Our 
efforts resulted in several novel and potent GSK3β inhibitors with IC50 values in the low nanomolar range. 5-(2-
(Cyclopropanecarboxamido)pyridin-4-yl)-4-cyclopropyl-1H-imidazole-2-carboxamide (6g) displayed very good kinase 
selectivity as well as metabolically stability and inhibits GSK3β activity in neuronal SH-SY5Y cells. Interestingly, we observed 
the importance of the 2-methylimidazole’s tautomeric state for the compound activity. Finally, we reveal how this crucial 
tautomerism effect is surmounted by imidazole-2-carboxamides, which are able to stabilize the binding via enhanced water 
network interactions, regardless of their tautomeric state.

Glycogen Synthase Kinase 3β (GSK3β) is a ubiquitously 
expressed serine/threonine kinase, which plays an 
important role in a variety of different cell signaling 
pathways. GSK3β plays a crucial role in almost every 
pathway leading to the hallmarks of Alzheimer’s disease1-2 
and is often referred to as a tau-kinase due to its capacity to 
modulate tau hyperphosphorylation. Overactivity of GSK3β 
has also been connected to an increased production of β-
amyloids,3 neuroinflammation and oxidative stress.4 

GSK3β has also been associated with a plethora of other 
pathological conditions such as diabetes,5 cancer,6-8 
schizophrenia,9 bipolar disorders10 and osteoporosis.11 
Thus, GSK3β is considered to be an attractive drug target. 

We recently reported a series of pyridinylimidazoles as 
dual GSK3β/ p38α MAP kinase (MAPK) inhibitors and 
identified trisubstituted imidazole 1 as a potent balanced 
inhibitor of both target enzymes (Figure 1).12 Furthermore, 
we observed that the removal of the para-fluorophenyl ring 

(2), which might be located in the hydrophobic region (HR) 
I of the ATP binding site, resulted in a significantly reduced 
GSK3β inhibition with a complete loss of activity against 
p38α MAPK. In this study, our aim was to further improve 
the activity of our pyridinylimidazole scaffold while shifting 
the selectivity towards GSK3β. 
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IC50 (GSK3) = 0.053 µM
IC50 (p38) = 0.019 µM

IC50 (GSK3) = 1.68 µM
IC50 (p38) > 10 µM

Figure 1. Pyridinylimidazole-based lead compounds 1 and 2.
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Recently, employing quantum mechanics (QM) to drug 
design and development has become increasingly popular. 
For instance, QM can be utilized to improve docking and 
scoring, determining protonation states and optimizing 
structures as well as ligand binding energies.13-14 Also, the 
importance of water in drug design is gaining more and 
more emphasis.15 The effect of water network stabilization 
for ligand binding has been demonstrated e.g. by Klebe and 
coworkers.16 In addition, molecular dynamics (MD) 
simulations offer valuable insights into ligand binding 
interactions.17 By utilizing QM calculations with MD 
simulations we disclosed the importance of tautomerism 
and water networks for the activity of our 
pyridinylimidazole compounds. In this case, the observed 
SAR could not have been clarified by simplified 
computational tools, such as docking, which has major 
caveats especially related to the solvent effects and 
dynamics of the system18 that were found determining for 
the activity differences among imidazoles.
Results and discussion

Detailed descriptions of the synthetic sequences are 
reported in Schemes S1-S14 (Supporting Information, SI).

To address the alarming diffuse trend of increasing the 
inhibitor logP value in the lead optimization,19 we 
monitored the lipophilic ligand efficacy (LLE) of the 
synthesized compounds.20 The LLE of our lead compounds 
1 and 2 was already high with values of 5.10 and 4.40, 
respectively (Table 1).

Initially, we examined the influence of different 
substituents reaching into the HR I of GSK3β. To this end, 
we synthesized a series of 2-methylpyridinylimidazoles 
with different (cyclo)aliphatic and aromatic moieties 
attached to the imidazole-C4 position. 

Replacing the aromatic ring with cycloalkyl moieties at 
the imidazole-C4 position (3j-m) resulted in a substantial 
loss of activity, leading to modest inhibitors of GSK3β in the 
micromolar range displaying complete inactivity against 
p38α MAPK. 

Compounds with bulky moieties, such as 2-naphtyl (3h), 
were inactive, probably because of a steric clash in the HR I.

Replacement of the para-fluorophenyl ring with the 5-
membered heteroaromatic rings thiophene (3d) or furan 
(3e) as well as other minor changes on the para-
fluorophenyl ring, such as addition of a methyl (3o) or a 
second fluorine atom (3i), led to inhibitors with slightly 
increased IC50 values compared to 1. Introduction of a 
pyrimidine (3g) at the imidazole-C4 led to a completely 
inactive derivative. The less lipophilic ortho- and meta-
hydroxyphenyl derivatives (3a and 3b, respectively) turned 
out to be potent GSK3β inhibitors with sound LLE values, 
while the para-hydroxyphenyl compound (3c) displayed 
substantially diminished inhibition against both kinases. All 
potent GSK3β inhibitors bearing an aromatic ring in the HR 
I, however, remained potent inhibitors of p38α MAPK, 
except for 3e with 10-fold selectivity for GSK3β. 

To elucidate the observed dramatic loss of activity of 
certain compounds, we investigated the influence of the R1-
substituent on the imidazole ring’s tautomeric state. To this 
end, we conducted QM calculations to assess the probability 
of different tautomeric states and conformations for the 

compounds (Figure 2, see SI for details). Indeed, QM results 
indicated that the active compounds generally prefer the 
tautomer A or at least represent a reasonable population of 
this tautomeric state (Table S3). For instance, the low 
nanomolar inhibitors 3a, 3b, 3d and 3e, display a clear 
preference for tautomer A (>71.5%). In turn, the Less active 
compounds 3c and 3j-m, display a clearly diminished 
population of tautomer A (<17%).

Figure 2. (A) The imidazole ring has two potential tautomeric 
forms: in tautomer A, the nitrogen next to the R1-group is 
unprotonated and can act as a H-bond acceptor, whereas in 
tautomer B it is protonated and can act as a H-bond donor. (B) 
The R1-group influences the preferred tautomeric state and 
conformation. As an example, the lowest energy conformations 
(in solution) of the highly active compound 3d and of the 
poorly active compound 3l are shown here. Compound 3d 
prefers the active conformation with tautomer A and 3l exists 
in the inactive conformation with tautomer B.

Obviously, the preference of a specific tautomeric state 
does not fully determine the compound activity. For 
example, the inactive compound 3g, clearly prefers 
tautomer A (86.9%), but the pyrimidine group is 
suboptimal for the hydrophobic region (solvent 
preference). On the contrary, the highly lipophilic para-
fluorophenyl substituent in compound 1 clearly increases 
potency, despite its preference for tautomer B. 
Interestingly, the inactive 2-methoxyphenyl derivative 3f 
appears only in a specific conformation as a tautomer A, 
wherein the methoxy-group folds on top of the pyridinyl 
ring (Table S3), which most likely impedes the binding. 
Overall, the tautomeric state preference partially, but not 
solely, determines the 2-methylimidazole activity. 
Next, we attempted to improve the binding affinity of 1 via 
enhancing interactions at the solvent interface in the HR II. 
To this end, MD simulations (200 ns) demonstrated the 
potential suitability of compounds bearing N-(pyridin-2-
yl)tri- or tetrazolepropanamide moieties (4a,b; Figures S2–
S4, SI). Both displayed cation-π interactions with the 
Arg141 and improved solvent interactions combined with 
significantly lower log P values (Table 2) (see SI for synthetic 
details). The simulation of 4a highlighted an identical 
binding mode for the triazole ring as observed in a crystal 
structure (PDB ID: 5K5N).21 
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Table 1. Activity and Physicochemical Parameters of 2-Methylimidazoles 3a-o. 

N

HN

O

N
H

N
CH3

R1

Cpd R1 IC50 ± SEM [µM]
GSK3βa

IC50 ± SEM [µM]
p38α MAPK

Alog Pb LLE Tautomer A 
population (%)c d

1 F 0.053 ± 0.012d 0.019d,e 2.88 4.40 29.386

2 H 1.68 ± 0.12d >10d,e 0.72 5.10 n.d.f

3a
OH

0.011 ± 0.001 0.050 2.40 5.56 85.508

3b
HO

0.043 ± 0.005 0.024 2.40 4.97 2.834 (93.885g)

3c HO 0.893 ± 0.001 1.851 2.40 3.65 12.687

3d
S

0.069 ± 0.000 0.048 2.40 4.77 81.318

3e
O

0.099 ± 0.033 0.987 1.84 5.17 71.467

3f
O CH3

>10 0.504 2.65 - 31.19

3g
N

N
>10 >10 0.89 - 85.892

3h >10 0.081 3.58 - 20.289

3i
F

F

0.059 ± 0.007 0.019 3.08 4.15 n.d.f

3j 3.09 ± 0.30 >10 1.76 3.75 6.014

3k 4.11 ± 0.19 >10 2.22 3.17 10.229

3l 5.46 ± 0.01 >10 2.68 2.59 16.734

3m 4.64 ± 1.16 >10 3.13 2.20 16.552

3n
O

O 0.467 ± 0.006 0.030 2.44 3.89 n.d.

3o
F

H3C

0.117 ± 0.015 0.007 3.36 3.57 n.d.

an=2; bcalculated with Canvas (Schrödinger LLC)22; caccording to QM Conformer & Tautomer Predictor of Maestro (Schrödinger, 
LLC, New York, NY, 2018) (see SI and Table S3 for details); dvalues taken from Heider et al.12;  edetermined by ELISA activity assay23; 
gthe intramolecular H-bond to amide conformation excluded (see Table S3); fn.d. = not determined.

Page 3 of 9

ACS Paragon Plus Environment

ACS Medicinal Chemistry Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 2. Activity and Physicochemical Parameters of N-(pyridin-2-yl)tri- or tetrazolepropanamide bearing 2-
Methylimidazoles 4a-d. 

N

HN

N
H

N
CH3

R1

O

R2

Cpd R1 R2

IC50 ± SEM [µM]
GSK3βa

IC50 ± SEM [µM]
p38 Alog Pb LLE

4a
F N

N

N
0.082 ± 0.007 0.041 1.16 5.92

4b
F N

N
NN

0.072 ± 0.008 0.038 1.83 5.32

4c
H N

N

N
5.18 ± 0.10 >10 -0.99 6.27

4d
H N

N
NN

4.42 ± 0.29 >10 -0.32 5.65

an=2; bcalculated with Canvas (Schrödinger LLC)22.

Compounds 4a and 4b show a similar potency as the lead 
compound 1 but with enhanced LLE values. Removal of the 
para-fluorophenyl anchor resulted in compounds 4c and 
4d, both displaying substantially reduced inhibitory 
potency. This clearly results from the negative log P values 
of these compounds, which seems to compromise their 
binding affinity (entropic penalty). Nevertheless, these 
compounds still exhibit mediocre target inhibition and fit 
nicely into the SAR of the series.
To overcome the highlighted tautomerism-related issues 
observed with the 2-methylimidazoles, we designed and 
synthesized a series of imidazole-2-carboxamides. Instead 
of the acceptor nitrogen of tautomer A, the 2-carboxamides 
could neglect the tautomeric state of the imidazole by 
presenting the amide oxygen towards the Lys85 region. 
This amino acid side chain has been successfully targeted by 
carbonyl groups, e.g. Pfizer disclosed 6-amino-4-
(pyrimidin-4-yl)pyridones interacting with Lys85,24 while 
Bristol-Myers Squibb reported potent 
pyrrolopyridinones.25 Moreover, we investigated ethyl 
esters as well as a hydroxyl moiety for their suitability to 
address the Lys85 residue.

In contrast to methylimidazole 2, imidazole2-
carboxamide 6a showed a >35-fold improvement in 
potency (LLE 7.49) (Table 2). In case of compound 1, the 
introduction of a carboxamide moiety at the imidazole-C2 
position (6h) did not substantially improve the inhibitory 
activity. Installation of an ethyl ester (5a and 5c) yielded 
mediocre inhibitors highlighting the importance of the 
amide function. Introduction of a hydroxy moiety at the 
imidazole-C2 methyl group resulted in 6i showing a two-
fold reduction in GSK3β inhibition and no shift in the IC50 
value of p38α MAPK. In most cases, imidazole-2-
carboxamides were better inhibitors of GSK3β than their 
corresponding 2-methylimidazole counterparts (e.g. 6c vs 
3f, 6e vs 3o). Only the already potent 2-hydroxyphenyl 3a 
(vs 6b) displayed no improvement in activity. 

The most striking differences existed in cycloalkyl 
substituted compounds 6f and 6g exhibiting dramatically 
improved potency against GSK3β along with higher LLE 
values compared to the corresponding 2-methylimidazole 
derivatives 3m and 3j, which displayed only mediocre 
activities and preferred the tautomer B. Moreover, all three 
compounds showed significant selectivity over p38α MAPK, 
and compound 6g was among the best from this series 
(GSK3β, IC50: 0.003 µM; p38α MAPK, IC50: >10 µM; LLE 
7.64).

To further investigate these dramatic activity differences, 
we first confirmed that the amide group replacing the 
methyl group on the imidazole-C2 position had no influence 
on the tautomeric state preference (Table S3). As an 
example, the cyclopropyl-substituted compounds 3j and 6g 
display an analogous population of the tautomeric state A, 
namely 6.0% and 6.7% for 3j and 6g, respectively. 
Nevertheless, the potency of these two inhibitors is 
dramatically different, with the imidazole-2-carboxamide 
derivative 6g showing a three order of magnitude higher 
activity than its methyl counterpart (3j).
To gain a deeper insight into the compound binding and the 
activity differences between 2-methylimidazoles and 
imidazole-2-carboxamides, we conducted a total of 8 µs MD 
simulations for the selected compounds bound to GSK3β in 
their preferred tautomeric state: 3j and 6g in tautomeric 
state B and the 3a and 6b in tautomeric state A. The initial 
1 µs MD simulations suggested unstable binding only for 3j, 
where its lipophilic cyclopropyl group is exposed to water 
in HR-I (Figure 3 and Figures S5 and S9, SI). Whereas with 
6g the amide stabilizes a water network near Asp200 and 
the cyclopropyl group is shielded from the solvent allowing 
the stable binding of tautomer B (Figure 3 and Figures S5 
and S9, SI). With tautomer A preferring 3a and 6b, the 2-
hydroxyphenyl was shielded from solvent regardless of the 
methyl or amide group substituent in the imidazole ring 
(Figure 3 and Figures S7 and S9, SI). These observations 
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were confirmed in unbiased simulations, conducted using 
another crystal structure as the starting configuration 
(Figures S6, S8 and S10, SI). Based on these data, the 
energetically favorable tautomer B of 3j does not support 
the suggested stabilizing interactions with the dynamic 
water network, which leads to water exposed HR-I, whereas 

the preferred tautomer A of 3a is capable to shield the HR-I 
from water via direct or water mediated interactions to 
Lys85 and maintain a stable binding (Figures S5–S8, SI). 
Thus, QM calculations with the MD simulations provide a 
potential explanation for the observed activity differences. 

Table 3. Inhibition Data and Physicochemical Parameters of Ethyl Imidazole-2-carboxylates 5 and Imidazole-2-
carboxamides 6-8.

N

HN

O

N
H

N
R2

R1

N

HN

O

N
H

NBr O

NH2

7

N

HN

O

CH3

N
H

N O

NH2

8

F

5,6

Cpd R1 R2

IC50 ± SEM [µM]
GSK3βa

IC50 ± SEM [µM]
p38α MAPK Alog Pb LLE

5a H
O

O
CH3 0.739 ± 0.186 >10 1.07 5.06

6a H
NH2

O
0.047 ± 0.020 >10c -0.16 7.49

5c F
O

O
CH3 0.899 ± 0.010 0.089 3.23 2.82

6h F
NH2

O
0.039 ± 0.017 0.019 ± 0.002c 1.99 5.52

6i F
OH

0.091 ± 0.006 0.016 2.20 4.84

6j H3C
NH2

O
0.013 ± 0.001 >10 0.12 7.76

6g
NH2

O
0.003 ± 0.000 >10 0.88 7.64

6f
NH2

O
0.003 ± 0.000 >10 2.25 6.27

6b
OH

NH2

O
0.023 ± 0.001 0.158 1.52 6.12

6c
O CH3

NH2

O
0.265 ± 0.017 2.35 1.77 4.81

6e
F

H3C

NH2

O
0.079 ± 0.003 0.016 2.48 4.62

6d
OF3C

NH2

O
0.352 ± 0.002 2.04 3.91 2.54

7 - - 0.354d >10 0.59 5.86

8 - - 0.047 ± 0.004 0.117 1.24 6.09

an=2; bcalculated with Canvas (Schrödinger LLC)22; cdetermined by ELISA activity assay23; dn=1 .
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Figure 3. Representative snapshots from MD simulations of compounds 3i (A), 3a (B), 6g (C) and 6b (D). (E) Compound 3i 
appears in a shifted binding orientation compared to 6g, whereas both 2-hydroxyphenyl derivatives (F) 3a and 6b display similar 
binding orientation in the simulations. The shift in the binding orientation of compound 3j occurs due to direct H-bond interaction 
from the imidazole to Asp200. This interaction, with the increased solvent exposure of the lipophilic cyclopropyl group (see Figures 
S5–S6, SI), explains the three orders of magnitude difference in activity between 3j and 6g. The protein surface is illustrated in 
transparent light blue color and hydrogen bonds with yellow dashed lines in A-D.

Selected compounds (1, 3a, 3i, 6a and 6h) were further 
tested for their GSK3β affinity in a previously reported ESI-
QTOF assay (Tables S1 and S2, SI).26 Using this completely 
different assay system, the potency trend of these GSK3β 
inhibitors obtained in the ADP-Glo activity assay was 
confirmed.

Moreover, inhibitors 3a and 6g were tested for their 
metabolic stability by incubation with human liver 
microsomes (HLM) over a period of 4 h (Tables S4 and S5, 
SI). Both compounds displayed excellent metabolic stability 
in this assay.

Further pharmacological profiling of the potent GSK3β 
inhibitor 6g included the evaluation of its ability to inhibit 

relevant CYP isoforms (Table 4). At a test concentration of 
10 μM, imidazole-2-carboxamide 6g shows a clean CYP 
inhibition profile. Only low inhibition of CYP1A2 was 
observed. 

Table 4. Inhibition of CYP450 isoenzymes.

% inhibition of CYP isoform @ 10 µM
Cpd 1A2 2C9 2C19 2D6 3A4
6g 25.5 0.8 -2.0 -2.8 -2.3
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To assess the overall kinome selectivity, most promising 
inhibitor 6g was screened against a representative panel of 
68 diverse kinases (Table S6, SI), including the target kinase 
GSK3β and all members of the MAP kinases. At a 
concentration of 0.5 µM (>160-fold its IC50 value on the 
target kinase) only CDK2, CDK9, JNK3, MLK2 and VEGFR2 
were substantially inhibited, suggesting an acceptable 
kinome selectivity. 

To confirm the biological activity of imidazole-
2carboxamide 6g, we tested it in a cell-based GSK3β assay. 
At the tested concentration of 1 µM, 6g inhibits GSK3β 
activity, in terms of inactive phospho-GSK3α/β (Ser21/9) 
increase, after 1 h of treatment in neuronal SH-SY5Y cells 
(Figure 4).

p-
G

SK
3

/
 / 

to
ta

l G
SK

3

Ctr 6g
0.0

0.2

0.4

0.6

0.8

1.0

***

Figure 4. Inhibition of GSK3β activity in neuronal SH-SY5Y 
cells. Cells were incubated with compound 6g [1 µM] for 1 h. At 
the end of incubation, the phosphorylation of GSK3α/β 
(Ser21/9) (inactive GSK3α/β form) was determined by western 
blotting. Data are expressed as ratio between phospho-
GSK3α/β and total GSK3β levels normalized against β-Actin 
and reported as mean ± SD of at least three independent 
experiments (*** p < 0.001 versus untreated cells; t-test).

Since CDK2, CDK9 and VEGFR2 are off-targets of 6g, we 
also determined its cytotoxic profile on different cell lines 
after 48 h of incubation. A margin of safety is given 
concerning cytotoxic side effects. In case of tested non-
tumorigenic cells, the concentration to cause a 50% 
decrease in cell viability is in the low micromolar range, 
which corresponds >1000-fold the IC50 value of the GSK3β 
kinase activity assay (Figure S11, SI). 

In case of the selected tumorigenic cells (Figure S12, SI), 
compound 6g shows antiproliferative activity in breast 
human cancer cell line (Figure S12B, SI), at 0.1 µM and less 
at 0.01 µM. This may be a relevant result, as the GSK3β is a 
target in the treatment of human breast cancer.27 Breast 
cancer patients with overexpression of GSK3β presented 
poor prognosis, and GSK3β inhibition suppressed the 
viability and proliferation of breast cancer cells in vitro.28

In summary, we synthesized a diverse set of 33 novel di- 
and trisubstituted pyridinylimidazoles. The most potent 
GSK3β inhibitors 6f, 6g and 6j were selective over p38α 
MAPK and had reasonable (CNS) drug-like log P values. 
Imidazole 6g was metabolically stable in HLM, displayed a 
very good selectivity profile, and showed no affinity 

towards pharmacologically relevant CYP isoenzymes. 
Importantly, the LLE values of the series illustrate that the 
series’ potency is not driven by molecular obesity.29

The SAR of the synthesized compounds was explained 
with QM calculations and MD simulations. The series 
represent an interesting example of the influence of the 2-
methylimidazole tautomerism on the compound activity. 
The effect of tautomerism was indirectly surmounted by 
introducing the water-network stabilizing 2-carboxamide, 
thus, exemplifying the importance to consider that subtle 
molecular differences may have significant influence on the 
dynamics of the system.
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